
CS 577: Introduction to Algorithms Fall 2022

Homework 9

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers reductions. Problem 3 must be submitted for grading by 2:29pm
on 11/29. Note that you have two weeks for this assignment because of the second midterm
exam and the Thanksgiving break. Please refer to the homework guidelines on Canvas for detailed
instructions. Good luck and Happy Thanksgiving!

Warm-up problems

1. Consider the satisfiability problem for Boolean formulas. Show how to reduce search to
decision in polynomial time.

2. Suppose you are given two sequences of nonnegative integers a1, a2, . . . , an and b1, b2, . . . , bn

and two targets s and t. You want to decide whether there exists I ✓ [n] such that ⌃i2Iai = s

and ⌃i2Ibi = t. Design a polynomial-time reduction from this problem to the subset sum
problem.

The subset sum problem takes as input a sequence of nonnegative integers a01, a
0
2, . . . , a

0
n0 and

a target t0 and determines whether there exists I 0 ✓ [n0] such that ⌃i2I0a
0
i = t

0.

Regular problems

3. [Graded] You are nearing graduation and want to finalize the courses you need to take. You’ve
already gotten all the core courses out of the way, so you only need to take T more credits out
of the remaining n courses available. Each course i 2 [n] uses ci credits. Also, taking more
credits will increase your tuition, so you want to pick a course schedule that uses exactly T

credits. Furthermore, you’d like to have time to go on adventures during your final semesters,
so you want to pick a schedule with as few courses as possible. MyUW just released a new
feature that given a list of courses and their credits, an integer t, and an integer m, determines
if there is some subset of at most m of these courses so that the total sum of their credits is
exactly t.

(a) Design a polynomial-time algorithm that outputs a course schedule with total credit
equal to T that uses as few courses as possible. You may assume you can use MyUW’s
new feature in constant time. In other words, you need to design a polynomial-time
reduction from the problem of finding courses to the problem encoded in MyUW’s new
feature.

(b) Notice that MyUW’s new feature is really solving a variant of the subset sum problem
(see problem 2). Namely, given a list of integers, a1, a2, . . . , an, an integer, T , and an
integer, m, determine if there is a subset I ✓ [n] with |I| m such that ⌃i2Iai = T .
Show that this variation reduces in polynomial time to the classical subset sum problem.

4. You’re an avid bicyclist who just moved to Madison. You plan to go on a long bike ride every
weekend in an e↵ort to explore the city. You’ve picked up a Madison cycling guide that has

1

a list of the best bike routes. Each route includes the names of the landmarks it passes by
(and each route only passes by a given landmark once). You are excited to explore Madison,
so you refuse to take a weekend o↵ of biking until you have passed by each landmark at least
once. Your friend wants to visit you in w weeks, and she has planned a backpacking trip
to take you on (which would preclude you from biking that weekend). She wants to know
if you will be finished biking past all of the landmarks by the time she arrives. So, she has
developed an algorithm to answer this question. Formally, her algorithm takes as input the
number k, as well as m bike routes which together pass by n landmarks. Bike route i 2 [m]
passes by landmarks Li ✓ [n]. Her algorithm outputs yes if there is a set of k bike routes
that together pass by all n landmarks, and it outputs no otherwise.

(a) Your friend tells you that, yes, it is possible for you to visit all n landmarks using only
w of those m bike routes. However, she doesn’t tell you which bike routes to use or
whether you can use fewer than w routes. Your first ride is tomorrow, so you need
to plan your routes now, and you want to plan the fewest routes possible to cover all
landmarks. Unfortunately, your friend is camping with limited cell service, so she can’t
explain how her algorithm works. However, you can text her a number k

0 and a set of
m

0 bike routes that together pass by n
0 landmarks, and she will respond whether or not

it is possible to visit all n0 landmarks using only k
0 of those m

0 bike routes.

Formulate your bike route planning problem as an optimization version of your friend’s
decision problem. Design a polynomial time reduction from the optimization problem
to the decision problem.

(b) After completing the backpacking trip with your friend, you want to get back into
biking every weekend. You enjoyed the bike guidebook and will use those routes again.
However, since you’ve already visited each landmark once, you only want to visit each
landmark at most one more time. As you plan your next set of bike routes, you want
to choose the maximum number of bike routes such that none of these bike routes visit
the same landmark.

Formally, you are given m bike routes, which together pass by n unique landmarks.
Bike route i 2 [m] passes by landmarks Li ✓ [n]. Your goal is to return a set of bike
routes B ✓ [m] such that none of the bike routes pass by the same landmark and |B| is
maximized. Show how to reduce this problem to Independent Set in polynomial time.

5. Consider the variant of the Traveling Salesperson optimization problem in which the tour
does not need to end in the same city as it starts in. Show that this variant and the original
one are equivalent under polynomial-time reductions.

