
CS 577: Introduction to Algorithms Fall 2022

Homework 10

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

This homework covers NP-completeness of Satisfiability and closely related problems. Problem 3

must be submitted for grading by 2:29pm on 12/6. Please refer to the homework guidelines
on Canvas for detailed instructions.

Warm-up problems

1. A CNF formula is monotone if the literals in each clause are either all positive or all negative.
For example, if we have

� '1 = (x1 _ x2 _ x3 _ x4) ^ (x2 _ x3 _ x4) ^ (x1 _ x3 _ x4) and

� '2 = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3 _ x4) ^ (x1 _ x3 _ x4),

then '1 is monotone but '2 is not.

The problem of MONO-SAT is the restriction of CNF-SAT to monotone formulas: Given
a monotone CNF formula, does it have a satisfying assignment? Show that MONO-SAT is
NP-hard.

2. Consider not-all-equal SAT (NAE-SAT): Given a CNF formula, decide if there exists an
assignment such that each clause contains at least one true literal and one false literal. In
NAE-k-SAT, each clause has at most k literals.

For example, consider

� '1 = (x1 _ x2 _ x3) ^ (x1 _ x2) ^ (x2 _ x3) ^ (x3 _ x1) and

� '2 = (x1 _ x2 _ x3) ^ (x1 _ x2 _ x3 _ x4) ^ (x1 _ x3 _ x4).

Both '1 and '2 have a satisfying assignment, but '1 is a NO instance for NAE-SAT since
its only satisfying assignment assigns all literals in the clause (x1 _x2 _x3) to 1. '2 is a YES
instance for NAE-SAT since we can assign x1 = 1, x2 = 1, x3 = 0 and x4 = 1.

(a) Show that NAE-4-SAT is NP-hard using a reduction from 3-SAT.

(b) Show that NAE-3-SAT is NP-hard using a reduction from NAE-4-SAT.

Regular problems

3. [Graded] Due to unfortunate planning, two game development conferences are happening
simultaneously in Beijing and Chicago. Each conference is showcasing several games, and
each game is supposed to be presented in person by one of its developers. Developers often
work on multiple games, and may present on any subset of the games they have worked on.
However, it is infeasible for a single developer to attend both conferences in person. The
conferences’ organizers would like to know whether it is possible to assign presentations to
developers so that no developer has to present at both conferences.

1

Show that the following problem is NP-complete: Given two lists of games (one per confer-
ence), and a list of developers for each game, decide whether it is possible for each conference
to have every game on its list be presented by one of its developers such that no developer
needs to attend both conferences.

The following are examples of instances for the problem and their respective answers.

Example 1. The conference in Beijing is showcasing games G1, G2 and G3, and the confer-
ence in Chicago is showcasing games G1 and G4. The following is a list of developers for each
game:

� G1: {d1, d2}.
� G2: {d1, d3}.
� G3: {d4}.
� G4: {d3, d4}.

In this example, having d1 present games G1 and G2, and d4 present G3 in Beijing, while
having d2 present G1 and d3 present G4 in Chicago is a valid solution, since no developer
needs to present at both conferences. In this case the answer would be yes. Note that it is
not a problem for d1 to present games G1 and G2 in the same conference. Note also that is
is allowed for the two conferences to showcase the same game.

Example 2. The conference in Beijing is showcasing games G1, G2 and G3, and the confer-
ence in Chicago is showcasing games G4 and G5. The following is a list of developers for each
game:

� G1: {d1, d3}.
� G2: {d2, d3}.
� G3: {d1, d2, d3}.
� G4: {d3}.
� G5: {d1, d2}.

In this example, it does not matter how we pick developers to present games, we always end
up with some developer needing to present at both conferences. Note that we must pick d3
to present G4. After that, the only choice for G2 is d2, who can also present G3. We are
then left with G1 in Beijing and G5 in Chicago, but only a single developer to present both.
Therefore, the answer is no.

4. In class we developed a polynomial-time algorithm for finding a satisfying assignment to a
given 2-CNF formula (or report that none exists). Show that the following variant is NP-
hard: Given a satisfiable 2-CNF formula, find a satisfying assignment that sets the smallest
number of variables to true.

