
Network

Definition

A network N consists of:

I digraph (V ,E )

I edge capacities c : E ! [0,1)

I source s 2 V , which has indegree 0, and

I sink t 2 V , which has outdegree 0.

Flow

Definition

A flow is a mapping f : E ! [0,1) satisfying:

I [capacity constraints] (8e 2 E ) f (e)  c(e)

I [conservation constraints] (8v 2 V \ {s, t}) fin(v) = fout(v)
where fin(v)

.
=

P
u2V :e

.
=(u,v)2E f (e) and

where fout(v)
.
=

P
u2V :e

.
=(v ,u)2E f (e).

Value of a flow: ⌫(f )
.
= fout(s)

Cut

Definition

An st-cut is a partition (S ,T ) of V such that s 2 S and t 2 T .

Note

I (S ,T ) is a partition of V if S [ T = V and S \ T = ;.
I (S ,T ) can alternately be written as (S , S) where S

.
= V \ S .

I Term “cut” is sometimes also used to denote the set of edges

that cross the cut, i.e., (E \ S ⇥ T ) [ (E \ T ⇥ S).

Invariance Property

Statement

For every flow f and st-cut (S ,T ) in a network N = (V ,E , c , s, t)

fout(S)� fin(S) = ⌫(f ),

where fout(S)
.
=

P
e2E\S⇥T f (e) and fin(S)

.
=

P
e2E\T⇥S f (e).

Proof of Invariance Property

⌫(f )
.
= fout(s) � fin(s)

0 = fout(v) � fin(v) v 2 S \ {s}

⌫(f ) =
P
v2S

fout(v) �
P
v2S

fin(v)

=
P
v2S

P

e
.
=(v ,u)2E

f (e) �
P
v2S

P

e
.
=(u,v)2E

f (e)

(⇤)
=

P
e⇤2E

c(e⇤)f (e⇤)

=
P

e2E\S⇥T
f (e) �

P
e2E\T⇥S

f (e)

= fout(S) � fin(S)

(⇤) type of e⇤ 2 E c(e⇤)
S ⇥ T 1 - 0 = 1

S ⇥ S 1 - 1 = 0

T ⇥ S 0 - 1 = -1

T ⇥ T 0 - 0 = 0

Cut

Definition

An st-cut is a partition (S ,T ) of V such that s 2 S and t 2 T .

Capacity of an st-cut
c(S ,T )

.
=

P
e2E\S⇥T c(e)



Weak duality

Statement

For every flow f and st-cut (S ,T ) in a network N = (V ,E , c , s, t)

⌫(f )  c(S ,T ).

Proof of Weak duality

⌫(f ) =
X

e2E\S⇥T

f (e)�
X

e2E\T⇥S

f (e)


X

e2E\S⇥T

c(e)�
X

e2E\T⇥S

0

.
= c(S ,T )

Note

Equality ⌫(f ) = c(S ,T ) holds i↵

I (8e 2 E \ S ⇥ T ) f (e) = c(e)

I (8e 2 E \ T ⇥ S) f (e) = 0.

Max Flow and Min Cut

Max flow

Input: network N = (V ,E , c , s, t)

Output: flow f such that ⌫(f ) is maximized

Min cut

Input: network N = (V ,E , c , s, t)

Output: st-cut (S ,T ) such that c(S ,T ) is minimized

Weak duality

max
flow f

⌫(f )  min
st-cut (S ,T )

c(S ,T )

We’ll show next lecture that equality always holds (strong duality).

Path Augmentation - first attempt

Algorithm

1. Start with f ⌘ 0.

2. While there is an st-path P along which more flow can be

pushed, additionally push as much flow along P as possible.

3. Return f .

Issue

Bad prior choices may block further progress.

Recap - notions

Network

I digraph (V ,E )

I edge capacities c : E ! [0,1)

I source s 2 V with indegree 0

I sink t 2 V with outdegree 0

Flow

A mapping f : E ! [0,1) satisfying

I [capacity constraints] (8e 2 E ) f (e)  c(e)

I [conservation constraints] (8v 2 V \ {s, t}) fin(v) = fout(v)

where fin(v)
.
=

P
u2V :e

.
=(u,v)2E f (e) and

where fout(v)
.
=

P
u2V :e

.
=(v ,u)2E f (e).

st-Cut

A partition (S ,T ) of V such that s 2 S and t 2 T .