The standard Traveling Salesperson problem is as follows: Given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

Challenge problem

6. Recall scheduling to minimize the maximum lateness. Suppose we want to minimize the sum

of the latenesses instead of the maximum lateness. Give a polynomial-time reduction from
the partition problem to this problem.

2

Programming problem

7. SPOJ problem The Courier (problem code COURIER).
Hint: Whereas the trivial algorithm for the Traveling Salesperson Problem takes time ⇥(n!),
there is a dynamic programming algorithm that only takes time O(n2 · 2n).

3

CS 577: Introduction to Algorithms Fall 2022

Homework 9 Solutions to Warm-up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

Consider the satisfiability problem for Boolean formulas. Show how to reduce search to decision

in polynomial time.

Recall that the decision version of the satisfiability problem for boolean formulas is as follows:

Given a boolean formula written as ANDs, ORs, NOTs, and parenthesis of variables x1, . . . , xn,

output ‘yes’ if there exists an assignment of true or false to each variable such that the for-

mula evaluates to true, otherwise output ‘no’. The corresponding search problem then asks for a

satisfying assignment of each variable or an indication that no such satisfying assignment exists.

Reduction We can reduce search to decision using the following strategy. First, we ask if a

satisfying assignment exists. If not, we output that no satisfying assignment exists and we are

done. Otherwise, assign the value true to variable x1 and create a new formula by replacing x1

with true and simplifying. Then check if a satisfying assignment exists in this new formula. If

yes, then x1 can be assigned the value true. If not, then x1 must have the value false, since

a satisfying assignment of the original formula existed, and x1 can only take the values true or

false. Therefore we can replace x1 with false in the original formula and simplify. In either case,

we have found an assignment of x1 and produced a new formula such that a satisfying assignment

of the variables x2, . . . , xn in the new formula corresponds to a satisfying assignment in the original

formula. Therefore, we can recurse on the new formula to determine a satisfying assignment of the

remaining variables.

Note that this solution corresponds to the eager approach from class (we try to set a variable

to true if we can do so). It produces the lexicographically last satisfying assignment x1x2 . . . xn

(meaning that if you wrote the satisfying assignments as strings of length n made of “t”s and “f”s,

any other satisfying assignment would come before ours in alphabetical order). Can you think of a

reluctant approach for the problem that produces the lexicographically first satisfying assignment?

Correctness Clearly, if there is no satisfying assignment, we output “no” correctly. Otherwise,

we know that there is a satisfying assignment. As discussed above, when we ground a variable xi

in a formula, if the new formula is satisfiable, then the original formula is satisfiable when xi is set

to the value we grounded it as. At each step of our recursion, we know that the original formula

at that step is satisfiable, and we choose a grounding of xi that results in the simplified formula

being satisfiable (using our decision blackbox). So, by the end of our recursion we have grounded

all variables x1 . . . xn in a way that satisfies the original formula.

Runtime Analysis We make polynomially-many (O(n)) calls to decision and do a polynomial-

time amount of extra work (note that simplifying the formulas can be done in polynomial time).

Therefore, the reduction runs in polynomial time.

1

Problem 2

Suppose you are given two sequences of nonnegative integers a1, a2, . . . , an and b1, b2, . . . , bn

and two targets s and t. You want to decide whether there exists I ✓ [n] such that ⌃i2Iai = s

and ⌃i2Ibi = t. Design a polynomial-time reduction from this problem to the subset sum

problem.

Reduction We need to develop an input a
0
1, a

0
2, . . . , a

0
n, t

0
to subset sum such that there exists a

subset of a
0
values that sum to t

0
i↵ there exists a subset I of indices of ai values such that these

ai values sum to s and the corresponding bi values sum to t. To do this, we will create a
0
i values

that incorporate both ai and bi values and a target value t
0
that incorporates both s and t. We

cannot simply sum the values together such that a
0
i = ai + bi and t

0
= s + t because the ai and

bi values can interfere with each other. In order to avoid this interference, we will multiply the ai

values and s by a large number. Specifically, our large number will be N = max[t,
P

i2[n] bi] + 1.

This way, even if we add together all of the bi values, they cannot interfere with the ai or s values.

Similarly, even if t is large, it cannot interfere with the ai or s values. We will develop an input to

subset sum of a
0
i = aiN + bi and t

0
= sN + t.

Intuitively, this process ensures that when we add together the subset sum, one of the subset

sum problems occurs in the “larger” section of the number and the other occurs in the “smaller”

section of the number. For intuition, you can imagine that if we had set N to a large enough power

of 2 and converted the numbers to binary, the ai and s values would be in the “left” section of

the number, followed by a string of zeroes. In this way, even if the bi values in the “right” section

of the number were all added together, there would be no carries from the right section into the

left section. This is not specific to the binary representation and could be done in decimal or your

preferred number system. Note that we essentially did this in a base-N representation.

