CS 577: Introduction to Algorithms		Fall 2022
	Homework 10	
Instructor: Dieter van Melkebeek		TA: Nicollas Mocelin Sdroievski

This homework covers NP-completeness of Satisfiability and closely related problems. Problem 3 must be submitted for grading by $\mathbf{2 : 2 9} \mathrm{pm}$ on $12 / 6$. Please refer to the homework guidelines on Canvas for detailed instructions.

Warm-up problems

1. A CNF formula is monotone if the literals in each clause are either all positive or all negative For example, if we have

- $\varphi_{1}=\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$ and
- $\varphi_{2}=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$,
then φ_{1} is monotone but φ_{2} is not.
The problem of MONO-SAT is the restriction of CNF-SAT to monotone formulas: Give monotone CNF formula, does it have a satisfying assignment? Show that MONO-SAT i NP-hard.

2. Consider not-all-equal SAT (NAE-SAT): Given a CNF formula, decide if there exists an assignment such that each clause contains at least one true literal and one false literal. In NAE- k-SAT, each clause has at most k literals.
For example, consider

- $\varphi_{1}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{3}} \vee x_{1}\right)$ and
- $\varphi_{2}=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$.

Both φ_{1} and φ_{2} have a satisfying assignment, but φ_{1} is a NO instance for NAE-SAT since its only satisfying assignment assigns all literals in the clause ($x_{1} \vee x_{2} \vee x_{3}$) to 1. φ_{2} is a YES instance for NAE-SAT since we can assign $x_{1}=1, x_{2}=1, x_{3}=0$ and $x_{4}=1$.
(a) Show that NAE-4-SAT is NP-hard using a reduction from 3-SAT
(b) Show that NAE-3-SAT is NP-hard using a reduction from NAE-4-SAT.

Regular problems

3. [Graded] Due to unfortunate planning, two game development conferences are happening multaneously in Bejing and Chicago. Each conference is showcasing several games, and each game is supposed to be presented in person by one of its developers. Developers ofte ork on multiple games, and may present on any subset of the games they have worked on However, it is infeasible for a single developer to attend both conferences in person. The conferences' organizers would like to know whether it is possible to assign presentations to developers so that no developer has to present at both conferences.

Show that the following problem is NP-complete: Given two lists of games (one per confer ence), and a list of developers for each game, decide whether it is possible for each conference to have every game on its list be presented by one of its developers such that no developer eeds to att ath conferen

The following are examples of instances for the problem and their respective answers
Example 1. The conference in Beijing is showcasing games G_{1}, G_{2} and G_{3}, and the conference in Chicago is showcasing games G_{1} and G_{4}. The following is a list of developers for eac game:

- $G_{1}:\left\{d_{1}, d_{2}\right\}$
$\circ G_{2}:\left\{d_{1}, d_{3}\right\}$
- $G_{3}:\left\{d_{4}\right\}$.
- $G_{4}:\left\{d_{3}, d_{4}\right\}$

In this example, having d_{1} present games G_{1} and G_{2}, and d_{4} present G_{3} in Beijing, while having d_{2} present G_{1} and d_{3} present G_{4} in Chicago is a valid solution, since no developer eeds to present at both conferences. In this case the answer would be yes. Note that it is ot a problem for d_{1} to present games G_{1} and G_{2} in the same conference. Note also that is is allowed for the two conferences to showcase the same game.
Example 2. The conference in Beijing is showcasing games G_{1}, G_{2} and G_{3}, and the confer ence in Chicago is showcasing games G_{4} and G_{5}. The following is a list of developers for each game

- $G_{1}:\left\{d_{1}, d_{3}\right\}$.
- $G_{2}:\left\{d_{2}, d_{3}\right\}$.
$\circ G_{3}:\left\{d_{1}, d_{2}, d_{3}\right\}$.
$G_{4}:\left\{d_{3}\right\}$.
$G_{5}:\left\{d_{1}, d_{2}\right\}$.
In this example, it does not matter how we pick developers to present games, we always end up with some developer needing to present at both conferences. Note that we must pick d_{3} o present G_{4}. After that, the only choice for G_{2} is d_{2}, who can also present G_{3}. We are hen left with G_{1} in Beijing and G_{5} in Chicago, but only a single developer to present both Therefore, the answer is no.