Recap - computational problems

Max flow

Input: network N = (V ,E , c , s, t)

Output: flow f such that ⌫(f )
.
= fout(s) is maximized

Min cut

Input: network N = (V ,E , c , s, t)

Output: st-cut (S ,T ) such that c(S ,T )
.
=

P
e2S⇥T c(e) is

minimized



Recap - properties

I Invariance: For every flow f and st-cut (S ,T )

fout(S)� fin(S) = ⌫(f )

I Weak duality: For every flow f and st-cut (S ,T )

⌫(f )  c(S ,T )

Equality ⌫(f ) = c(S ,T ) holds i↵

� (8e 2 E \ S ⇥ T ) f (e) = c(e)

� (8e 2 E \ T ⇥ S) f (e) = 0.

I Strong duality (today):

max
flow f

⌫(f ) = min
st-cut (S ,T )

c(S ,T )

Residual Network

Consider a flow f in N = (V ,E , c , s, t).

Definition

The residual network Nf = (V ,Ef , cf , s, t) has:

I For each e 2 E with f (e) < c(e), an edge e in Ef with

cf (e)
.
= c(e)� f (e).

I For each e = (u, v) 2 E with f (e) > 0, an edge e
0 .
= (v , u) in

Ef with cf (e
0
)
.
= f (e).

Unblocking example

flow f : residual network Nf :

Path Augmentation

Schema

1. Start with f ⌘ 0.

2. While there is an st-path in Nf
I Pick such a path P .

I f  f+ flow along P of value mine2P(cf (e))

3. Return f .

Soundness

If the algorithm produces an output, it is correct.

I f always is a valid flow.

I If there is no st-path in Nf then ⌫(f ) is maximized.

Termination

Soundness

Theorem

The following are equivalent:

(1) f has maximum value.

(2) There is no st-path in Nf .

(3) ⌫(f ) equals the capacity of some st-cut.

Proof

(1) ) (2) Contrapositive follows by path augmentation.

(2) ) (3) Next slide.

(3) ) (1) Follows from weak duality.

Corollary: Strong duality

max
flow f

⌫(f ) = min
st-cut (S ,T )

c(S ,T )

Construction of Minimum Cut

Suppose that there is no st-path in Nf .

S
.
= {v 2 V : there exists an sv -path in Nf }.

I (S ,T ) with T
.
= V \ S is an st-cut in N.

� s 2 S

� t 2 T

I (8e 2 E \ S ⇥ T ) f (e) = c(e)

� Consider e = (u, v) 2 E with u 2 S and f (e) < c(e).

� Then (u, v) 2 Ef so v 2 S .

I (8e 2 E \ T ⇥ S) f (e) = 0

� Consider e = (u, v) 2 E with v 2 S and f (e) > 0.

� Then e
0 .
= (v , u) 2 Ef so u 2 S .

I ) (S ,T ) is an st-cut with c(S ,T ) = ⌫(f ).

I By weak duality ⌫(f ) is maximized and c(S ,T ) minimized.

I Construction of (S ,T ) from f runs in linear time.

Path Augmentation - recap

Scheme

1. Start with f ⌘ 0.

2. While there is an st-path in Nf
I Pick such a path P .

I f  f+ flow along P of value mine2P(cf (e))

3. Return f .

Soundness

If the algorithm produces an output, it is correct.

I f always is a valid flow.

I If there is no st-path in Nf then ⌫(f ) is maximized.

Termination



Termination and Running Time

I Depend on the choice of augmenting path.

I There exist instances and choices without termination.

Integral capacities

If all capacities are integral, termination is guaranteed no matter

how augmenting paths are picked.

I # augmentations  F
.
= maxflow f (⌫(f ))

I If each augmenting path is picked using linear-time graph

traversal, running time is O((n +m) · F ).
I Running time bounded by polynomial in:

� size parameters (n and m)

� value of numbers involved (capacities): F 
P

e2E c(e)

Referred to as pseudopolynomial running time.

Slow convergence

Bad choices

Every augmentation through edge between a and b.

Good choices

I Augmenting path of maximum residual capacity

I Augmenting path with smallest number of edges

Better Algorithms

Augmentation along path of maximum residual capacity

I # augmentations = O(m · log F ) for integral instances
I Finding one path: O(n +m) time

I Overall running time: O((n +m)m · log F )
I Running time is polynomial: bounded by polynomial in size

parameters and bitlength of numbers involved.

Augmentation along path with smallest number of edges

I # augmentations = O(nm) for all instances

I Finding one path: O(n +m) time (BFS)

I Overall running time: O(nm(n +m))

I Running time is strongly polynomial: bounded by polynomial

in size parameters only.