Correctness To prove the correctness of our reduction, we need to demonstrate that there exists

a subset I of indices of ai values such that these ai values sum to s and the corresponding b values

sum to t i↵ there exists a subset of a
0
i values that sum to t

0
.

) We first show the easier direction: if there exists a subset I of indices of ai values such that

these ai values sum to s and the corresponding b values sum to t then there exists a subset of a
0
i

values that sum to t
0
. We know

P
i2I ai = s and

P
i2I bi = t. This gives us the following equations

N

X

i2I
ai = Ns

X

i2I
[Nai + bi] = Ns+ t

By our definitions of a
0
i and t

0
, this yields

P
i2I a

0
i = t

0
.

(The other direction we need to prove is that if there exists a subset of a
0
i values that sum to

t
0
then there exists a subset I of indices of ai values such that these ai values sum to s and the

corresponding bi values sum to t. By our definition of a
0
i and t

0
, we know,

N

X

i2I
ai +

X

i2I
bi = Ns+ t (1)

2

Taking this equation modulo N and realizing that N > t and N >
Pn

i=1 bi �
P

i2I bi, we get,

X

i2I
bi = t (2)

Finally, we can subtract t from both sides of (1) and use the equality in (2).

X

i2I
Nai +

X

i2I
bi � t = Ns+ t� t

X

i2I
Nai = Ns

X

i2I
ai = s (3)

Together, (1) and (3) prove this direction.

Runtime Analysis To develop our reduction, we compute O(n) new input values a
0
1, a

0
2, . . . a

0
n,

and t
0
. Each of these computations uses a constant number of arithmetic operations, which can be

computed in polynomial time. Thus, the reduction runs in polynomial time.

3

CS 577: Introduction to Algorithms Fall 2022

Homework 9 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 3

You need to develop a course schedule that uses exactly T credits and minimizes the number
of courses you take. You will choose courses from the remaining n courses available. Each
course i 2 [n] uses ci credits. MyUW just released a new feature that given a list of courses
and their credits, an integer t, and an integer m, determines if there is some subset of at most
m of these courses so that the total sum of their credits is exactly t.

(a) Design a polynomial-time algorithm that outputs a course schedule with total credit equal
to T that uses as few courses as possible. You may assume you can use MyUW’s new
feature in constant time. In other words, you need to design a polynomial-time reduction
from the problem of finding courses to the problem encoded in MyUW’s new feature.

(b) Notice that MyUW’s new feature is really solving a variant of the subset sum problem.
Namely, given a list of integers, a1, a2, . . . , an, an integer, T , and an integer, m, determine
if there is a subset I ✓ [n] with |I| m such that ⌃i2Iai = T . Show that this variation
reduces in polynomial time to the classical subset sum problem.

Part (a)

Reduction/Correctness As stated, the problem asks for an optimal solution, meaning it is
the OptSol version of the problem. Instead of solving this problem directly (with a black box for
MyUW’s feature), we will first find the value of an optimal solution (OptVal). This will help guide
the search for the optimal solution. For this problem, solving OptVal means computing m, the
minimum number of courses needed so that we can still find a schedule with total credit amount
T . We can compute m by finding the smallest number k for which there is still some subset of all
the courses of size k whose total credit amount is T yet there is no subset of all the courses of size
k � 1 whose total credit amount is T . In particular, we can do a binary search over all 0 k n

and ask MyUW’s feature if the above is true. We then set m to be the smallest such k. If this
procedure fails to find an m, then no course schedule exists that has total credit amount equal to
T , so we just output “No”.

Next, we need to compute an actual set of m courses that has total credit amount T . For each
i 2 [n], we need to decide if we should take course i, which is a ci credit course. Notice that there
is a m course schedule that uses i and has total credit sum T if and only if [n] \ {i} has a m � 1
course schedule that has total credit sum equal to T � ci. To show the direction), if there is some
m course schedule, I, that uses i and has total credit sum T , then I \{i} is a m�1 course schedule
that has total credit sum equal to T � ci and does not use course i. To show the direction (, if
[n] \ {i} has a m � 1 course schedule, J , that has total credit sum equal to T � ci, then we know
course i is not used in this schedule by definition, so J [{i} is a m course schedule that uses i and
has total credit sum equal to (T � ci) + ci = T . This observation leads to an eager solution for the

1

problem: For each course, we check if it can be part of an optimal solution, and include it in the
solution in case it can.

We now present this idea in more detail. Let I = [n], for each i 2 [n], we ask MyUW’s feature if
there is a set of m�1 courses from I \{i} that has total credit T � ci. If so, then we take up course
i into our schedule, set I I \ {i}, T T � ci, and m m� 1 and continue to consider the next
course. Otherwise, we know we shouldn’t place course i in our schedule, we leave I, T , and m as
they are, and continue to consider the next course. We stop when m becomes zero . At the end of
this procedure, S

.
= [n] \ I will exactly be a set of m courses that have total credit sum equal to T .

