

(Seemingly?) Intractable Problems

Independent Set

Input: graph G
Output: independent set S of G such that $|S|$ is maximized
Satisfiability
Input: Boolean formula φ
Output: satisfying assignment of φ, or report that none exists

Common Pattern

On input x of length $n \doteq|x|$:

- Candidate solutions can be described by strings $y \in\{0,1\}^{*}$ with $|y|=n^{c}$ for some constant c.
- Whether a candidate solution $y \in\{0,1\}^{n^{c}}$ is valid for input x can be checked in time polynomial in n.

$$
V(x, y)= \begin{cases}1 & \text { if } y \text { is valid for } x \\ 0 & \text { otherwise }\end{cases}
$$

[[In case of optimization problem:]
Objective $f(x, y)$ can be evaluated in time polynomial in n.

More (Seemingly?) Intractable Problems

Graph coloring
Input: graph $G=(V, E)$
Output: $c: V \rightarrow[k]$ such that $(\forall(u, v) \in E) c(u) \neq c(v))$ and k is minimized

Traveling salesperson problem (TSP)
Input: n cities and direct intercity travel costs for each pair
Output: tour that visits every city once and has minimum total cost

Subset sum
Input: $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N} ; t \in \mathbb{N}$
Output: $I \subseteq[n]$ such that $\sum_{i \in I} a_{i}=t$, or report impossible

NP Decision/Search/Optimization

- Parameters:
- $c \in \mathbb{N}$
- $V:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ computable in polynomial time
- $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow \mathbb{R}$ computable in polynomial time
- Solution set for input $x \in\{0,1\}^{n}$:

$$
S_{x} \doteq\left\{y \in\{0,1\}^{n^{c}}: V(x, y)=1\right\}
$$

- Goal:

Decision Is $S_{x} \neq \emptyset$?
Search Find $y \in S_{x}$ or report that no such y exists.
OptVal Find $\min _{y \in S_{x}}(f(x, y))$ respectively
$\max _{y \in S_{x}}(f(x, y))$.
OptSol Find $y^{*} \in S_{x}$ such that

$$
f\left(x, y^{*}\right)=\min _{y \in S_{x}}(f(x, y)) \text { respectively }
$$

$$
f\left(x, y^{*}\right)=\max _{y \in S_{x}}(f(x, y))
$$

Definitions

- P : class of decision problems computable in polynomial time.
- NP: class decision problems for which yes-instances have certificates that can be verified in polynomial time, i.e., there exists $c \in \mathbb{N}$ and $V \in P$ such that

$$
x \text { is yes-instance } \Leftrightarrow\left(\exists y \in\{0,1\}^{|x|^{c}}\right) V(x, y)=1
$$

Fact: $\mathrm{P} \subseteq \mathrm{NP}$
Open: $P=N P$?
Conjecture: $\mathrm{P} \neq \mathrm{NP}$
Note: Assuming $P \neq N P$, the "hardest" problems in NP cannot be solved in polynomial time (but some problems in NP can).

NP-Hardness and NP-Completeness

Definition
B is NP-hard if $(\forall A \in \mathrm{NP}) A \leq^{p} B$.
Definition
B is NP-complete if B is NP-hard and $B \in \mathrm{NP}$.
Proposition
Suppose B is NP-complete. Then $B \in \mathrm{P} \Leftrightarrow \mathrm{P}=\mathrm{NP}$.
Proof
$\Leftarrow B \in \mathrm{NP}$ and $\mathrm{P}=\mathrm{NP}$ implies $B \in \mathrm{P}$.
\Rightarrow Consider any $A \in \mathrm{NP}$. $A \leq^{p} B$ and $B \in \mathrm{P}$ implies $A \in \mathrm{P}$.

Corollary
Assume $\mathrm{P} \neq \mathrm{NP}$. If B is NP-hard then B cannot be solved in polynomial time.

Existence of NP-Complete Problems

Theorem (next lecture)
CNF-SAT is NP-hard.
Corollary
Independent Set is NP-hard.
Proof
Consider any $A \in N P$.

- By the NP-hardness of CNF-SAT, $A \leq^{p}$ CNF-SAT.
- By previous lecture, CNF-SAT \leq^{p} Independent Set.
- By transitivity, $A \leq^{p}$ Independent Set.

Proving NP-Hardness

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- Show that $B \leq^{p} C$.