5. Some time ago, people from the programming languages group asked about the following
problem.

You are given a list of formulas of the following form:

� xi = 0,

2

� xi = 1,

� xi � xj or xk < X, and

� xi > xj or xk X.

Here X denotes a set of variables, and xk < X means that xk < x for all x 2 X; xk X is
defined similarly. The question is whether there exists a way to assign the values 0 and 1 to
the variables such that all formulas are satisfied.

Design a polynomial-time mapping reduction from 3-SAT to this problem.

Challenge problem

6. Given a Boolean circuit C, you want to find a Boolean circuit C 0 that behaves the same as
C on every input but has as few gates as possible. Show that if P = NP, then this problem
can be solved in polynomial time.

Programming problem

7. SPOJ problem TWOSAT (https://vn.spoj.com/problems/TWOSAT/). As this problem is
only available on the Vietnamese SPOJ website, an English translation is provided on the
following pages.

3

TWOSAT - Travel

A travel company is organizing a group of foreign tourists to travel to M cities in Vietnam.
Each visitor has two requirements of the form “Want to go to c” or “Do not want to go to c”,
for some city c. These tourists are very di�cult, and want at least one of their requirements
to be met. The travel agency is struggling to choose a set of cities to visit that appeases all
the tourists. You are tasked with helping them solve this problem.

Input Line 1 contains two integers, N and M (1 N 20000, 1 M 8000). They are
the number of tourists and cities, respectively. The cities are numbered 1 through M .

Each of the next N lines contains two integers u, v with 1 |u| M and 1 |v| M ,
encoding the request of one of the tourists. A positive integer indicates the customer wants
to go to that city, while a negative integer indicates the customer does not want to go to that
city.

Output On line 1, write YES if there is a plan that satisfies at least one requirement of
every visitor; write NO in the opposite case.

If there is a plan, the next two lines of output shall encode one such plan. On line 2, write a
positive integer k, indicating how many cities will be visited in the plan. On line 3, write k
integers, the indices of the cities to visit.

Example 1

Input:

2 3

-1 -2

1 2

Output:

YES

2

2 3

Example 2

Input:

3 3

-1 2

-1 -2

1 -2

4

Output:

YES

0

Example 3

Input:

4 3

-1 2

-1 -2

1 -2

1 2

Output:

NO

5

CS 577: Introduction to Algorithms Fall 2021

Homework 10 Solutions to Warm-up Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 1

A CNF formula is monotone if the literals in each clause are either all positive or all negative.
The problem of MONO-SAT is the restriction of CNF-SAT to monotone formulas: Given
a monotone CNF formula, does it have a satisfying assignment? Show that MONO-SAT is
NP-hard.

Given a formula ' in CNF, our approach will be to substitute each occurrence of a negated
variable x by a new non-negated variable `, while adding some clauses to force ` to be equal to x.
More formally, let ' be an instance of CNF-SAT with m clauses and n variables. We construct a
monotone Boolean formula '0 as follows. For each variable xj that appears negated in some clause,
we add the variable `j . Then, we replace every occurrence of xj by `j . Finally, we add the clauses
(`j _ xj) and (`j _ xj) for each `j . The formula '0 is monotone by construction, and we claim that
it is satisfiable if and only if ' is satisfiable.

Claim 1. There is a satisfying assignment for ' if and only if there exists a satisfying assignment
for '0.

Proof. We consider both directions

=) Assume there is a satisfying assignment X for '. Set each variable of '0 that was also
originally in ' according to X, and set `j = xj for all j. This satisfies all of the new clauses
that were added to construct '0 as well as the clauses that were originally in ', since after
taking into consideration that `j = xj , these clauses are identical to the original ones which
are satisfied by X.

(= Assume there is a satisfying assignment X 0 for '0. Set every variable of ' according to X 0,
ignoring the extra variables. Because '0 is satisfied by X 0, it must be the case that X 0 sets
`j = xj , otherwise one of (`j _xj) or (`j _xj) would not be satisfied by X 0. This implies that
the assignment we have constructed satisfies ', since again after taking into consideration
that `j = xj , these clauses are identical to the ones in '0 which are satisfied by X 0.