This is because we continually remove courses from I that are in a course schedule satisfying the
desired properties. Lastly, as we know m is the fewest number of courses we could have possibly
taken while still being able to achieve exactly T credits, we know that S is a minimum sized set of
courses that has total credit equal to T . This procedure is summarized in the pseudocode below
where MyUW’s feature is represented by a function called MyUWF.

Algorithm 1 Computing a course schedule of size m having T credits

I [n]
if MyUWF(I, T,m) = “No” then return “Not Possible”

i 1
while m > 0 do

if MyUWF(I \ {i}, T � ci,m� 1) = “Yes” then
I I \ {i}, T T � ci,m m� 1

i i+ 1
return [n] \ I

Runtime Analysis We note that to compute m takes O(n log n) time because we use a simple
binary search that iterates O(log n) times. At each iteration, we ask two simple queries to MyUW’s
feature, each of which takes O(n) time to copy the input into MyUW’s feature. Similarly, to
construct the course schedule we need O(n) time per iteration to update I and query MyUW’s
feature. We also need to do arithmetic in every iteration, which can be done in time polynomial in
the bitlength of the numbers. Since we do O(n) iterations in this loop as well, the total reduction
runs in polynomial time.

Part (b)

Reduction/Correctness We are given access to an oracle for the subset sum decision problem
and want to determine if there is some I ✓ [n] so that

P
i2I ci = T and |I| m. Let’s first consider

the variation of this problem where we require |I| = k for some given 0 k n. Notice this
variation is a special case of discussion problem 2, where we set ai = ci, bi = 1 for all i while also
setting s = T and t = k.

We claim there is an I ✓ [n] so that
P

i2I ci = T and |I| = k if and only if there is a J ✓ [n]
so that

P
j2J aj = s and

P
j2J bj = t. To show the direction), if we have some I ✓ [n] satisfyingP

i2I ci = T and |I| = k, then
P

i2I ai =
P

i2I ci = T = s and
P

i2I bi = |I| = k = t. To show the
direction (, suppose J ✓ [n] satisfies

P
j2J aj = s and

P
j2J bj = t. Then, by definition of the

bi’s, we have |J | =
P

j2J bj = t = k, so J ✓ [n] satisfies |J | = k and
P

j2J cj =
P

j2J aj = s = T .

2

Hence, this gives us a mapping reduction from the variation to the problem in discussion problem
2. Then, composing this reduction with the mapping reduction from discussion problem 2 gives us
a mapping reduction from the variation to the subset sum decision problem.

Now, returning to our original problem where we just need |I| m, we can compute the above
reduction for each 0 k m and output “Yes” if and only if one of the subset sum oracle calls
says “Yes”.

Runtime Analysis Each individual reduction for a given k to the subset sum decision problem
takes polynomial time because reducing to discussion problem 2 takes O(n) time (creating the
s, t, ai and bi variables), and reducing from discussion problem 2 to the subset sum decision problem
takes polynomial time. We construct these individual reductions m n times. Hence, the entire
procedure takes polynomial time and reduces our original problem to the subset sum decision
problem.

3

Problem 4

Your friend has an algorithm that takes as input the number k, as well as m bike routes which
together pass by n landmarks. Bike route i 2 [m] passes by landmarks Li ✓ [n]. Her algorithm
outputs yes if there is a set of k bike routes that together pass by all n landmarks, and it
outputs no otherwise.

(a) Formulate your bike route planning problem (selecting the fewest routes possible to cover
all landmarks) as an optimization version of your friend’s decision problem. Design a
polynomial time reduction from the optimization problem to the decision problem.

(b) You are given m bike routes, which together pass by n unique landmarks. Bike route
i 2 [m] passes by landmarks Li ⇢ [n]. Your goal is to return a set of bike routes B ⇢ [m]
such that none of the bike routes pass by the same landmark and |B| is maximized. Show
how to reduce this problem to Independent Set in polynomial time.

Part (a)

Reduction The optimization problem (of the OptSol type) is as follows: the input consists of m
bike routes which together pass by n landmarks. Moreover, bike route i 2 [m] passes by landmarks
Li ✓ [n]. The output is a set of bike routes such that all n landmarks are covered and the set of
bike routes is of minimal size.

Similarly to Problem 3 our first goal to solve this problem is to solve the corresponding OptVal
version: find the smallest number k for which a set of bike routes of size k can cover all landmarks,
but a set of bike routes of size k � 1 cannot. Because our friend said that it is possible to visit all
n landmarks using only w of the m bike routes, we will perform binary search over 0 k w and
use the decision oracle to determine when we have found such a k. (Note that if we didn’t already
know that it was possible to visit all n landmarks in w weeks, we could use a binary search over
0 k m, and if we found no value of k such that k bike routes can cover all n landmarks, we
would simply return “not possible.”)