Motivation

- Recognizing infeasible approaches.
- Convincing your boss

See cartoon from: [Garey and Johnson, Computers and Intractability - A guide to the Theory of NP-Completeness]

Prevalence of NP-completeness

- Thousands of problems from all areas of science and engineering have been shown to be NP-complete.
- Considered strong evidence that $\mathrm{P} \neq \mathrm{NP}$.
- In fact, almost all of the known problems in NP that are not known to be in P, have been shown to be NP-hard.
- Notorious exceptions include: graph isomorphism, factoring integers.

CS 577 - Intro to Algorithms
Computational Intractability

Dieter van Melkebeek

December 1, 2022

Outline

Motivation

- Recognizing infeasible approaches
- P vs NP problem

P, NP, and NPC

- P: decision problems that have polynomial-time algorithms
- NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: $\mathrm{P} \subseteq \mathrm{NP}$
- Conjecture: $\mathrm{P} \neq \mathrm{NP}$
- NP-complete (NPC): hardest problems in NP
- Assume $\mathrm{P} \neq \mathrm{NP}$. If $B \in \mathrm{NPC}$ then $B \notin \mathrm{P}$.

Satisfiability: Circuit-SAT, 3-SAT, 2-SAT

NP Decision/Search/Optimization

- Parameters:
- $c \in \mathbb{N}$
- $V:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ computable in polynomial time
- $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow \mathbb{R}$ computable in polynomial time
- Solution set for input $x \in\{0,1\}^{n}$:

$$
S_{x} \doteq\left\{y \in\{0,1\}^{n^{c}}: V(x, y)=1\right\}
$$

- Goal:

Decision Is $S_{x} \neq \emptyset$?
Search Find $y \in S_{x}$ or report that no such y exists.
OptVal Find $\min _{y \in S_{x}}(f(x, y))$ respectively $\max _{y \in S_{x}}(f(x, y))$.
OptSol Find $y^{*} \in S_{x}$ such that
$f\left(x, y^{*}\right)=\min _{y \in S_{x}}(f(x, y))$ respectively
$f\left(x, y^{*}\right)=\max _{y \in S_{x}}(f(x, y))$

NP-Hardness and NP-Completeness

Definition
B is NP-hard if $(\forall A \in N P) A \leq^{p} B$.
Definition
B is NP-complete if B is NP-hard and $B \in \mathrm{NP}$.
Proposition
Suppose B is NP-complete. Then $B \in \mathrm{P} \Leftrightarrow \mathrm{P}=\mathrm{NP}$.
Proof
$\Leftarrow B \in \mathrm{NP}$ and $\mathrm{P}=\mathrm{NP}$ implies $B \in \mathrm{P}$.
\Rightarrow Consider any $A \in N P$. $A \leq^{p} B$ and $B \in \mathrm{P}$ implies $A \in \mathrm{P}$.

Corollary
Assume $\mathrm{P} \neq \mathrm{NP}$. If B is NP-hard then $B \notin \mathrm{P}$.

Circuit-SAT is NP-Hard

Proof

- Need to show $A \leq^{p}$ Circuit-SAT for each A in NP.
- A is specified by $c \in \mathbb{N}$ and $V \in P$ such that $x \in\{0,1\}^{n}$ is yes-instance $\Leftrightarrow S_{x} \doteq\left\{y \in\{0,1\}^{n^{c}}: V(x, y)=1\right\} \neq \emptyset$.

Lemma
A Boolean circuit C_{x} on $\ell \doteq n^{c}$ inputs such that $C_{x}(y)=V(x, y)$ for all $y \in\{0,1\}^{\ell}$ can be constructed from x in time $n^{O(1)}$.

Mapping reduction

$$
\begin{array}{rl}
A & B=\text { Circuit-SAT } \\
x_{A} & \rightarrow \\
& x_{B}=C_{x_{A}} \\
& \downarrow[\text { blackbox }] \\
y_{A}=y_{B} & \leftarrow y_{B} \text { with } C_{x_{A}}\left(y_{B}\right)=1
\end{array}
$$

Satisfiability

Specification
Input: Boolean formula φ
Output: satisfying assignment of φ, or report that none exists

Restrictions

- CNF-SAT: φ is CNF, i.e., a conjunction of clauses.
- Clause: disjunction of literals
- Literal: variable or negated variable
- k-SAT for fixed $k \in \mathbb{N}: \varphi$ is k-CNF, i.e., CNF in which each clause contains at most k literals.

$$
\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k-1} \vee \ell_{k} \equiv \overline{\ell_{1}} \wedge \overline{\ell_{2}} \wedge \cdots \wedge \overline{\ell_{k-1}} \Rightarrow \ell_{k}
$$

Complexity

- 3-SAT is NP-hard.
- 2-SAT can be solved in polynomial time.