4. In class we developed a polynomial-time algorithm for finding a satisfying assignment to given 2-CNF formula (or report that none exists). Show that the following variant is NPard: Given a satisfiable 2-CNF formula, find a satisfying assignment that sets the smallest number of variables to true
5. Some time ago, people from the programming languages group asked about the following problem.
You are given a list of formulas of the following form:

$$
\circ x_{i}=0,
$$

- $x_{i}=1$,
- $x_{i} \geq x_{j}$ or $x_{k}<X$, and
- $x_{i}>x_{j}$ or $x_{k} \leq X$

Here X denotes a set of variables, and $x_{k}<X$ means that $x_{k}<x$ for all $x \in X ; x_{k} \leq X$ is defined similarly. The question is whether there exists a way to assign the values 0 and 1 to the variables such that all formulas are satisfied.
Design a polynomial-time mapping reduction from 3-SAT to this problem.

Challenge problem

6. Given a Boolean circuit C, you want to find a Boolean circuit C^{\prime} that behaves the same a C on every input but has as few gates as possible. Show that if $\mathrm{P}=\mathrm{NP}$, then this problem can be solved in polynomial time.

Programming problem
7. SPOJ problem TWOSAT (https://vn.spoj.com/problems/TWOSAT/). As this problem is only available on the Vietnamese SPOJ website, an English translation is provided on the following pages.

TWOSAT - Travel

A travel company is organizing a group of foreign tourists to travel to M cities in Vietnam. Each visitor has two requirements of the form "Want to go to c " or "Do not want to go to c " for some city c. These tourists are very difficult, and want at least one of their requirements o be met. The travel agency is struggling to choose a set of cities to visit that appeases all the tourists. You are tasked with helping them solve this problem
nput Line 1 contains two integers, N and $M(1 \leq N \leq 20000,1 \leq M \leq 8000)$. They ar the number of tourists and cities, respectively. The cities are numbered 1 through M
Each of the next N lines contains two integers u, v with $1 \leq|u| \leq M$ and $1 \leq|v| \leq M$, encoding the request of one of the tourists. A positive integer indicates the customer wants o go to that city, while a negative integer indicates the customer does not want to go to that city.

Output On line 1, write YES if there is a plan that satisfies at least one requirement of every visitor; write NO in the opposite case

If there is a plan, the next two lines of output shall encode one such plan. On line 2, write a positive integer k, indicating how many cities will be visited in the plan. On line 3 , write k ntegers, the indices of the cities to visit

Example 1
Input:

1
12
Output:

YES
2

23

Example 2
Input:
33
$\begin{array}{ll}12 \\ -1 & -2\end{array}$
$\begin{array}{ll}-1 & -2\end{array}$

Output:

YES

Example 3
Input
43
$\begin{array}{ll}-1 & 2 \\ -1 & -2\end{array}$
$\begin{array}{ll}-1 & -2 \\ 1-2\end{array}$
12
Output:
No

CS 577: Introduction to Algorithms	Fall 2021
Homework 10 Solutions to Warm-up Problems	
Instructor: Dieter van Melkebeek	TA: Nicollas Mocelin Sdroievski

Problem 1

A CNF formula is monotone if the literals in each clause are either all positive or all negative. The problem of MONO-SAT is the restriction of CNF-SAT to monotone formulas: Given a monotone CNF formula, does it have a satisfying assignment? Show that MONO-SAT is NP-hard.
Given a formula φ in CNF, our approach will be to substitute each occurrence of a negated variable x by a new non-negated variable ℓ, while adding some clauses to force ℓ to be equal to \bar{x}. More formally, let φ be an instance of CNF-SAT with m clauses and n variables. We construct monotone Boolean formula φ^{\prime} as follows. For each variable x_{j} that appears negated in some clause we add the variable ℓ_{j}. Then, we replace every occurrence of $\overline{x_{j}}$ by ℓ_{j}. Finally, we add the clause $\left(\ell_{j} \vee x_{j}\right)$ and $\left(\overline{\ell_{j}} \vee \overline{x_{j}}\right)$ for each ℓ_{j}. The formula φ^{\prime} is monotone by construction, and we claim that it is satisfiable if and only if φ is satisfiable

