
CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

November 29, 2022

Outline

Motivation
I Recognizing infeasible approaches

I P vs NP problem

Topics

I Classes P and NP

I NP-hardness and NP-completeness

(Seemingly?) Intractable Problems

Independent Set

Input: graph G

Output: independent set S of G such that |S | is maximized

Satisfiability

Input: Boolean formula '

Output: satisfying assignment of ', or report that none exists

More (Seemingly?) Intractable Problems

Graph coloring

Input: graph G = (V ,E)

Output: c : V ! [k] such that (8 (u, v) 2 E) c(u) 6= c(v))
and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum

total cost

Subset sum

Input: a1, a2, . . . , an 2 N; t 2 N
Output: I ✓ [n] such that

P
i2I ai = t, or report impossible

Common Pattern

On input x of length n
.
= |x |:

I Candidate solutions can be described by strings y 2 {0, 1}⇤
with |y | = nc for some constant c .

I Whether a candidate solution y 2 {0, 1}nc is valid for input x
can be checked in time polynomial in n.

V (x , y) =

⇢
1 if y is valid for x
0 otherwise

I [In case of optimization problem:]

Objective f (x , y) can be evaluated in time polynomial in n.

NP Decision/Search/Optimization

I Parameters:

� c 2 N
� V : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1} computable in polynomial time

� f : {0, 1}⇤ ⇥ {0, 1}⇤ ! R computable in polynomial time

I Solution set for input x 2 {0, 1}n:

Sx
.
= {y 2 {0, 1}nc : V (x , y) = 1}

I Goal:

Decision Is Sx 6= ;?
Search Find y 2 Sx or report that no such y exists.

OptVal Find miny2Sx (f (x , y)) respectively
maxy2Sx (f (x , y)).

OptSol Find y⇤ 2 Sx such that

f (x , y⇤) = miny2Sx (f (x , y)) respectively
f (x , y⇤) = maxy2Sx (f (x , y))

P vs NP

Definitions
I P: class of decision problems computable in polynomial time.

I NP: class decision problems for which yes-instances have

certificates that can be verified in polynomial time, i.e., there

exists c 2 N and V 2 P such that

x is yes-instance , (9y 2 {0, 1}|x |c)V (x , y) = 1.

Fact: P ✓ NP

Open: P = NP?

Conjecture: P 6= NP

Note: Assuming P 6= NP, the ”hardest” problems in NP cannot be

solved in polynomial time (but some problems in NP can).

NP-Hardness and NP-Completeness

Definition
B is NP-hard if (8A 2 NP)A p B .

Definition
B is NP-complete if B is NP-hard and B 2 NP.

Proposition
Suppose B is NP-complete. Then B 2 P , P = NP.

Proof

(B 2 NP and P = NP implies B 2 P.

) Consider any A 2 NP.

A p B and B 2 P implies A 2 P.

Corollary
Assume P 6= NP. If B is NP-hard then B cannot be solved in

polynomial time.

Existence of NP-Complete Problems

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary
Independent Set is NP-hard.

Proof
Consider any A 2 NP.

I By the NP-hardness of CNF-SAT, A p
CNF-SAT.

I By previous lecture, CNF-SAT p
Independent Set.

I By transitivity, A p
Independent Set.

Proving NP-Hardness

Strategy
To show a new problem C is NP-hard:

I Find a known NP-hard problem B .

I Show that B p C .

Motivation
I Recognizing infeasible approaches.

I Convincing your boss

See cartoon from: [Garey and Johnson, Computers and

Intractability – A guide to the Theory of NP-Completeness]

Prevalence of NP-completeness

I Thousands of problems from all areas of science and

engineering have been shown to be NP-complete.

I Considered strong evidence that P 6= NP.

I In fact, almost all of the known problems in NP that are not

known to be in P, have been shown to be NP-hard.

I Notorious exceptions include: graph isomorphism, factoring

integers.

CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 1, 2022

Outline

Motivation
I Recognizing infeasible approaches

I P vs NP problem

P, NP, and NPC

I P: decision problems that have polynomial-time algorithms

I NP: decision problems with yes-instances that have
polynomial-time verifiable certificates

I Fact: P ✓ NP

I Conjecture: P 6= NP

I NP-complete (NPC): hardest problems in NP

I Assume P 6= NP. If B 2 NPC then B 62 P.