The formula '0 has a total of at most 2n variables and m+ 2n clauses, and constructing it can
be done in polynomial time. Because CNF-SAT reduces to MONO-SAT in polynomial time and
CNF-SAT is NP-hard, MONO-SAT is also NP-hard.

Alternate solution based on resolution Let ' be an instance for CNF-SAT with m clauses
and n variables. We construct a monotone Boolean formula '0 as follows: For each clause Ci =
x1 _ x2 _ · · · _ xs _ y1 _ y2 _ . . . yt in ', add two clauses C 0

2i�1 = x1 _ x2 _ · · · _ xs _ z and
C 0
2i = z _ y1 _ y2 _ . . . yt to '0, where z is a fresh variable. The Boolean formula '0 is monotone by

construction.

1

Those of you familiar with resolution will notice that Ci is the resolvent of C 0
2i�1 and C 0

2i:

x1 _ x2 _ · · · _ xs _ y1 _ y2 _ . . . yt ⌘ (x1 _ x2 _ · · · _ xi _ z) ^ (z _ y1 _ y2 _ . . . yt),

Now, we prove that the property we were aiming for holds for ' and '0.

Claim 2. There is a satisfying assignment for ' if and only if there exists a satisfying assignment
for '0.

Proof. Let’s consider both directions:

(= If there is an assignment that satisfies all of the clauses of '0, then C 0
2i�1 and C 0

2i should be
both satisfied. Because z and z take on di↵erent values, it must be the case that one of C 0

2i�1
or C 0

2i is satisfied by its other literals, which are also in the original clause Ci. From our
construction, it then follows that Ci is satisfied by the same assignment, ignoring the extra
variables. As this holds for all clauses, there is a satisfying assignment for '.

=) Assume there is a satisfying assignment for '. Since clause Ci is satisfied, it must be the case
that xp = 1 or yq = 0 for 1 p s and 1 q t. If some xp = 1, we assign 0 to z, making z
true, otherwise we assign 1 to z. In this case, both C 0

2i�1 and C 0
2i will be true. As this holds

for every i, this yields a satisfying assignment for '0.

Note that '0 contains at most n+m variables and 2m clauses. Moreover, each of its clauses can
be computed in polynomial time from '. It follows that the reduction is computable in polynomial
time and that MONO-SAT is NP-hard.

2

Problem 2

Consider not-all-equal SAT (NAE-SAT): Given a CNF formula, decide if there exists an
assignment such that each clause contains at least one true literal and one false literal.

(a) Show that NAE-4-SAT is NP-hard using a reduction from 3-SAT.

(b) Show that NAE-3-SAT is NP-hard using a reduction from NAE-4-SAT.

Part (a)

Let ' be an instance for 3-SAT with m clauses and n variables. The basic idea is as follows: If we
add a variable to each clause in ' (obtaining clauses with 4 variables), then we should be able to
set it to false when the original clause is satisfiable, guaranteeing that there is at least one variable
per clause that is set to false. Of course, we should make sure that the formulas are equivalent,
in the sense that the original formula should be satisfiable if and only the new formula with one
extra variable is not-all-equal satisfiable, but we can use the not-all-equal property to make sure
that this is the case. We now present this idea in more detail. Fix some fresh variable z, and for
each clause (`i _ `j _ `k) in ', we add the clause (`i _ `j _ `k _ z) to '0.

Claim 3. ' is satisfiable if and only if there exists a not-all-equal satisfying assignment for '0.

Proof. Let’s consider both directions:

=) Suppose X is a satisfying assignment for ', let’s consider the assignment

X 0 = X [{z = 0}

for '0. Each clause in '0 contains at least one true literal under X 0 since X assigns at least
one literal in each clause of ' to 1. By setting z = 0 we ensure that each clause in '0 contains
at least one negative literal. Thus X 0 = X [{z = 0} is a not-all-equal assignment for '0.