Note that once we know the smallest value k, we are left with the following search problem:
return a set of bike routes B ✓ [m] of size |B| = k such that all landmarks are covered. We will
reduce this to decision using an eager approach. We first check if we can include route 1 in order to
cover all landmarks using k bike routes. In order to do this, remove route 1 from the set of routes
and remove every landmark covered by route 1 from the set of landmarks we are trying to cover.
Then ask the decision oracle if you can cover the remaining landmarks using the remaining routes
with |B| = k � 1. If you can, then include route 1 in your set of routes, permanently delete the
landmarks that were covered by route 1 from the set of landmarks we are trying to cover, and set
k = k� 1. Otherwise, delete route 1 and put back the landmarks that were removed. Then we can
move on to check if we can include route 2 in the same manner. We will repeat this until we have
included k routes in our set B. See the pseudocode (2) for a formal description.

Correctness First, we note that using binary search we find the smallest number k for which a
set of bike routes of size k can cover all landmarks, but a set of bike routes of size k � 1 cannot.
If covering all landmarks is not possible with k � 1 bike routes, it certainly won’t be possible with
less. So, we can see that binary search finds the smallest number of bike routes possible to cover

4

Algorithm 2 Computing a set of k bike routes that covers all landmarks [n]. The bike routes
come from the set i 2 [m] where bike route i covers landmarks Li ✓ [n]. BikeDec is our decision
oracle that takes as input a set of bike routes, a set of landmarks to cover, and a number of bike
routes k.
B ;; . bike routes used
M [m]; . bike routes left
N [n]; . landmarks left
if BikeDec(M,N, k) = “No” then return “not possible”
i 1;
while k > 0 do

if BikeDec(M \ {i}, N \ Li, k � 1) = “Yes” then
B B [{i};
M M \ {i}, N N \ Li, k k � 1

i i+ 1;
return B

all landmarks.
To demonstrate the correctness of our solution to the search problem, we prove that there is

a k-size set of bike routes chosen from set M that uses route i and covers all landmarks in the
set N i↵ M \ {i} has a (k � 1)-size set of bike routes that covers all landmarks N \ Li. We begin
by showing the direction), if there is some k-size set of bike routes B that uses i and covers all
landmarks N , then B \ {i} is a (k � 1)-size set of bike routes that covers all landmarks N \Li. To
show the direction (, if M \ {i} has a (k� 1)-size set of bike routes, B0, that covers all landmarks
N \ Li, then we know route i is not used in this schedule by definition, so B

0 [{i} is a k-size set
of bike routes that covers all landmarks (N \ Li) [Li = N . Thus, by the end of the algorithm, we
have built a set of bike routes B of size k that together covers all landmarks.

Runtime Analysis Finding the smallest value k takes polynomial time because binary search
takes O(log n) iterations, and each iteration makes two calls to the decision oracle, each of which
requires copying the input to the oracle in linear time.

To construct the solution set of bike routes, we perform O(n) iterations, checking if we should
include each bike route i. At each iteration, we make one call to the oracle. Building the input
for the oracle call requires deleting O(n) landmarks, removing one bike route, and decrementing
k. Making these changes and copying the input values into the oracle takes polynomial time. So,
constructing the solution set of bike routes takes polynomial time. Thus, we have developed a
polynomial time reduction from optimization to decision.

Part (b)

Reduction Consider the similarities between this bike route problem and independents set (IS).
Our goal is to choose the maximum number of bike routes while IS wants to choose the maximum
number of vertices. Our constraint is that we cannot choose two bike routes that cover the same
landmark while IS has the constraint of not choosing two vertices that cover the same edge. This
leads to a natural mapping of bike routes to nodes and landmarks to edges. We begin with m

nodes, one per bike route, and we place edges between every pair of nodes corresponding to routes

5

that share landmarks. This way, if we choose node i (i.e. route i that passes landmark j), we
cannot choose any node that shares an edge with i (i.e. any route that also passes landmark j).

Our reduction is as follows: create a graph G with one node per bike route. Place an edge
between any node i and j i↵ Li \ Lj 6= ;. Use IS to determine the set of nodes S forming a
maximum independent set on G. Return B = S as the set of bike routes with no overlapping
landmarks such that |B| is maximized.

Correctness To prove the correctness, we need to show that S is an independent set on G i↵ B

is a set of bike routes with no overlapping landmarks. If S is an independent set on G, then this
means that no two nodes were chosen that share an edge. By our construction of G, this means
that no two bike routes in B share a landmark. If B has no overlapping landmarks, then by our
construction of G we know that S = B never has two endpoints of the same edge. This means that
S is an independent set. Now, since S = B and S is an independent set i↵ B is a set of bike routes
with no overlapping landmarks, we know S is a maximum independent set i↵ B is a maximal set
of bike routes with no overlapping landmarks.