Other approaches: O(nm) time for all instances

Recap - notions

Network
I digraph (V ,E )

I edge capacities c : E ! [0,1)

I source s 2 V with indegree 0

I sink t 2 V with outdegree 0

Flow
A mapping f : E ! [0,1) satisfying

I [capacity constraints] (8e 2 E ) f (e)  c(e)

I [conservation constraints] (8v 2 V \ {s, t}) fin(v) = fout(v)
where fin(v)

.
=

P
u2V :e

.
=(u,v)2E f (e) and

where fout(v)
.
=

P
u2V :e

.
=(v ,u)2E f (e).

st-Cut
A partition (S ,T ) of V such that s 2 S and t 2 T .

Recap - notions

Integral network
I digraph (V ,E )

I edge capacities c : E ! N
I source s 2 V with indegree 0

I sink t 2 V with outdegree 0

Integral flow
A mapping f : E ! N satisfying

I [capacity constraints] (8e 2 E ) f (e)  c(e)

I [conservation constraints] (8v 2 V \ {s, t}) fin(v) = fout(v)
where fin(v)

.
=

P
u2V :e

.
=(u,v)2E f (e) and

where fout(v)
.
=

P
u2V :e

.
=(v ,u)2E f (e).

st-Cut
A partition (S ,T ) of V such that s 2 S and t 2 T .

Bipartite Matching

Definition
A matching M in a graph G = (V ,E ) is a subset M ✓ E such that
each v 2 V appears in at most one e 2 M.

Computational problem

Input: bipartite graph G = (V ,E ) with bipartition (L,R):
E ✓ L⇥ R where L \ R = ;

Output: matching M such that |M| is maximized

Reduction to max flow
I Model e 2 M as one unit of flow through e.

I Integral network N such that

matching M in G
bijection ! integral flow f in N

|M| = ⌫(f )

I Resulting algorithm runs in time O(nm).



Bipartite Matching – duality

Capacity of a cut in N

I c(S ,T ) is finite i↵ E \ S ⇥ T = ;
i↵ G (L \ S) ✓ R \ S , (1)

where G (A)
.
= {v : (9u 2 A) (u, v) 2 E}.

I If c(S ,T ) is finite then c(S ,T ) = |L \ T |+ |R \ S |. (2)

Matching obstacle

I Suppose not every u 2 L can be matched.

I ⌫(f ) < |L| for every flow f in N.

I c(S ,T ) < |L| for every min cut (S ,T ) in N. (3)

I Consider A
.
= L \ S .

|G (A)|
(1)
 |R\S | (2)= c(S ,T )�|L\T |

(3)
< |L|�|L\T | = |L\S | = |A|

I Any A ✓ L with |G (A)| < |A| is obstacle for matching all of L.

Marriage theorem

Definition
A matching M in G = (V ,E ) is perfect if every v 2 V appears in
some e 2 M.

Marriage theorem [Hall]

A bipartite graph G = (V ,E ) with bipartition (L,R) where
|L| = |R | has a perfect matching i↵

(8A ✓ L) |G (A)| � |A|.

Proof

): Follows from definition of perfect matching.

(: Contrapositive follows from matching obstacle construction.

Edge-Disjoint Paths

Computational problem

Input: digraph G = (V ,E ); s, t 2 V

Output: set C of edge-disjoint st-paths in G such that |C | is
maximized

Reduction to max flow
I Model each path from s to t as one unit of flow.

I Integral network N
.
= (V ,E \ (V ⇥ {s}[ {t}⇥V ), c ⌘ 1, s, t)

set C of edge-disjoint st-paths in G  ! integral flow f in N

|C | = ⌫(f )

I Resulting algorithm runs in time O(nm).

Edge-Disjoint Paths – duality

Capacity of a cut in N

I c(S ,T ) = |E \ S ⇥ T |
I Removing E \ S ⇥ T from G ensures no st-path remains.

Edge connectivity duality [Menger]

The maximum number of edge-disjoint st-paths equals the
minimum number of edges to be removed so no st-path remains.

Proof
I `

.
= max number of edge-disjoint st-paths

I r
.
= min number of edges to be removed so no st-path

I maxflow f (⌫(f )) = `  r  minst-cut (S ,T )(c(S ,T ))

I By duality, LHS = RHS so ` = r .

Survey Design

Computational problem

Input: n customers i 2 [n]
m products j 2 [m]
Si ✓ [m]: products that customer i 2 [n] can survey
ci 2 N: max number of surveys for customer i 2 [n]
pj 2 N: min number of surveys of product j 2 [m]

Output: set D ⇢ [n]⇥ [m] such that

� (8(i , j) 2 D) j 2 Si

� (8i 2 [n]) |{j 2 [m] : (i , j) 2 D}|  ci

� (8j 2 [m]) |{i 2 [m] : (i , j) 2 D}| � pj

Model
Represent each (i , j) 2 D as a unit of flow that passes through
customer i and product j .