(= Suppose that there exists a not-all-equal satisfying assignment X 0 for '0. We have two cases.

• If z = 0 in X 0, then the assignment X = X 0 \ {z = 0} will set at least one literal in each
clause in '0 to 1, and therefore at least one literal in each clause in ' to 1. Hence X is
a satisfying assignment for '.

• If z = 1, then the assignment X = X 0 \ {z = 1} will assign at least one literal in each
clause of '0 to 0. That is, at least one literal in each clause of ' is assigned 0. Therefore,
the assignment X, by negating all assignments in X, assigns at least one literal in each
clause of ' to 1. Hence X is a satisfying assignment for '.

Hence in either case, we can find a not-all-equal assignment for '.

By construction, '0 contains m clauses and n + 1 variables, and each clause in '0 contains at
most 4 literals. Hence '0 is a valid instance for NAE-4-SAT and can be constructed in polynomial
time.

Because 3-SAT can be reduced to NAE-4-SAT in polynomial time and 3-SAT is NP-hard,
NAE-4-SAT is also NP-hard.

3

Part (b)

Let ' be an instance for the NAE-4-SAT problem with m clauses and n variables. For each of '’s
clauses, our approach is to construct two NAE-3-SAT clauses that together are equivalent to the
original clause, in the sense that an assignment that not-all-equal satisfies the original clause can
be transformed into one that not-all-equal satisfies the new clauses, and vice versa. This can be
done by splitting the four literals in the original clause into two clauses, with an extra variable that
“ties” both clauses together. More formally, we construct an instance for NAE-3-SAT as follows:
For each clause (`i _ `j _ `k _ `l) in ', add two clauses (`i _ `j _ z) and (z _ `k _ `l) to '0, for some
fresh variable z.

Claim 4. There exists a not-all-equal satisfying assignment for ' if and only if there exists a
not-all-equal satisfying assignment for '0.

Proof. Let’s consider both directions:

(= Let X 0 be a not-all-equal assignment for '0. Then for the two clauses (`i _ `j _ z) and
(z _ `k _ `l), if z is assigned 1, then there exists at least one literal between `i and `j assigned
to 0, and there exists at least one literal between `k and `l assigned to 1. Thus there will
be at least one true literal and at least one false literal in each clause (`i _ `j _ `k _ `l), and
thus X 0 \ {z = 1} is a not-all-equal assignment for '. The argument follows similarly if z is
assigned 0.

=) Suppose that there exists a not-all-equal assignment X for '. Then in each clause (`i _ `j _
`k_`l), there exists at least one true literal and at least one false literal. Consider two groups:
(1) `i and `j , and (2) `k and `l.

• If both groups contain one true literal and one false literals, then (`i_`j_z) and (z_`k_`l)
both contain at least one true literal and false literal regardless the assignment of z.

• If any group contains all true literals (or all false literals) under X, then the other group
would contain at least one false literal (or true literal), and thus we could set z = 0 (or
z = 1), ensuring that (`i _ `j _ z) and (z _ `k _ `l) both contain at least one true literal
and one false literal.

In either case, we can find a not-all-equal satisfying assignment for '.

By construction, each clause in '0 contains at most 3 literals, and '0 contains at most m + n
variables and 2m clauses. Thus '0 can be constructed in polynomial time.

Because NAE-4-SAT can be reduced to NAE-3-SAT in polynomial time and NAE-4-SAT is
NP-hard, NAE-3-SAT is also NP-hard.

4

CS 577: Introduction to Algorithms Fall 2022

Homework 10 Solutions to Regular Problems

Instructor: Dieter van Melkebeek TA: Nicollas Mocelin Sdroievski

Problem 3

Show that the following problem is NP-hard: Given two lists of games (one per conference),
and a list of developers for each game, decide whether it is possible for each conference to have
every game on its list be presented by one of its developers such that no developer needs to
attend both conferences.