Claim 1. There is a satisfying assignment for φ if and only if there exists a satisfying assignment for φ^{\prime}.
Proof. We consider both directions
\Longrightarrow Assume there is a satisfying assignment X for φ. Set each variable of φ^{\prime} that was also originally in φ according to X, and set $\ell_{j}=\overline{x_{j}}$ for all j. This satisfies all of the new clauses that were added to construct φ^{\prime} as well as the clauses that were originally in φ, since after taking into consideration that $\ell_{j}=\overline{x_{j}}$, these clauses are identical to the original ones which are satisfied by X.
\Longleftarrow Assume there is a satisfying assignment X^{\prime} for φ^{\prime}. Set every variable of φ according to X^{\prime}, gnoring the extra variables. Because φ^{\prime} is satisfied by X^{\prime}, it must be the case that X^{\prime} set, $x_{j}=x_{j}$, otherwise one of $\left(\ell_{j} \vee x_{j}\right)$ or $\left(\ell_{j} \vee x_{j}\right)$ would not be satisfied by X. This implies that he assignment we have constructed satisfies φ, since again after taking into consideration that $\ell_{j}=\overline{x_{j}}$, these clauses are identical to the ones in φ^{\prime} which are satisfied by X^{\prime}.
\square
The formula φ^{\prime} has a total of at most $2 n$ variables and $m+2 n$ clauses, and constructing it can be done in polynomial time. Because CNF-SAT reduces to MONO-SAT in polynomial time and CNF-SAT is NP-hard, MONO-SAT is also NP-hard.

Alternate solution based on resolution Let φ be an instance for CNF-SAT with m clauses and n variables. We construct a monotone Boolean formula φ^{\prime} as follows: For each clause $C_{i}=$ $x_{1} \vee x_{2} \vee \cdots \vee x_{s} \vee \overline{y_{1}} \vee \overline{y_{2}} \vee \ldots \overline{y_{t}}$ in φ, add two clauses $C_{2 i-1}^{\prime}=x_{1} \vee x_{2} \vee \cdots \vee x_{s} \vee z$ and $C_{2 i}^{\prime}=\bar{z} \vee \overline{y_{1}} \vee \overline{y_{2}} \vee \ldots \overline{y_{t}}$ to φ^{\prime}, where z is a fresh variable. The Boolean formula φ^{\prime} is monotone by construction.

Those of you familiar with resolution will notice that C_{i} is the resolvent of $C_{2 i-1}^{\prime}$ and $C_{2 i}^{\prime}$:
$x_{1} \vee x_{2} \vee \cdots \vee x_{s} \vee \overline{y_{1}} \vee \overline{y_{2}} \vee \ldots \overline{y_{t}} \equiv\left(x_{1} \vee x_{2} \vee \cdots \vee x_{i} \vee z\right) \wedge\left(\bar{z} \vee \overline{y_{1}} \vee \overline{y_{2}} \vee \ldots \overline{y_{t}}\right)$,
Now, we prove that the property we were aiming for holds for φ and φ^{\prime}.
Claim 2. There is a satisfying assignment for φ if and only if there exists a satisfying assignment for φ^{\prime}.

Proof. Let's consider both directions
\Longleftarrow If there is an assignment that satisfies all of the clauses of φ^{\prime}, then $C_{2 i-1}^{\prime}$ and $C_{2 i}^{\prime}$ should be both satisfied. Because z and \bar{z} take on different values, it must be the case that one of $C_{2 i-}^{\prime}$ or $C_{2 i}^{\prime}$ is satisfied by its other literals, which are also in the original clause C_{i}. From our construction, it then follows that C_{i} is satisfied by the same assignment, ignoring the extra variables. As this holds for all clauses, there is a satisfying assignment for φ.
\Longrightarrow Assume there is a satisfying assignment for φ. Since clause C_{i} is satisfied, it must be the case that $x_{p}=1$ or $y_{q}=0$ for $1 \leq p \leq s$ and $1 \leq q \leq t$. If some $x_{p}=1$, we assign 0 to z, making \bar{z} true, otherwise we assign 1 to z. In this case, both $C_{2 i-1}^{\prime}$ and $C_{2 i}^{\prime}$ will be true. As this holds for every i, this yields a satisfying assignment for φ^{\prime}.