Proving NP-Hardness

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- Show that $B \leq^{p} C$.

Justification
Consider any $A \in N P$.

- By the NP-hardness of $B, A \leq^{P} B$.
- We show that $B \leq^{p} C$.
- Therefore $A \leq^{p} B \leq^{p} C$.
- By transitivity $A \leq^{p} C$.

3-SAT is NP-Hard

Strategy
Mapping reduction Circuit-SAT $\leq p$ 3-SAT
Gadget reduction

Reduction Circuit-SAT $\leq^{p} 3$-SAT

- Introduce a variable y_{i} for each input y_{i} of $C, i \in[\ell]$.
- Introduce a variable g for each gate g of C.
- For each gate g, include clauses with at most 3 literals each that force variable g to value of gate g on input $y_{1} \ldots y_{\ell}$.

$$
\begin{aligned}
& \circ g^{\prime}=\text { NOT } g \rightarrow\left\{\begin{array} { l }
{ g \Rightarrow \overline { g ^ { \prime } } } \\
{ \overline { g } \Rightarrow g ^ { \prime } }
\end{array} \equiv \left\{\begin{array}{l}
\bar{g} \vee \overline{g^{\prime}} \\
g \vee g^{\prime}
\end{array}\right.\right. \\
& \circ g^{\prime}=g_{1} \text { AND } g_{2} \rightarrow\left\{\begin{array}{l}
\overline{g_{1}} \Rightarrow \overline{g^{\prime}} \overline{g_{2}} \Rightarrow \overline{g^{\prime}} \\
g_{1} \wedge g_{2}
\end{array} \Rightarrow g^{\prime}\right.
\end{aligned} \equiv\left\{\begin{array}{l}
g_{1} \vee \overline{g^{\prime}} \\
\frac{g_{2}}{\overline{g_{1}} \vee \overline{g^{\prime}}} \vee g^{\prime}
\end{array}\right.
$$

- Add unit clause consisting of the variable for the output gate.

Correctness

- C has satisfying assignment $\Leftrightarrow \varphi$ has satisfying assignment.
- Each satisfying assignment for φ includes one for C.

Polynomial running time

2-SAT

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right)
$$

Digraph representation G

- Introduce a vertex for each variable x_{i} that occurs in φ, and another one for its negation $\overline{x_{i}}$.
- Interpret each clause $\ell_{1} \vee \ell_{2}$ as the implications $\overline{\ell_{1}} \Rightarrow \ell_{2}$ and $\overline{\ell_{2}} \Rightarrow \ell_{1}$.
- Include edges $\left(\overline{\ell_{1}}, \ell_{2}\right)$ and $\left(\overline{\ell_{2}}, \ell_{1}\right)$ in G.
- Handle unit clause ℓ as $\ell \vee \ell$.

Symmetry property

$$
\ell_{1} \rightsquigarrow \ell_{2} \text { in } G \Leftrightarrow \overline{\ell_{2}} \rightsquigarrow \overline{\ell_{1}} \text { in } G
$$

Polynomial-Time Algorithm for 2-SAT

Claim

φ has a satisfying assignment
\Leftrightarrow for no variable x_{i} there are paths $x_{i} \rightsquigarrow \overline{x_{i}}$ and $\overline{x_{i}} \rightsquigarrow x_{i}$ in G.
Proof
$\Rightarrow \mathrm{By}$ contraposition.
\Leftarrow Algorithm for finding satisfying assignment:
while not all variables are assigned do pick unassigned literal ℓ such that $\ell \nLeftarrow \sim \bar{\ell}$ for each ℓ^{\prime} with $\ell \leadsto \ell^{\prime}$ do $\ell^{\prime} \leftarrow$ true

Correctness:

- Propagation ensures all clauses are satisfied.
- No conflicts because of hypothesis: If $\ell \rightsquigarrow x$ and $\ell \rightsquigarrow \bar{x}$ then $\ell \rightsquigarrow x$ and $x \rightsquigarrow \bar{\ell}$ so $\ell \rightsquigarrow \bar{\ell}$.