To prove that the given problem is NP-complete, we show that it is both in NP and NP-hard.
We first establish that is in NP. Consider an instance for the problem, defined by two lists of games
(one for the conference in Beijing and one for the conference in Chicago) and a list of developers per
game. Consider also a potential solution to the problem, which is an assignment of developers to
games/conferences (since the same game may be showcased at both conferences). To verify whether
the solution is valid or not, it su�ces to check whether there are no developers holding presentations
at both conferences, and that every game being showcased in a conference is presented by at least
one developer. This can be done in polynomial time on the number of games and developers, so
we conclude that the given problem is in NP.

To prove that the given problem is NP-hard, we present a reduction from MONO-SAT. The
idea is to create one developer per variable and one game per clause, which has as developers the
developers representing the literals in the original clause. If a clause only contains non-negated
literals, we showcase the corresponding game in Beijing, and if a clause only contains negated
literals, we showcase the corresponding game in Chicago. Finally, choosing a developer to showcase
a game at a conference is equivalent to setting its corresponding literal to true. The constraint that
a developer can present at only one conference guarantees that we don’t set both a variable and its
negation to true, and the constraint that all games must be presented guarantees that we satisfy
all clauses in the original formula. We now present this idea more formally.

Let ' be an instance of MONO-SAT with n variables andm clauses. For each clause containing
only positive literals

Ci = x1 _ x2 _ · · · _ xi,

create a game Gi with developers {x1, x2, . . . , xi}, and showcase it in Beijing. For each clause
containing only negative literals

Ci = y1 _ y2 _ . . . yj ,

create a game Gi with developers {y1, y2, . . . , yj}, and showcase it in Chicago. This construction
introduces m games and n developers, and can be computed in linear, and therefore polynomial,
time.

Now, it su�ces to establish the following claim.

Claim 1. The formula ' is satisfiable if and only if it is possible for each conference to have every
game on its list be presented by one of its developers such that no developer needs to attend both
conferences.

Proof. Let us consider both directions.

1

=) Assume that ' is satisfiable and let X be a satisfying assignment for it. Consider a clause Ci

with only non-negated variables. Since this clause needs to be satisfied by X, there must be
a variable x in Ci that is set to true by X. Pick developer x to present game Gi in Beijing.
Now consider a clause Ci with only negated variables. Again, this clause needs to be satisfied
by X, so there must be a variable x in Ci set to false by X. Pick developer x to present game
Gj in Chicago. By construction, it follows that every game for each conference is presented
by some developer. Moreover, because a variable can only be set to either true or false, we
are guaranteed that no developer needs to attend both conferences.

(= Assume that it is possible for each conference to have every game on its list be presented
by one of its developers such that no developer needs to attend both conferences. Fix one
possible assignment of developers to games/conferences. If a developer is scheduled to present
a game in Beijing, set its corresponding variable to true, and if they are scheduled to present
a game in Chicago, set their corresponding variable to false. If there are any variables not set
after this, set those to true. This produces a valid assignment because no developer needs to
attend both conferences, so we will never set a variable to both true and false. Moreover, as
each conference has every game in its list being presented by some developer, this assignment
satisfies all clauses of ', and therefore satisfies ' itself.

Since MONO-SAT is NP-hard, and the reduction from MONO-SAT to the given problem runs
in polynomial time, we conclude that the given problem is also NP-hard.

2

Problem 4

In class we developed a polynomial-time algorithm for finding a satisfying assignment to a
given 2-CNF formula (or report that none exists). Show that the following variant is NP-hard:
Given a satisfiable 2-CNF formula, find a satisfying assignment that sets the smallest number
of variables to true.

First, we note that there is a natural equivalence between this version of the problem and the
version where we wish to find a satisfying assignment that sets the largest number of variables to
true: just replace every occurrence of a literal xi by xi and xi by xi. With that in mind, it su�ces
to prove that this variant is NP-hard, which we do by reducing from Independent Set.