Satisfiability: Circuit-SAT, 3-SAT, 2-SAT

NP Decision/Search/Optimization

I Parameters:
� c 2 N
� V : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1} computable in polynomial time
� f : {0, 1}⇤ ⇥ {0, 1}⇤ ! R computable in polynomial time

I Solution set for input x 2 {0, 1}n:

Sx
.
= {y 2 {0, 1}nc : V (x , y) = 1}

I Goal:

Decision Is Sx 6= ;?
Search Find y 2 Sx or report that no such y exists.
OptVal Find miny2Sx (f (x , y)) respectively

maxy2Sx (f (x , y)).
OptSol Find y

⇤ 2 Sx such that
f (x , y⇤) = miny2Sx (f (x , y)) respectively
f (x , y⇤) = maxy2Sx (f (x , y))

NP-Hardness and NP-Completeness

Definition
B is NP-hard if (8A 2 NP)A p

B .

Definition
B is NP-complete if B is NP-hard and B 2 NP.

Proposition
Suppose B is NP-complete. Then B 2 P, P = NP.

Proof

(B 2 NP and P = NP implies B 2 P.

) Consider any A 2 NP.
A p

B and B 2 P implies A 2 P.

Corollary
Assume P 6= NP. If B is NP-hard then B 62 P.

Circuit Satisfiability

Input: Boolean circuit C on inputs y1, y2, . . . , y`, i.e,
DAG where each leaf has label in {y1, y2, . . . , y`},
and each other vertex a label in {^,_,¬};
output vertex

Output: satisfying assignment, i.e., a setting of the inputs of
C to true/false that makes the output of C true; or
report that none exists.

Circuit-SAT is NP-Hard

Proof
I Need to show A p Circuit-SAT for each A in NP.

I A is specified by c 2 N and V 2 P such that x 2 {0, 1}n is
yes-instance , Sx

.
= {y 2 {0, 1}nc : V (x , y) = 1} 6= ;.

Lemma
A Boolean circuit Cx on `

.
= n

c inputs such that Cx(y) = V (x , y)
for all y 2 {0, 1}` can be constructed from x in time n

O(1).

Mapping reduction

A B = Circuit-SAT

xA ! xB = CxA?y [blackbox]

yA = yB yB with CxA
(yB) = 1

Satisfiability

Specification

Input: Boolean formula '

Output: satisfying assignment of ', or report that none exists

Restrictions
I CNF-SAT: ' is CNF, i.e., a conjunction of clauses.

� Clause: disjunction of literals
� Literal: variable or negated variable

I k-SAT for fixed k 2 N: ' is k-CNF, i.e., CNF in which each
clause contains at most k literals.

`1 _ `2 _ · · · _ `k�1 _ `k ⌘ `1 ^ `2 ^ · · · ^ `k�1) `k

Complexity

I 3-SAT is NP-hard.

I 2-SAT can be solved in polynomial time.

Proving NP-Hardness

Strategy
To show a new problem C is NP-hard:

I Find a known NP-hard problem B .

I Show that B p
C .

Justification
Consider any A 2 NP.

I By the NP-hardness of B , A p
B .

I We show that B p
C .

I Therefore A p
B p

C .

I By transitivity A p
C .

3-SAT is NP-Hard

Strategy
Mapping reduction Circuit-SAT p 3-SAT

Gadget reduction

Reduction Circuit-SAT p 3-SAT

I Introduce a variable yi for each input yi of C , i 2 [`].

I Introduce a variable g for each gate g of C .
I For each gate g , include clauses with at most 3 literals each

that force variable g to value of gate g on input y1 . . . y`.

� g
0 = NOT g !

⇢
g) g 0

g) g
0 ⌘

⇢
g _ g 0

g _ g
0

� g
0 = g1 AND g2 !

8
<

:

g1) g 0

g2) g 0

g1 ^ g2) g
0
⌘

8
<

:

g1 _ g 0

g2 _ g 0

g1 _ g2 _ g
0

I Add unit clause consisting of the variable for the output gate.

Correctness
I C has satisfying assignment , ' has satisfying assignment.

I Each satisfying assignment for ' includes one for C .

Polynomial running time

2-SAT

(x1 _ x2) ^ (x2 _ x3) ^ (x1 _ x3) ^ (x1 _ x2)

Digraph representation G

I Introduce a vertex for each variable xi that occurs in ', and
another one for its negation xi .

I Interpret each clause `1 _ `2 as the implications `1) `2 and
`2) `1.

I Include edges (`1, `2) and (`2, `1) in G .

I Handle unit clause ` as ` _ `.

Symmetry property

`1 `2 in G , `2 `1 in G

Polynomial-Time Algorithm for 2-SAT

Claim
' has a satisfying assignment
, for no variable xi there are paths xi xi and xi xi in G .

Proof

) By contraposition.

(Algorithm for finding satisfying assignment:

Correctness:
� Propagation ensures all clauses are satisfied.
� No conflicts because of hypothesis:

If ` x and ` x then ` x and x ` so ` `.