Runtime Analysis Graph G uses m nodes and O(m2) edges (because in the worst case, every
pair of bike routes could have overlapping landmarks). Finding these edges requires looking at all
O(m2) pairs of bike routes i, j and computing the intersection of Li and Lj , which can be done
in polynomial time. So, building graph G takes polynomial time. Returning the solution B = S

takes O(m) time to copy the solution set. In all, the reduction from the bike route problem to IS
is polynomial-time.

6

Problem 5

Consider the variant of the Traveling Salesperson optimization problem in which the tour does
not need to end in the same city as it starts in. Show that this variant and the original one
are equivalent under polynomial-time reductions.

The standard Traveling Salesperson problem is as follows: Given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

Call the version of the Traveling Salesman Problem (TSP) where the tour does not need to end in
the same city as it starts Path-TSP. In the same way, call the original formulation where the tour
does need to start and end in the same city Circuit-TSP. Denote the optimization version of these
problems Path-TSP-optimization and Circuit-TSP-optimization, respectively. Recall that for the
optimization version of TSP, we must find the value AND path of the shortest route that visits
each city exactly once (meaning it is of the OptSol type). Furthermore, to show an optimization
problem A polynomial-time mapping-reduces to an optimization problem B, we must show that for
any instance xA of problem A, we can map it to an instance xB of B such that we can construct the
optimal solution to xA given the optimal solution to xB. More formally, we must find a function
g that maps an instance xA of problem A to an “equivalent” instance xB of problem B, and
another function h that takes an instance xA of A and a solution yB of xB and maps to a solution
yA of xA. The solution yA of xA should be optimal, and the mapping must be computable in
polynomial time. Finally, optimization problems A and B are equivalent under polynomial-time
mapping reductions if A polynomial-time mapping-reduces to B and B polynomial-time mapping-
reduces to A. We will start by showing Path-TSP-optimization polynomial-time mapping-reduces
to Circuit-TSP-optimization.

Path-TSP-optimization P Circuit-TSP-optimization

Given an instance of Path-TSP with graph G, construct a copy of graph G, G0. Then, add an
additional vertex u and edges of weight 0 from u to all vertices in G

0. Thus we have g(G) = G
0.

Now, run Circuit-TSP on the new graph G
0, which returns a TSP circuit C of G0 of minimal cost,

or states that no such circuit exists. If no circuit exists, return that no TSP path exists in G;
otherwise, construct a path P in G by removing vertex u from C and its corresponding edges.
Therefore, h(G,C) = P . We claim that P is a minimal-cost path in G or no path exists in G that
visits each vertex exactly once. We will show this by showing an equivalence of TSP paths in G

and TSP circuits in G
0.

7

Figure 1: Path-TSP-optimization P Circuit-TSP-optimization Example

1

3

2

5

4

9

a d

c

e

b

G

1

3

2

5

9

0

0

0

a d

c

e

b

u

G
0

0

0

4

8

Note that in the method used to construct P , we removed edges of cost 0 from C, so P has the
same cost as the circuit C. Further note that since C visits every vertex of G0 exactly once, and
P visits every vertex C visits other than u, which does not exist in G, P visits every vertex of G
exactly once. Finally, since this construction did not depend on C being minimal, this shows for
every TSP circuit in G

0 we can construct a TSP path in G of equivalent cost.
Now, in the other direction, note that for any TSP path X in G, starting at some vertex s and

ending at some vertex t, we can construct a TSP circuit Y in G
0 of equivalent cost by adding the

edges (t, u) and (u, s), both of cost 0, to Y . This equivalence shows that if no TSP circuit exists in
G

0, then no TSP path exists in G, otherwise, the minimal cost TSP circuit in G
0 is the same cost as

the minimal cost TSP path in G, completing the reduction. Finally, since constructing the graph
G

0 and removing u from the minimal cost circuit C in G
0 can be done in linear time, the reduction

can be computed in polynomial time.

Circuit-TSP-optimization P Path-TSP-optimization

Given an instance of Circuit-TSP with graph G, construct a new graph G
0 by performing the

following steps. First, let G
0 = G. Then, arbitrarily choose a vertex u of G0 and duplicate it,

copying any edges incident to u to the duplicated vertex u
0. Now, create auxiliary vertices s and t

and connect s to u and t to u
0, both with edges of cost 0. So we have g(G) = G

0. Run Path-TSP
on the new graph G

0, which returns a TSP path P of G0 of minimal cost or states that no such
path exists. If no path exists, return that no TSP circuit exists in G; otherwise, note that since
auxiliary vertices s and t have degree 1, if any TSP path exists in G

0, it must visit s and t first and
last. Therefore, we can construct a circuit C in G from P by removing vertices s, u0, t and their
corresponding edges and adding the edge (z, u), where z is the vertex immediately preceding u

0 in
P . So h(G,P) = C. We claim that C is a minimal-cost circuit in G or no circuit exists in G that
visits each vertex exactly once. Again, we show this by showing an equivalence of TSP circuits in
G and TSP paths in G

0.