Recall the reduction from Independent Set to CNF-SAT as seen in class. On input (G, k),
it introduces one variable xv for each vertex v in G, which indicates whether v belongs to an
independent set. It also introduces the clause (xu _ xv) for each edge e = (u, v), which enforces
the independence condition. Notice that, up until this point, the reduction has constructed a 2-
CNF-SAT instance. The rest of the reduction introduces variables and clauses that enforce the size
requirement. In our case, however, those are unnecessary, since the problem we are reducing to
already sets the largest number of variables to true (meaning it finds the largest independent set).

Let us formalize the reduction. On input (G, k) with n vertices and m edges, create a formula '
as follows: Introduce a variable xv for each vertex v in G and introduce a clause (xu _ xv) for each
edge e = (u, v). Call the black-box with input ', obtaining a satisfying assignment X. Finally,
output yes if and only the number of variables set to true by X is greater than or equal to k.

We now argue correctness. First, note that the formula ' constructed by the reduction is
always satisfiable (just set every variable to false). In that case, correctness amounts to arguing
the following claim.

Claim 2. G has an independent set of size k if and only if ' has a satisfying assignment that sets
k variables to true.

Proof. =) Assume that G has an independent set I of size k. Construct an assignment X for
' as follows: For each v 2 I set xv to true, and set the remaining variables to false. This
assignment sets exactly k variables to true, so it remains to check that it satisfies '. It is easy
to see that X satisfies every clause that does not involve a variable xv for v 2 I. Now, consider
some clause (xu _ xv) for v 2 I. Because the edge (u, v) is in G and I is an independent set,
it must be the case that u /2 V , meaning xu is set to false and the clause is satisfied.

(= Assume that ' has a satisfying assignment X that sets k variables to true, and let I be the
set of vertices corresponding to the variables set to true by X. Clearly, |I| = k, so it remains
to check that it is an independent set. Consider an edge (u, v) of G such that v 2 I. Because
it is the case that X sets xv to true and satisfies the clause (xu_xv), it must be the case that
xu is set to false, meaning it is not in I.

As for the running time, ' has n variables and m clauses (each with two variables), and can be
constructed time linear in n and m. We conclude that the reduction runs in polynomial time and
that the given problem is NP-hard.

3

Problem 5

You are given a list of formulas of the following form:

• xi = 0,

• xi = 1,

• xi � xj or xk < X, and

• xi > xj or xk X.

Here X denotes a set of variables, and xk < X means that xk < x for all x 2 X; xk X is
defined similarly. The question is whether there exists a way to assign the values 0 and 1 to
the variables such that all formulas are satisfied.

Design a polynomial-time mapping reduction from 3-SAT to this problem.

Let us denote the problem at hand by PL (for Programming Language problem). We show a
polynomial-time mapping reduction from the decision problem 3-SAT to PL.

Consider an arbitrary 3-CNF clause, say

l1 _ l2 _ l3 (1)

where each li is a literal. The 3-CNF clause (1) is logically equivalent to

l1 � l2 or 0 < {l3}. (2)

Expression (2) is almost of the third allowed type except for the negation and the use of the
constant 0. The latter problem we can remedy by replacing 0 by a variable yN which is defined to
be 0 by a formula of the first type:

yN = 0. (3)

That is, we can rewrite (2) as
l1 � l2 or yN < {l3}. (4)

In order to deal with the negation, we can introduce PL variables for all 3-CNF literals , i.e.,
for every 3-CNF variable zi , we introduce a PL variable xi (intended to replace zi), and another
PL variable yi (intended to replace zi).

What remains is to express that xi is the complement of yi in the PL formalism. We claim that

(xi = yi) () ((xi < yi) _ (yi 0)) ^ ((yi < xi) _ (yi � 1)). (5)

The truth table below proves the validity of our claim.

xi yi (xi < yi) _ (yi 0) (yi < xi) _ (yi � 1)
0 0 T F
0 1 T T
1 0 T T
1 1 F T

4

Using one additional variable, xP , satisfying

xP = 1, (6)

we can cast the right-hand side of (5) as two PL formulas of type 4, namely

yi > xi or yi {yN} (7)

xi > yi or xP {yi}. (8)

Now, we are ready to define a polynomial-time mapping reduction f from 3-SAT to PL. Let
' be an arbitrary 3-CNF formula. First, by repeating literals as needed, we can transform any
clause in ' with less than 3 literals into an equivalent 3-CNF clause with exactly three literals. For
example, we can replace x1 _ x2 by x1 _ x2 _ x2.