Note that φ^{\prime} contains at most $n+m$ variables and $2 m$ clauses. Moreover, each of its clauses can be computed in polynomial time from φ. It follows that the reduction is computable in polynomial time and that MONO-SAT is NP-hard.

Problem 2
Consider not-all-equal SAT (NAE-SAT): Given a CNF formula, decide if there exists an assignment such that each clause contains at least one true literal and one false literal.
(a) Show that NAE-4-SAT is NP-hard using a reduction from 3-SAT.
(b) Show that NAE-3-SAT is NP-hard using a reduction from NAE-4-SAT.

Part (a)

Let φ be an instance for 3 -SAT with m clauses and n variables. The basic idea is as follows: If we add a variable to each clause in φ (obtaining clauses with 4 variables), then we should be able to set it to false when the original clause is satisfiable, guaranteeing that there is at least one variable per clause that is set to false. Of course, we should make sure that the formulas are equivalent in the sense that the original formula should be satisfiable if and only the new formula with one extra variable is not-all-equal satisfiable, but we can use the not-all-equal property to make sure that this is the case. We now present this idea in more detail. Fix some fresh variable z, and for each clause $\left(\ell_{i} \vee \ell_{j} \vee \ell_{k}\right)$ in φ, we add the clause $\left(\ell_{i} \vee \ell_{j} \vee \ell_{k} \vee z\right)$ to φ^{\prime}
Claim 3. φ is satisfiable if and only if there exists a not-all-equal satisfying assignment for φ^{\prime}. Proof. Let's consider both directions:
\Longrightarrow Suppose X is a satisfying assignment for φ, let's consider the assignment

$$
X^{\prime}=X \cup\{z=0\}
$$

for φ^{\prime}. Each clause in φ^{\prime} contains at least one true literal under X^{\prime} since X assigns at least ne literal in each clause of φ to 1 . By setting $z=0$ we ensure that each clause in φ^{\prime} contain at least one negative literal. Thus $X^{\prime}=X \cup\{z=0\}$ is a not-all-equal assignment for φ^{\prime}.
\Longleftarrow Suppose that there exists a not-all-equal satisfying assignment X^{\prime} for φ^{\prime}. We have two cases.

- If $z=0$ in X^{\prime}, then the assignment $X=X^{\prime} \backslash\{z=0\}$ will set at least one literal in each clause in φ^{\prime} to 1 , and therefore at least one literal in each clause in φ to 1 . Hence X is satistying assignment for φ.
- If $z=1$, then the assignment $X=X^{\prime} \backslash\{z=1\}$ will assign at least one literal in each clause of φ^{\prime} to 0 . That is, at least one literal in each clause of φ is assigned 0 . Therefore, the assignment X, by negating all assignments in X, assigns at least one literal in each clause of φ to 1 . Hence \bar{X} is a satisfying assignment for φ.
Hence in either case, we can find a not-all-equal assignment for φ.
\square
By construction, φ^{\prime} contains m clauses and $n+1$ variables, and each clause in φ^{\prime} contains at most 4 literals. Hence φ^{\prime} is a valid instance for NAE-4-SAT and can be constructed in polynomial time.
Be
Because 3-SAT can be reduced to NAE-4-SAT in polynomial time and 3-SAT is NP-hard, NAE-4-SAT is also NP-hard.