Figure 2: Circuit-TSP-optimization P Path-TSP-optimization Example

1

3

2

5

4

9

u d

c

e

b

G

1

3

2

5

4

9

0

0

u d

c

e

bu

u
0

s

t G
0

1
9

9

Since the edges (s, u) and (t, u0), removed from P to construct C, are of cost 0, and the edge
(z, u) is the same cost as edge (z, u0), it follows that C has the same cost as P . Furthermore, since
P visits every vertex in G

0, and C visits every vertex that P visits except for u
0, t, and s, it also

follows that C visits every vertex in G. Then, again, since the construction of C did not depend
on the minimality of P , this shows that for any TSP path in G

0 we can construct a TSP circuit in
G of equivalent cost.

In the other direction, consider a TSP circuit X in G. Construct a TSP path Y in G
0 by

removing the edge (z, u), where z is a neighbor of u in X, and adding edges (z, u0), (u0, t), and
(u, s). Again, since (u0, t) and (u, s) are of cost 0, and (z, u0) is the same cost as (z, u), Y has the
same cost as X. Therefore if no TSP path exists in G

0, then no TSP circuit exists in G, otherwise,
the minimal TSP path in G

0 is the same cost as the minimal TSP circuit in G. Since creating the
graph G

0 and the circuit C can be done in linear time, the reduction can be computed in polynomial
time and so we are done.

10

COMP SCI 577 Homework 09 Problem 3
Reductions

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

29 November 2022

Question (a)

Algorithm
We first reference the new feature of MyUW described in the write-out of this problem as

Algorithm 1.
Then we define the main subroutine of question (a) as Schedule with an auxiliary sub-

routine as MinNumTakenCourses in Algorithm 2. We define the \ symbol to remove only one
course from the set of courses even if there are multiple courses with same number of credits,
without changing the indices of elements. Similar definition applies to the ∪ symbol. For the
MinNumTakenCourses subroutine, we check for every m ∈ [n] increasingly and return the first
one found to satisfy the condition of HasCourses, and return an error if there is no one found.
For the Schedule subroutine, we check for every course ci ∈ [n] increasingly by the index i to
see if there is a subset of exactly mc−1 courses which fit the condition, to put into the result
set s, and we remove ci from the course list regardless if the check is passed.

Proof
Correctness

Claim: MinNumTakenCourses is correct
Proof: Denote the correct number of minimum number of courses to take be m′.
As there are n courses available, m′ ∈ [n], if there is no such m′, then all subsets of c with

size in [n] cannot satisfy the condition, and we return an error in this case. !

1

1 Function HasCourses(n,c, t,m):
Input: n is number of courses; c is a list such that ci is the number of credits of the

ith course with i ∈ [n]; t is the exact sum of credits; m is the most number of
courses

Output: True if there is some subset of at most m of these courses so that the
total sum of their credits is exactly t, False otherwise

Algorithm 1: MyUW’s new feature (No detail)

If there is such m′, we attempt all possible m ∈ [n] which are in the range of m′ to be drawn
from. If at most m1 courses satisfy the condition, then at most m1 + 1 courses satisfy the
condition by that we do not select the extra course added to the discussion so that at most
m2 ≥ m1 courses also satisfy the condition inductively. If we find the smallest m1, then all
m2 ∈ [m1,n] satisfy the condition, that the solutions of this check are monotone. Thus, we
return the smallest m which satisfies the condition which must be followed by the logic of m′.
"
Claim: Schedule is correct

Proof: If there is no solution of Schedule, then we must receive an error at line 8, and the
program would not proceed, which is expected. Otherwise, there is a solution with some mini-
mal m received from the proved MinNumTakenCourses subroutine, then we start an induction
to discuss the for loop.

For the base case i = 1, c1 is in some solution with exactly m courses (i.e., at most m
satisfies, but does not satisfy at most m−1) and T credits in total if and only if that, in the
set {c2, . . . ,cn} we can find exactly m−1 courses and T −c1 credits in total, and we could add
c1 to the solution set s. So if we cannot find such a condition satisfied, then c1 is not in any
solution, and we can safely remove c1 from the course list defined by n and c without affecting
any further result.

For the inductive case, suppose the claim holds for i∈ [k−1], now we want to prove that for
i = k. Regarding T and n as original ones before entering this loop and Tc, nc, and cc be in the
current repetition of this loop. Suppose at this time we already have ns ∈ [0,m] selected courses
in s, then the Tc we are finding this loop is T −∑ns

i=1 si. From the induction hypothesis we also
have ∀i ∈ [k−1], ci '∈ cc that cc = ∪i∈[k,n] {ci}, nc = n− (k−1), mc = m−ns. The problem now
becomes that if ck is in some solution with exactly mc courses and Tc credits. This condition,
similarly, could be equal to that if in the set {ck+1, . . . ,cn} we can find exactly mc−1 courses
and Tc−ck courses in total. If not, we just remove ck from the course list. Thus, the invariants
of cc, nc, mc, and Tc still hold.