We define f(') to consist of the following formulas:

• the formulas (3) and (6),

• the formulas (7) and (8) for every variable zi in ', and

• the formula (4) for every clause of the form (1) in ' where we replace l1, l2 and l3 in (4) by
the appropriate PL variables xi or yi .

The translation f can be computed in polynomial time, and by construction, ' 2 3-SAT i↵
f(') 2 PL.

5

COMP SCI 577 Homework 10 Problem 3
Computational Intractability

Ruixuan Tu
rtu7@wisc.edu

University of Wisconsin-Madison

5 December 2022

Algorithm
For any MONO-SAT CNF formula ϕ , our approach is to convert every clause inside the CNF

formula to one distinct game Gi := {di1 ,di2 , . . .}. If the clause is in the form di1 ∨di2 ∨ · · · , then
we put the game on the list for Beijing. Otherwise, if the clause is in the form ¬di1 ∨¬di2 ∨¬·· · ,
then we put the game on the list for Chicago. In this way, no game should be presented in
both Chicago and Beijing, but some developers could choose whether to present for the set
of related games in Chicago or another distinct set of related games in Beijing. We use di j to
reindex the developers d1,d2, . . . , keeping only that needed to be in the set for every specific
clause. Denote ϕ ′ to be the problem to determine whether it is possible for each conference
to have every game on its list be presented by one of its developers such that no developer
needs to attend both conferences. Then we solve the MONO-SAT CNF satisfiability problem
determining ϕ by the conference planning problem determining ϕ ′.

Proof
Claim. There is a satisfying assignment for ϕ if and only if there exists a satisfying assignment
for ϕ ′.
Proof. We consider both directions
⇒ Assume there is a satisfying assignment X for ϕ . As every di could be only assigned to one
value, it matches the condition that a developer could only be in either Beijing (when assigned
true) or Chicago (when assigned false). For every clause di1 ∨di2 ∨ · · · assigned by X , then there
is a corresponding game Gi in Beijing, i.e., ∃di j′ ∈ [di j] which will present in Beijing (di j′ is

1

true ⇐⇒ ¬di j′ is false ⇐⇒ di j′ is in Beijing but not Chicago), so that the game must be
able to be presented in Beijing. For every clause ¬di1 ∨¬di2 ∨¬·· · assigned by X , then there
is a corresponding game Gi in Chicago, i.e., ∃di j′ ∈ [di j] which will present in Chicago (¬di j′ is
true ⇐⇒ di j′ is false ⇐⇒ di j′ is in Chicago but not Beijing), so that the game must be able
to be presented in Chicago. Thus, with assignment X , all the games on the two lists must be
presented by at least one developer for each game, so that ϕ ′ is satisfied. !
⇐ Assume there is a satisfying assignment X ′ for ϕ ′. For every game Gi which could be
presented in Beijing, there is at least one developer ∃di j′ ∈ [di j], i.e., di j′ is true, so that the
clause di1 ∨di2 ∨ · · · is true in ϕ . For every game Gi which could be presented in Chicago, there
is at least one developer ∃di j′ ∈ [di j], i.e., di j′ is false, so that the clause ¬di1 ∨¬di2 ∨¬·· · is
true in ϕ . Thus, ϕ is satisfied. "
Claim. MONO-SAT ≤P Conference Planning
Proof. The algorithm must terminate as there is no recursive call. In this algorithm, we only
do one loop to iterate over all clauses once, determine if it is all positive or negative (¬), put
all sub-elements as di j into Gi, and assign Gi to either Beijing or Chicago according to the
sign. Thus we construct a problem in Conference Planning from a problem in MONO-SAT
using O(n) in polynomial time. "

To wrap up, as We have already proved that MONO-SAT is NP-hard in Problem 01 of the
warmup problems of this assignment, Conference Planning is NP-hard. "

2