Part (b)
Let φ be an instance for the NAE-4-SAT problem with m clauses and n variables. For each of φ 's clauses, our approach is to construct two NAE-3-SAT clauses that together are equivalent to the original clause, in the sense that an assignment that not-all-equal satisfies the original clause can be transformed into one that not-all-equal satisfies the new clauses, and vice versa. This can be done by splitting the four literals in the original clause into two clauses, with an extra variable that "ties" both clauses together. More formally, we construct an instance for NAE-3-SAT as follows: For each clause $\left(\ell_{i} \vee \ell_{j} \vee \ell_{k} \vee \ell_{l}\right)$ in φ, add two clauses $\left(\ell_{i} \vee \ell_{j} \vee z\right)$ and $\left(\bar{z} \vee \ell_{k} \vee \ell_{l}\right)$ to φ^{\prime}, for some fresh variable z.
Claim 4. There exists a not-all-equal satisfying assignment for φ if and only if there exists a not-all-equal satisfying assignment for φ^{\prime}.
Proof. Let's consider both directions:
\Longleftarrow Let X^{\prime} be a not-all-equal assignment for φ^{\prime}. Then for the two clauses $\left(\ell_{i} \vee \ell_{j} \vee z\right)$ and ($\bar{\vee} \vee \ell_{k} \vee \ell_{l}$), if z is assigned 1 , then there exists at least one literal between ℓ_{i} and ℓ_{j} assigned to 0 , and there exists at least one literal between ℓ_{k} and ℓ_{l} assigned to 1 . Thus there will be at least one true literal and at least one false literal in each clause ($\ell_{i} \vee \ell_{j} \vee \ell_{k} \vee \ell_{l}$), and thus $X^{\prime} \backslash\{z=1\}$ is a not-all-equal assignment for φ. The argument follows similarly if z is assigned 0 .
\Longrightarrow Suppose that there exists a not-all-equal assignment X for φ. Then in each clause $\left(\ell_{i} \vee \ell_{j} \vee\right.$ $\left.\ell_{k} \vee \ell_{l}\right)$, there exists at least one true literal and at least one false literal. Consider two groups: (1) ℓ_{i} and ℓ_{j}, and (2) ℓ_{k} and ℓ_{l}.

- If both groups contain one true literal and one false literals, then $\left(\ell_{i} \vee \ell_{j} \vee z\right)$ and $\left(z \vee \ell_{k} \vee \ell_{l}\right)$ both contain at least one true literal and false literal regardless the assignment of z.
- If any group contains all true literals (or all false literals) under X, then the other group would contain at least one false literal (or true literal), and thus we could set $z=0$ (or $z=1$), ensuring that $\left(\ell_{i} \vee \ell_{j} \vee z\right)$ and ($\left.\bar{z} \vee \ell_{k} \vee \ell_{l}\right)$ both contain at least one true literal and one false literal.

In either case, we can find a not-all-equal satisfying assignment for φ.

By construction, each clause in φ^{\prime} contains at most 3 literals, and φ^{\prime} contains at most $m+n$ variables and $2 m$ clauses. Thus φ^{\prime} can be constructed in polynomial time.
Because NAE-4-SAT can be reduced to NAE-3-SAT in polynomial time and NAE-4-SAT is NP-hard, NAE-3-SAT is also NP-hard.

CS 577: Introduction to Algorithms	Fall 2022
Homework 10 Solutions to Regular Problems	
Instructor: Dieter van Melkebeek	TA: Nicollas Mocelin Sdroievski

Problem 3
Show that the following problem is NP-hard: Given two lists of games (one per conference), and a list of developers for each game, decide whether it is possible for each conference to have every game on its list be presented by one of its developers such that no developer needs to
To prove that the given problem is NP-complete, we show that it is both in NP and NP-har To prove that the given problem is NP-complete, we show that it is both in NP and NP-hard.
We first establish that is in NP. Consider an instance for the problem, defined by two lists of games (one for the conference in Beijing and one for the conference in Chicago) and a list of developers per game. Consider also a potential solution to the problem, which is an assignment of developers to games/ conferences (since the same game may be showcased at both conferences). To verify whether he solution is valid or not, it suffices to check whether there are no developers holding presentations
 one developer. This can be done in polynomial time on the number of games and developers, so To prove that the given probem is NP
To prove that the given problem is NP-hard, we present a reduction from MONO-SAT. The idea is to create one developer per variable and one game per clause, which has as developers the developers representing the literals in the original clause. If a clause only contains non-negated litars, we showse the conce beare
 developer a devion to the and the ment las We the
re formally.
Let φ be an instance of MONO-SAT with n variables and m clauses. For each clause containing only positive literals