Survey Design – reduction to max flow



Survey Design – analysis

I Minimal survey D satisfies

(8j 2 [m]) |{i 2 [n] : (i , j) 2 D}|=pj .

I Integral network N such that

minimal survey D
bijection ! integral flow f with ⌫(f ) =

X

j2[m]

pj

D = middle edges that carry flow

I Resulting algorithm runs in time
O((n +m)(n +m +

P
i2[n] |Si |)).

Recap

Network

I digraph (V ,E )

I edge capacities c : E ! [0,1)

I source s 2 V with indegree 0

I sink t 2 V with outdegree 0

st-Cut
A partition (S ,T ) of V such that s 2 S and t 2 T .

Min cut problem

Input: network N = (V ,E , c , s, t)

Output: st-cut (S ,T ) such that c(S ,T )
.
=

P
e2S⇥T c(e) is

minimized

Complexity: time O(nm)

Image segmentation

Computational problem

Input: grid of pixels i 2 [n]

fi 2 [0,1): “likelihood” that i is foreground

bi 2 [0,1): “likelihood” that i is background

c 2 [0,1): penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B

maximizing

X

i2F
fi +

X

j2B
bj � c · |{(i , j) 2 F ⇥ B : i ⇠ j}|

Model

I Vertex for each pixel, source s, sink t

I S = F [ {s} and T = B [ {t}

Image Segmentation – rewriting objective

max
F ,B

0

BB@
X

i2F
fi +

X

j2B
bj �

X

i⇠j
(i ,j)2F⇥B

c

1

CCA

= �min
F ,B

0

BB@
X

i⇠j
(i ,j)2F⇥B

c �
X

i2F
fi �

X

j2B
bj

1

CCA

= �min
F ,B

0

BB@
X

i⇠j
(i ,j)2F⇥B

c �
X

i2[n]

fi +
X

i2B
fi �

X

j2[n]

bj +
X

j2F
bj

1

CCA

=

X

i2[n]

fi +
X

j2[n]

bj �min
F ,B

0

BB@
X

i⇠j
(i ,j)2F⇥B

c +

X

i2B
fi +

X

j2F
bj

1

CCA

Image Segmentation – reduction to min cut

I Need to find partition of [n] into F and B minimizing

(⇤) .
=

X

i⇠j
(i ,j)2F⇥B

c +

X

i2B
fi +

X

j2F
bj .

I Construct network N such that (⇤) = c(S ,T ) where

S = F [ {s} and T = B [ {t}.

I Resulting algorithm runs in time O(n
2
).

Project Selection

Computational problem

Input: n projects i 2 [n]

m tools j 2 [m]

Ti ✓ [m]: tools needed to realize project i 2 [n]

vi 2 [0,1): value of project i 2 [n] if realized

cj 2 [0,1): one-time cost of tool j 2 [m] if bought

Output: Set of projects I ✓ [n] to realize and set of tools

J ✓ [m] to buy maximizing
P

i2I vi �
P

j2J cj
such that (8i 2 I )Ti ✓ J.

Model

I Vertex for each project i 2 [n] & tool j 2 [m]; source s, sink t

I Project i 2 [n] is realized i↵ i 2 S .

I Side of st-cut determines whether tool j 2 [m] is bought.



Project Selection – rewriting objective

max
I ,J

0

@
X

i2I
vi �

X

j2J
cj

1

A

= �min
I ,J

0

@
X

j2J
cj �

X

i2I
vi

1

A

= �min
I ,J

0

@
X

j2J
cj �

X

i2[n]

vi +
X

i2[n]\I

vi

1

A

=

X

i2[n]

vi �min
I ,J

0

@
X

j2J
cj +

X

i2[n]\I

vi

1

A

Project Selection – reduction to min cut

I Need to find I ✓ [n] and J ✓ [m] with (8i 2 I )Ti ✓ J

minimizing

(⇤) .
=

X

j2J
cj +

X

i2[n]\I

vi .

I Construct network N such that (⇤) = c(S ,T ) where I are the

projects in S .

I Let J be the tools in S .

I Enforce condition (8i 2 I )Ti ✓ J by including edges (i , j)
with c(i , j) = 1 for each i 2 [n] and j 2 Ti

I Resulting algorithm runs in time

O((n +m)(n +m +
P

i2[n] |Ti |)).

Project Selection – reduction to min cut