Therefore, as the invariants hold and the m is a guaranteed number of courses to take, we

2

1 Function MinNumTakenCourses(n,c, t):
Input: n is the total number of courses; c is a list such that ci is the number of

credits of the ith course with i ∈ [n]; t is the exact sum of credits
Output: m is the smallest number of courses with total credit equal to T

2 foreach m ∈ [n] do
3 if HasCourses(n,c, t,m) is True then
4 return m

5 return Error: Not possible
6 Function Schedule(n,c,T):

Input: n is number of courses; c is a list such that ci is the number of credits of the
ith course with i ∈ [n]; T is the exact sum of credits

Output: s is a course schedule with total credit equal to T that uses as few courses
as possible

7 s← /0;
8 m← MinNumTakenCourses(n,c, t);
9 foreach i ∈ [n] do

10 n← n−1,c← c\{ci} ,Tc← T − ci,mc← m−1;
11 if HasCourses(n,c,Tc,mc) is True and HasCourses(n,c,Tc,mc−1) is False

then
12 s← s∪{ci};
13 T ← Tc,m← mc;

14 return s

Algorithm 2: Question (a): Schedule

must reach a full solution when Tc = 0 and mc = 0 without any further update possible, and
at any such point, s contains a set of m courses with exactly T credits, and we return the s. "

Termination

The subroutine must terminate as there is no recursive call. "

Complexity

The complexity of MinNumTakenCourses is O(n) as there is only a loop through [n] and
the call to HasCourses is linear. The complexity of Schedule (i.e., the main subroutine)
is O(n), as we already have MinNumTakenCourses to be O(n), and then we have only one
extra loop through [n] and the call to HasCourses is linear. By the definition at Page 11
and Page 12 on Handout on 15 November 2022, Schedule runs in polynomial time (i.e.,
Schedule≤P HasCourses). "

3

1 Function TwoSubsetSum(a,b,s, t):
Input: two sequences of nonnegative integers a and b and two targets s and t
Output: True if there exists I ⊂ [n] such that ∑i∈I ai = s and ∑i∈I bi = t, False

otherwise
Algorithm 3: Problem 2: Two Subset Sum Problem

1 Function HasCourses(n,c, t,m):
Input: n is the total number of courses; c is a list such that ci is the number of

credits of the ith course with i ∈ [n]; t is the exact sum of credits; m is the
most number of courses

Output: True if there is some subset of at most m of these courses so that the
total sum of their credits is exactly t, False otherwise

2 a← {1,1, . . . ,1}︸ ︷︷ ︸
n 1’s

, b← c;

3 foreach s ∈ [0,m] do
4 if TwoSubsetSum(a, b, s, t) is True then
5 return True

6 return False
Algorithm 4: Question (b): MyUW’s new feature (Reduction)

Question (b)

Algorithm
We reference the subroutine in Problem 2 of the same Homework 09 defined as TwoSubset-

Sum as Algorithm 3.
For the main subroutine HasCourses as Algorithm 4 to implement, we reduce the problem

to TwoSubsetSum, with one subset b be the c of courses/credits and a be the n 1’s, if there
is one s ∈ [m] to satisfy ∑{ai1 ,ai2 , . . . ,ais} = s with i be a function shuffling indices without
duplication and the corresponding sum of b equals to T , we return True, otherwise we return
False.

Proof
Correctness

From the question specification, we want to determine if there is a subset I ⊂ [n] with |I|≤m
such that ∑i∈I ai = T .

For our reduction, we can use TwoSubsetSum to determine if there is a subset I ⊂ [n] such

4

that ∑i∈I ai = s and ∑i∈I bi = T , i.e., we are selecting exactly s courses with a sum of exactly T
credits, that by the definition of a, ∑i∈I ai = |I|. As 0≤ |I|≤m, so we just check in this interval
s ∈ [0,m] for TwoSubsetSum, to change one factor to determine to be ∑i∈I ai ≤ m. Therefore,
this is a valid reduction. "

Termination

The subroutine must terminate as there is no recursive call. "

Complexity

From the proof of Problem 2 in HW09 Solution to Warm-up Problems, we already have
that TwoSubsetSum ≤P SubsetSum. Regarding TwoSubsetSum running in O(nc), there is only
one outer loop through [m] so that HasCourses runs in O(nc) · O(m) = O(ncm) = O(nc+1)

as m ≤ n by the problem constraint. Therefore, HasCourses runs in polynomial time (i.e.,
HasCourses≤P TwoSubsetSum≤P SubsetSum). "

5