$$
C_{i}=x_{1} \vee x_{2} \vee \cdots \vee x_{i},
$$

create a game G_{i} with developers $\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$, and showcase it in Beijing. For each clause containing only negative literals

$$
C_{i}=\overline{y_{1}} \vee \overline{y_{2}} \vee \ldots \overline{y_{j}},
$$

create a game G_{i} with developers $\left\{y_{1}, y_{2}, \ldots, y_{j}\right\}$, and showcase it in Chicago. This construction introduces m games and n developers, and can be computed in linear, and therefore polynomial, introc
Now, it suffices to establish the following claim.
Claim 1. The formula φ is satisfiable if and only if it is possible for each conference to have every game on its list be presented by one of its developers such that no developer needs to attend both conferences.
Proof. Let us consider both directions.

Problem 4
In class we developed a polynomial-time algorithm for finding a satisfying assignment to a given 2-CNF formula (or report that none exists). Show that the following variant is NP-hard: Given a satisfiable 2-CNF formula, find a satisfying assignment that sets the smallest number of variables to true.
First, we note that there is a natural equivalence between this version of the problem and the version where we wish to find a satisfying assignment that sets the largest number of variables to true: just replace every occurrence of a literal x_{i} by $\overline{x_{i}}$ and $\overline{x_{i}}$ by x_{i}. With that in mind, it suffices o prove that this variant is NP-hard, which we do by reducing from Independent Set.
Recall the reduction from Independent Set to CNF-SAT as seen in class. On input (G, k),
introduces one variable x_{v} for each vertex v in G, which indicates whether v belongs to it introduces one variable x_{v} for each vertex v in G, which indicates whether v belongs to an independent set. It also introduces the clause ($\overline{x_{u}} \vee \overline{x_{v}}$) for each edge $e=(u, v)$, which enforces
 CNF-SAT In . requirement. In our case, however, those are innecssary, since the problem we are reducing to aready sets the largest number of variables to true (meaning it finds the largest independent set). Let us formaize the reduction. On input (G, k) with n vertices and m edges, create a formo φ as follows. Introduce a van x_{v} for each vertex v in G and introduce a clause $\left(x_{u} v x_{v}\right)$ for each output yes if and only the number of variables set to true by X is greater than or equal to k

We in
We now argue correctness. First, note that the formula φ constructed by the reduction is
lways satisfiable (just set every variable to false). In that case, correctness amounts to arguing always satisfiable (j
the following claim.

Claim 2. G has an independent set of size k if and only if φ has a satisfying assignment that sets k variables to true.
Proof. \Longrightarrow Assume that G has an independent set I of size k. Construct an assignment X for φ as follows: For each $v \in I$ set x_{v} to true, and set the remaining variables to false. This assignment sets exactly k variables to true, so it remains to check that it satisfies φ. It is easy to see that X satisfies every clause that does not involve a variable x_{v} for $v \in I$. Now, consider some clause $\left(\overline{x_{u}} \vee \overline{x_{v}}\right)$ for $v \in I$. Because the edge (u,v) is in G and I is an independent set, it must be the case that $u \notin V$, meaning x_{u} is set to false and the clause is satisfied.
\Longleftarrow Assume that φ has a satisfying assignment X that sets k variables to true, and let I be the set of vertices corresponding to the variables set to true by X. Clearly, $|I|=k$, so it remains to check that it is an independent set. Consider an edge (u, v) of G such that $v \in I$. Because it is the case that X sets x_{v} to true and satisfies the clause $\left(\overline{x_{u}} \vee \overline{x_{v}}\right)$, it must be the case that x_{u} is set to false, meaning it is not in I.

As for the running time, φ has n variables and m clauses (each with two variables), and can be constructed time linear in n and m. We conclude that the reduction runs in polynomial time and that the given problem is NP-hard.