Running time: $O(n+m)$ for n variables and m clauses, using linear-time algorithm for finding strongly connected components.

CS 577 - Intro to Algorithms
Computational Intractability

Dieter van Melkebeek

December 6, 2022

Recap

- P: decision problems that have polynomial-time algorithms
- NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: $\mathrm{P} \subseteq \mathrm{NP}$
- Conjecture: $\mathrm{P} \neq \mathrm{NP}$
- Definition: B is NP-hard if $(\forall A \in N P) A \leq^{p} B$.
- Assume $\mathrm{P} \neq \mathrm{NP}$. If B is NP-hard then $B \notin \mathrm{P}$.
- Theorem: Circuit-SAT is NP-hard.

Establishing NP-Hardness

Strategy
To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- Show that $B \leq^{p} C$.

Earlier instantiations

- Circuit-SAT $\leq^{p} 3$-SAT
- 3-SAT $\leq p$ Independent Set

Today's instantiations

- Independent Set \leq^{p} Clique
- Independent Set \leq^{p} Vertex Cover
- 3-SAT $\leq p$ 3-Coloring
- 3-SAT \leq^{p} Subset Sum

Independent Set vs Clique vs Vertex Cover

Definitions

Fix a graph $G=(V, E)$. A subset $S \subseteq V$ is:

- An independent set if $E \cap S \times S=\emptyset$.
- A clique if $S \times S \subseteq E$.
- A vertex cover if $E \subseteq S \times V$.

Relationships

- S is independent set in $G \Leftrightarrow S$ is clique in $\bar{G} \doteq(V, \bar{E})$.
- S is independent set in $G \Leftrightarrow \bar{S}$ is vertex cover in G.

Corollary

- Independent Set \equiv^{p} Clique
- Independent Set \equiv^{p} Vertex Cover

Satisfiability and Coloring

3-SAT
Input: 3-CNF formula φ
E.g.: $\varphi=\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)$

Output: whether φ has a satisfying assignment.
3-Coloring
Input: graph $G=(V, E)$
Output: whether G has a 3 -coloring, i.e., a mapping
$c: V \rightarrow[3]$ such that $(\forall(u, v) \in E) c(u) \neq c(v))$.

3 -SAT $\leq{ }^{p} 3$-Coloring - variable gadgets

- Include a color palette: complete graph on vertices \{red, green, blue\}
- For each variable x_{i}, include two new vertices, one labeled x_{i} and the other $\overline{x_{i}}$.
- Include the edges $\left(x_{i}, \overline{x_{i}}\right),\left(x_{i}\right.$, blue $)$, and ($\overline{x_{i}}$, blue).
- Bijection between assignments to variables x_{1}, \ldots, x_{n} and valid colorings with \{red, green, blue\}.

3-SAT $\leq^{p} 3$-Coloring - variable gadgets

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

3-SAT \leq^{p} 3-Coloring - clause gadgets \& connections

- For each 3-clause C_{j}, include a complete graph on 3 new vertices, each labeled with a unique literal of C_{j}.
- Include for each new vertex v with label ℓ, another new vertex v^{\prime}.
- Include the edges $\left(v, v^{\prime}\right),\left(v^{\prime}\right.$, green $)$, and $\left(v^{\prime}, u\right)$, where u denotes the vertex in the variable gadget labeled ℓ.
- A valid 3-coloring to the variable gadget can be extended to gadget for clause C_{j} iff underlying assignment satisfies C_{j}.
- Clauses with less than 3 literals can be handled by repeating a literal in the clause until there are three.

Conclusion: φ is satisfiable $\Leftrightarrow \mathrm{G}$ is 3-colorable

Satisfiability and Subset Sum

3-SAT

Input: 3-CNF formula φ

$$
\text { E.g.: } \varphi=\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

Output: whether φ has a satisfying assignment.

Subset Sum

Input: $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N} ; t \in \mathbb{N}$
Output: whether there exists $I \subseteq[k]$ such that $\sum_{i \in I} a_{i}=t$.