Running time: O(n +m) for n variables and m clauses, using
linear-time algorithm for finding strongly connected components.

CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 6, 2022

Recap

I P: decision problems that have polynomial-time algorithms

I NP: decision problems with yes-instances that have

polynomial-time verifiable certificates

I Fact: P ✓ NP

I Conjecture: P 6= NP

I Definition: B is NP-hard if (8A 2 NP)A p B .

I Assume P 6= NP. If B is NP-hard then B 62 P.

I Theorem: Circuit-SAT is NP-hard.

Establishing NP-Hardness

Strategy

To show a new problem C is NP-hard:

I Find a known NP-hard problem B .

I Show that B p C .

Earlier instantiations

I Circuit-SAT p
3-SAT

I 3-SAT p
Independent Set

Today’s instantiations

I Independent Set p
Clique

I Independent Set p
Vertex Cover

I 3-SAT p
3-Coloring

I 3-SAT p
Subset Sum

Independent Set vs Clique vs Vertex Cover

Definitions

Fix a graph G = (V ,E). A subset S ✓ V is:

I An independent set if E \ S ⇥ S = ;.
I A clique if S ⇥ S ✓ E .

I A vertex cover if E ✓ S ⇥ V .

Relationships

I S is independent set in G , S is clique in G
.
= (V ,E).

I S is independent set in G , S is vertex cover in G .

Corollary

I Independent Set ⌘p
Clique

I Independent Set ⌘p
Vertex Cover

Satisfiability and Coloring

3-SAT

Input: 3-CNF formula '
E.g.: ' = (x1 _ x2 _ x4) ^ (x1 _ x3)

Output: whether ' has a satisfying assignment.

3-Coloring

Input: graph G = (V ,E)

Output: whether G has a 3-coloring, i.e., a mapping

c : V ! [3] such that (8 (u, v) 2 E) c(u) 6= c(v)).

3-SAT p
3-Coloring – variable gadgets

I Include a color palette: complete graph on vertices

{red, green, blue}
I For each variable xi , include two new vertices, one labeled xi

and the other xi .

I Include the edges (xi , xi), (xi , blue), and (xi , blue).

I Bijection between assignments to variables x1, . . . , xn and

valid colorings with {red, green, blue}.

3-SAT p
3-Coloring – variable gadgets

(x1 _ x2 _ x4) ^ (x1 _ x3)

3-SAT p
3-Coloring – clause gadgets & connections

I For each 3-clause Cj , include a complete graph on 3 new

vertices, each labeled with a unique literal of Cj .

I Include for each new vertex v with label `, another new vertex

v 0.

I Include the edges (v , v 0), (v 0, green), and (v 0, u), where u
denotes the vertex in the variable gadget labeled `.

I A valid 3-coloring to the variable gadget can be extended to

gadget for clause Cj i↵ underlying assignment satisfies Cj .

I Clauses with less than 3 literals can be handled by repeating a

literal in the clause until there are three.

Conclusion: ' is satisfiable , G is 3-colorable

3-SAT p
3-Coloring – clause gadgets & connections

(x1 _ x2 _ x4) ^ (x1 _ x3)

Satisfiability and Subset Sum

3-SAT

Input: 3-CNF formula '
E.g.: ' = (x1 _ x2 _ x4) ^ (x1 _ x3)

Output: whether ' has a satisfying assignment.

Subset Sum

Input: a1, a2, . . . , ak 2 N; t 2 N
Output: whether there exists I ✓ [k] such that

P
i2I ai = t.

Note: Subset Sum p
Knapsack

3-SAT p
Subset Sum – variable gadgets

I For each variable xi , include two numbers a2i�1 = a2i = 2
i�1

.

I Label a2i�1 with xi , and a2i with xi .

I Set t =
Pn

i=1 2
i�1

= 2
n � 1.

I Bijection between assignments to variables x1, . . . , xn and

subsets I ✓ [2n] such that
P

i2I ai = t.

3-SAT p
Subset Sum – variable gadgets

(x1 _ x2 _ x4) ^ (x1 _ x3)

3-SAT p
Subset Sum – clause gadgets & connections

For each clause Cj with kj literals:

I Pick bit two new consecutive bit positions Bj .

I Set bits Bj to 01 in each number ai labeled with literal in Cj .

I Set bits Bj in t equal to kj (in binary).

I Include kj � 1 new ai with all bits zero except Bj set to 01.

Claim

I Consider subset I ✓ [2n] corresponding to assignment to

variables x1, . . . , xn.

I P
i2I ai agrees with t in last n bit positions.

I I can be extended with subset of new indices to I 0 such thatP
i2I 0 ai agrees with t in positions Bj

, underlying assignment satisfies Cj .