Problem 5

You are given a list of formulas of the following form:

- $x_{i}=0$,
- $x_{i}=1$
- $x_{i} \geq x_{j}$ or $x_{k}<X$, and
- $x_{i}>x_{j}$ or $x_{k} \leq X$.

Here X denotes a set of variables, and $x_{k}<X$ means that $x_{k}<x$ for all $x \in X ; x_{k} \leq X$ is defined similarly. The question is whether there exists a way to assign the values 0 and 1 to the variables such that all formulas are satisfied.

Design a polynomial-time mapping reduction from 3-SAT to this problem.
Let us denote the problem at hand by PL (for Programming Language problem). We show a polynomial-time mapping reduction from the decision problem 3-SAT to PL
Consider an arbitrary 3-CNF clause, say

$$
\begin{equation*}
l_{1} \vee l_{2} \vee l_{3} \tag{1}
\end{equation*}
$$

where each l_{i} is a literal. The 3 -CNF clause (1) is logically equivalent to

$$
\begin{equation*}
l_{1} \geq \overline{T_{2}} \text { or } 0<\left\{l_{3}\right\} \tag{2}
\end{equation*}
$$

Expression (2) is almost of the third allowed type except for the negation and the use of the constant 0 . The latter problem we can remedy by replacing 0 by a variable y_{N} which is defined to be 0 by a formula of the first type:

$$
y_{N}=0 .
$$

$$
\begin{align*}
& \text { That is, we can rewrite (2) as } \tag{4}\\
& \qquad l_{1} \geq \bar{l}_{2} \text { or } y_{N}<\left\{l_{3}\right\} .
\end{align*}
$$

In order to deal with the negation, we can introduce PL variables for all 3-CNF literals, i.e. for every 3-CNF variable z_{i}, we introduce a PL variable x_{i} (intended to replace z_{i}), and another PL variable y_{i} (intended to replace $\overline{z_{i}}$).

What remains is to express that x_{i} is the complement of y_{i} in the PL formalism. We claim that $\left(x_{i}=\overline{y_{i}}\right) \Longleftrightarrow\left(\left(x_{i}<y_{i}\right) \vee\left(y_{i} \leq 0\right)\right) \wedge\left(\left(y_{i}<x_{i}\right) \vee\left(y_{i} \geq 1\right)\right)$.

The truth table below proves the validity of our claim

x_{i}	y_{i}	$\left(x_{i}<y_{i}\right) \vee\left(y_{i} \leq 0\right)$	$\left(y_{i}<x_{i}\right) \vee\left(y_{i} \geq 1\right)$
0	0	T	F
0	1	T	T
1	0	T	T
1	1	F	T

Using one additional variable, x_{P}, satisfying
$x_{P}=1$,
(6)
we can cast the right-hand side of (5) as two PL formulas of type 4, namely

$$
\begin{equation*}
y_{i}>x_{i} \text { or } y_{i} \leq\left\{y_{N}\right\} \tag{7}
\end{equation*}
$$

$x_{i}>y_{i}$ or $x_{P} \leq\left\{y_{i}\right\}$.
Now, we are ready to define a polynomial-time mapping reduction f from 3-SAT to PL. Let φ be an arbitrary 3 -CNF formula. First, by repeating literals as needed, we can transform any clause in φ with less than 3 literals into an equivalent 3-CNF clause with exactly three literals. For example, we can replace $x_{1} \vee \overline{x_{2}}$ by $x_{1} \vee \overline{x_{2}} \vee \overline{x_{2}}$

We define $f(\varphi)$ to consist of the following formulas

- the formulas (3) and (6),
- the formulas (7) and (8) for every variable z_{i} in φ, and
- the formula (4) for every clause of the form (1) in φ where we replace l_{1}, l_{2} and l_{3} in (4) by the appropriate PL variables x_{i} or y_{i}

The translation f can be computed in polynomial time, and by construction, $\varphi \in 3$-SAT iff $f(\varphi) \in \mathrm{PL}$.