Note: Subset Sum \leq^{p} Knapsack

3-SAT \leq^{p} 3-Coloring - clause gadgets \& connections

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

3-SAT \leq^{p} Subset Sum - variable gadgets

- For each variable x_{i}, include two numbers $a_{2 i-1}=a_{2 i}=2^{i-1}$.
- Label $a_{2 i-1}$ with x_{i}, and $a_{2 i}$ with $\overline{x_{i}}$.
- Set $t=\sum_{i=1}^{n} 2^{i-1}=2^{n}-1$.
- Bijection between assignments to variables x_{1}, \ldots, x_{n} and subsets $I \subseteq[2 n]$ such that $\sum_{i \in I} a_{i}=t$.

3-SAT \leq^{p} Subset Sum - variable gadgets

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

				PHASE	
	BIT POSITIONS				
a_{1}	x_{4}	x_{3}	x_{2}	x_{1}	
a_{2}	0	0	0	1	$\sim x_{1}$
a_{3}	0	0	0	1	$\sim \bar{x}_{1}$
a_{4}	0	0	1	0	$\sim x_{2}$
a_{5}	0	0	1	0	$\sim \bar{x}_{2}$
a_{6}	0	1	0	0	$\sim x_{3}$
a_{2}	0	1	0	0	$\sim \bar{x}_{3}$
a_{8}	1	0	0	0	$\sim x_{4}$
	1	0	0	0	$\sim \bar{x}_{4}$

3-SAT \leq^{p} Subset Sum - clause gadgets \& connections

For each clause C_{j} with k_{j} literals:

- Pick bit two new consecutive bit positions B_{j}.
- Set bits B_{j} to 01 in each number a_{i} labeled with literal in C_{j}.
- Set bits B_{j} in t equal to k_{j} (in binary).
- Include $k_{j}-1$ new a_{i} with all bits zero except B_{j} set to 01 .

Claim

- Consider subset $I \subseteq[2 n]$ corresponding to assignment to variables x_{1}, \ldots, x_{n}.
$-\sum_{i \in I} a_{i}$ agrees with t in last n bit positions.
- I can be extended with subset of new indices to I^{\prime} such that $\sum_{i \in I^{\prime}} a_{i}$ agrees with t in positions B_{j} \Leftrightarrow underlying assignment satisfies C_{j}.
Conclusion: φ is satisfiable $\Leftrightarrow\left(\exists I^{\prime}\right) \sum_{i \in I^{\prime}} a_{i}=t$.

3-SAT \leq^{p} Subset Sum - clause gadgets \& connections $\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)$

PHASE 2

| | c_{2} | c_{1} | x_{4} | x_{3} | x_{2} | x_{1} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | 00 | 01 | 0 | 0 | 0 | 1 | $\sim x_{1}$ |
| a_{2} | 01 | 00 | 0 | 0 | 0 | 1 | $\sim \bar{x}_{1}$ |
| a_{3} | 00 | 00 | 0 | 0 | 1 | 0 | $\sim x_{2}$ |
| a_{4} | 00 | 01 | 0 | 0 | 1 | 0 | $\sim \bar{x}_{2}$ |
| a_{5} | 01 | 00 | 0 | 1 | 0 | 0 | $\sim x_{3}$ |
| a_{6} | 00 | 00 | 0 | 1 | 0 | 0 | $\sim \bar{x}_{3}$ |
| a_{7} | 00 | 01 | 1 | 0 | 0 | 0 | $\sim x_{1}$ |
| a_{8} | 00 | 00 | 1 | 0 | 0 | 0 | $\sim \bar{x}_{4}$ |
| a_{9} | 00 | 01 | 0 | 0 | 0 | 0 | |
| a_{10} | 00 | 01 | 0 | 0 | 0 | 0 | |
| a_{11} | 01 | 00 | 0 | 0 | 0 | 0 | |
| t | 10 | 11 | 1 | 1 | 1 | 1 | |

Classical NP-Complete Problems

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability
- Numerical: Subset Sum, Knapsack
- Sequencing: Traveling Salesperson

Hamiltonicity
Input: (di)graph $G=(V, E)$
Output: whether there exists a (directed) cycle/path that visits every vertex once

Instance Structure

Idea
Exploit structure of instances that occur in application setting.
Vertex Cover
Can be solved in polynomial time for:

- Trees
- Bipartite graphs
- Interval graphs
- ...