Conclusion: ' is satisfiable , (9I 0)
P

i2I 0 ai = t.

3-SAT p
Subset Sum – clause gadgets & connections

(x1 _ x2 _ x4) ^ (x1 _ x3)

Classical NP-Complete Problems

I Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT

I Packing: Independent Set, Clique

I Covering: Vertex Cover

I Partitioning: 3-Colorability

I Numerical: Subset Sum, Knapsack

I Sequencing: Traveling Salesperson

Hamiltonicity

Input: (di)graph G = (V ,E)
Output: whether there exists a (directed) cycle/path that

visits every vertex once

CS 577- Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 8, 2022

Outline

How to handle NP-complete problems

I Instance structure

I Parameter bounds

I Approximations

I Heuristics

Instance Structure

Idea
Exploit structure of instances that occur in application setting.

Vertex Cover
Can be solved in polynomial time for:

I Trees

I Bipartite graphs

I Interval graphs

I . . .

Parameter Bounds

Idea
Exploit bounds on parameters (other than input size) for instances
that occur in application setting.

Vertex Cover
Using vertex cover size k as additional parameter:
I Polynomial-time solvable for each fixed k

� Exhaustively try all
�n
k

�
= ⇥(nk) possible subsets of size k .

I Fixed-parameter tractable
� Running time O(2k · (|V |+ |E |))

I Kernelization
� Kernel consisting of at most k2 edges

Fixed-Parameter Tractability

Definition
Instances of bit-length n with parameter k can be solved in time
f (k) · nc for some f : N ! N and c 2 N.

Vertex Cover
I Principle of optimality applied to edge

I Running time: O(2k · (|V |+ |E |))

Kernelization

Definition
Self-reduction where instances of bit-length n with parameter k are
reduced in time n

c to instances of size at most g(k) for some
g : N ! N and c 2 N.

Vertex Cover
I Vertices of degree more than k need to be included.

I A graph G
0 in which each vertex has degree at most d and

has a vertex cover of size s, can have at most s · d edges.

I Kernelization:

I Reduced instance G
0 = (V (E 0),E) has at most k2 edges and

2k2 vertices.

Approximations

Idea
Instead of finding exact optimum, find valid solution whose
objective value is close to that of exact optimum.

Definition
A ⇢-approximation algorithm is a polynomial-time algorithm that
guarantees closeness to within a multiplicative factor of ⇢.

Vertex Cover
Has 2-approximation algorithms:

I Greedy

I Linear programming relaxation

Greedy 2-Approximation for Vertex Cover

I Consider maximal matching M in G , i.e., matching that
cannot be extended.

I OPT � |M|
I Let S be set of all endpoints of edges in M.

� S is a vertex cover.
� |S | 2 · |M|
� |S | 2 · |M| 2 · OPT

Linear Programming

I Optimizing a linear objective function over Rn under linear
inequality constraints.

I Widely used algorithm: simplex

I Can be solved in polynomial time.

I No strongly polynomial-time algorithm known.

LP-Based 2-Approximation for Vertex Cover

Integral LP for Vertex Cover

I Variables: xv 2 R for each v 2 V

I Objective: min f (x) where f (x)
.
=

P
v2V xv

I Constraints:
� (8 e = (u, v) 2 E) xu + xv � 1
� (8 v 2 V) 0 xv 1
� All xv are integral.

Relaxation
I Dropping integrality constraints yields genuine LP.

I Find solution of LP: x⇤v for v 2 V .

I f (x⇤) OPT
I Let S

.
= {v 2 V : x⇤v � 1/2}.

� S is a vertex cover.
� |S | 2 ·

P
v2S x

⇤
v 2 ·

P
v2V x

⇤
v = 2 · f (x⇤) 2 · OPT

Hardness of Approximation

I For every NP-hard approximation problem, achieving an
approximation factor ⇢ = 1 is NP-hard.

I For every NP-hard approximation problem, there exists
⇢(n) > 1 that is NP-hard to achieve.

I For some NP-hard approximation problems a tight threshold
⌧(n) for e�ciently achievable ⇢(n) is known:

� Every ⇢(n) worse than ⌧(n) can be achieved in polynomial
time.

� Achieving any ⇢(n) better than ⌧(n) is NP-hard.

Problem ⌧(n)
Knapsack 1 + ✏
Vertex Cover 2
Set Cover ln(n)
Independent Set n

1�✏

Heuristics

I Algorithms that have returned good results in some settings,
but no known guarantees.

I Often combine local search with restarts to get out of local
optimum, using randomness.

I Often based on physical processes that minimize energy or
entropy.

I Examples: Metropolis, simulated annealing, etc.