COMP SCI 577 Homework 10 Problem 3

Computational Intractability
Ruixuan Tu
rtu7@wisc.edu
University of Wisconsin-Madison
5 December 2022

Algorithm

For any MONO-SAT CNF formula φ, our approach is to convert every clause inside the CNF formula to one distinct game $G_{i}:=\left\{d_{i_{1}}, d_{i_{2}}, \ldots\right\}$. If the clause is in the form $d_{i_{1}} \vee d_{i_{2}} \vee \cdots$, then we put the game on the list for Beijing. Otherwise, if the clause is in the form $\neg d_{i_{1}} \vee \neg d_{i_{2}} \vee \neg \cdots$, then we put the game on the list for Chicago. In this way, no game should be presented in both Chicago and Beijing, but some developers could choose whether to present for the set of related games in Chicago or another distinct set of related games in Beijing. We use $d_{i_{j}}$ to reindex the developers d_{1}, d_{2}, \ldots, keeping only that needed to be in the set for every specific clause. Denote φ^{\prime} to be the problem to determine whether it is possible for each conference to have every game on its list be presented by one of its developers such that no developer needs to attend both conferences. Then we solve the MONO-SAT CNF satisfiability problem determining φ by the conference planning problem determining φ^{\prime}.

Proof

Claim. There is a satisfying assignment for φ if and only if there exists a satisfying assignment for φ^{\prime}.
Proof. We consider both directions
\Rightarrow Assume there is a satisfying assignment X for φ. As every d_{i} could be only assigned to one value, it matches the condition that a developer could only be in either Beijing (when assigned true) or Chicago (when assigned false). For every clause $d_{i_{1}} \vee d_{i_{2}} \vee \cdots$ assigned by X, then there is a corresponding game G_{i} in Beijing, i.e., $\exists d_{i_{j^{\prime}}} \in\left[d_{i_{j}}\right]$ which will present in Beijing ($d_{i_{j^{\prime}}}$ is
true $\Longleftrightarrow \neg d_{i, j}$, is false $\Longleftrightarrow d_{i,}$, is in Beijing but not Chicago), so that the game must be able to be presented in Beijing. For every clause $\neg d_{i_{1}} \vee \neg d_{i_{2}} \vee \neg \cdots$ assigned by X, then there is a corresponding game G_{i} in Chicago, i.e., $\exists d_{i_{j^{\prime}}} \in\left[d_{i j}\right]$ which will present in Chicago ($\neg d_{i_{j^{\prime}}}$ is true $\Longleftrightarrow d_{i}$, is false $\Longleftrightarrow d_{i,}$, is in Chicago but not Beijing), so that the game must be able to be presented in Chicago. Thus, with assignment X, all the games on the two lists must be presented by at least one developer for each game, so that φ^{\prime} is satisfied. \square
\Leftarrow Assume there is a satisfying assignment X^{\prime} for φ^{\prime}. For every game G_{i} which could be presented in Beijing, there is at least one developer $\exists d_{i, \prime} \in\left[d_{i j}\right]$, i.e., $d_{i, \prime}$, is true, so that the clause $d_{i_{1}} \vee d_{i_{2}} \vee \cdots$ is true in φ. For every game G_{i} which could be presented in Chicago, there is at least one developer $\exists d_{i_{j^{\prime}}} \in\left[d_{i_{j}}\right]$, i.e., $d_{i_{j} j^{\prime}}$, is false, so that the clause $\neg d_{i_{1}} \vee \neg d_{i_{2}} \vee \neg \cdots$ is true in φ. Thus, φ is satisfied.
Claim. MONO-SAT \leq^{P} Conference Planning
Proof. The algorithm must terminate as there is no recursive call. In this algorithm, we only do one loop to iterate over all clauses once, determine if it is all positive or negative (\neg), put all sub-elements as $d_{i j}$ into G_{i}, and assign G_{i} to either Beijing or Chicago according to the sign. Thus we construct a problem in Conference Planning from a problem in MONO-SAT using $O(n)$ in polynomial time. \quad
To wrap up, as We have already proved that MONO-SAT is NP-hard in Problem 01 of the warmup problems of this assignment, Conference Planning is NP-hard.