Parameter Bounds

Idea
Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover
Using vertex cover size k as additional parameter:

- Polynomial-time solvable for each fixed k
- Exhaustively try all $\binom{n}{k}=\Theta\left(n^{k}\right)$ possible subsets of size k.
- Fixed-parameter tractable
- Running time $O\left(2^{k} \cdot(|V|+|E|)\right)$
- Kernelization
- Kernel consisting of at most k^{2} edges

Fixed-Parameter Tractability

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^{c}$ for some $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

- Principle of optimality applied to edge
procedure VC-Decision (V, E, k)
if $E=\emptyset$ then return "yes"
if $k=0$ then return "no"
pick $e=(u, v) \in E$
return $\operatorname{VC-Decision}(V, E \backslash(\{u\} \times V), k-1)$ or $\operatorname{VC-Decision}(V, E \backslash(\{v\} \times V), k-1)$
- Running time: $O\left(2^{k} \cdot(|V|+|E|)\right)$

Kernelization

Definition
Self-reduction where instances of bit-length n with parameter k are reduced in time n^{c} to instances of size at most $g(k)$ for some $g: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$.
Vertex Cover

- Vertices of degree more than k need to be included.
- A graph G^{\prime} in which each vertex has degree at most d and has a vertex cover of size s, can have at most $s \cdot d$ edges.
- Kernelization:
$S \leftarrow\{v \in V: \operatorname{deg}(v)>k\}$
$E^{\prime} \leftarrow E \backslash S \times V$ if $\left|E^{\prime}\right|>(k-|S|) \cdot k$ then return "no" return VC-Decision $\left(V\left(E^{\prime}\right), E^{\prime}, k-|S|\right)$
- Reduced instance $G^{\prime}=\left(V\left(E^{\prime}\right), E\right)$ has at most k^{2} edges and $2 k^{2}$ vertices.

Approximations

Idea
Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum

Definition
A ρ-approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ.

Vertex Cover
Has 2-approximation algorithms:

- Greedy
- Linear programming relaxation

Greedy 2-Approximation for Vertex Cover

- Consider maximal matching M in G, i.e., matching that cannot be extended.
- OPT $\geq|M|$
- Let S be set of all endpoints of edges in M.
- S is a vertex cover.
- $|S| \leq 2 \cdot|M|$
- $|S| \leq 2 \cdot|M| \leq 2 \cdot$ OPT

Linear Programming

- Optimizing a linear objective function over \mathbb{R}^{n} under linear inequality constraints.
- Widely used algorithm: simplex
- Can be solved in polynomial time.
- No strongly polynomial-time algorithm known.

LP-Based 2-Approximation for Vertex Cover

Integral LP for Vertex Cover

- Variables: $x_{v} \in \mathbb{R}$ for each $v \in V$
- Objective: $\min f(x)$ where $f(x) \doteq \sum_{v \in V} x_{V}$
- Constraints:
- $(\forall e=(u, v) \in E) x_{u}+x_{v} \geq 1$
- $(\forall v \in V) 0 \leq x_{v} \leq 1$
- All x_{v} are integral.

Relaxation

- Dropping integrality constraints yields genuine LP.
- Find solution of LP: x_{v}^{*} for $v \in V$.
- $f\left(x^{*}\right) \leq$ OPT
- Let $S \doteq\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$.
$\circ S$ is a vertex cover.
- $|S| \leq 2 \cdot \sum_{v \in S} x_{v}^{*} \leq 2 \cdot \sum_{v \in V} x_{v}^{*}=2 \cdot f\left(x^{*}\right) \leq 2 \cdot$ OPT

Hardness of Approximation

- For every NP-hard approximation problem, achieving an approximation factor $\rho=1$ is NP-hard.
- For every NP-hard approximation problem, there exists $\rho(n)>1$ that is NP-hard to achieve.
- For some NP-hard approximation problems a tight threshold $\tau(n)$ for efficiently achievable $\rho(n)$ is known:
- Every $\rho(n)$ worse than $\tau(n)$ can be achieved in polynomial time.
- Achieving any $\rho(n)$ better than $\tau(n)$ is NP-hard.

Problem	$\tau(n)$
Knapsack	$1+\epsilon$
Vertex Cover	2
Set Cover	$\ln (n)$
Independent Set	$n^{1-\epsilon}$

Heuristics

- Algorithms that have returned good results in some settings, but no known guarantees.
- Often combine local search with restarts to get out of local optimum, using randomness.
- Often based on physical processes that minimize energy or entropy.
- Examples: Metropolis, simulated annealing, etc.

