CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

November 29, 2022

Outline

Motivation

- Recognizing infeasible approaches
- ▶ P vs NP problem

Topics

- ► Classes P and NP
- ▶ NP-hardness and NP-completeness

(Seemingly?) Intractable Problems

Independent Set

Input: graph G

Output: independent set S of G such that |S| is maximized

Satisfiability

Input: Boolean formula φ

Output: satisfying assignment of $\varphi,$ or report that none exists

More (Seemingly?) Intractable Problems

Graph coloring

Input: graph G = (V, E)

Output: $c: V \rightarrow [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: *n* cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum

total cost

Subset sum

Input: $a_1, a_2, \ldots, a_n \in \mathbb{N}$; $t \in \mathbb{N}$

Output: $I \subseteq [n]$ such that $\sum_{i \in I} a_i = t$, or report impossible

Common Pattern

On input x of length $n \doteq |x|$:

- ▶ Candidate solutions can be described by strings $y \in \{0, 1\}^*$ with $|y| = n^c$ for some constant c.
- ▶ Whether a candidate solution $y \in \{0,1\}^{n^c}$ is valid for input x can be checked in time polynomial in n.

$$V(x,y) = \begin{cases} 1 & \text{if } y \text{ is valid for } x \\ 0 & \text{otherwise} \end{cases}$$

▶ [In case of optimization problem:] Objective f(x, y) can be evaluated in time polynomial in n.

NP Decision/Search/Optimization

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ computable in polynomial time
 - o $f:\{0,1\}^* imes \{0,1\}^* o \mathbb{R}$ computable in polynomial time
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

► Goal:

Decision Is $S_x \neq \emptyset$?

Search Find $y \in S_x$ or report that no such y exists.

OptVal Find $\min_{y \in S_x} (f(x, y))$ respectively

 $\max_{y \in S_x} (f(x, y)).$

OptSol Find $y^* \in S_x$ such that

 $f(x, y^*) = \min_{y \in S_x} (f(x, y))$ respectively

 $f(x, y^*) = \max_{y \in S_x} (f(x, y))$

P vs NP

Definitions

- ▶ P: class of decision problems computable in polynomial time.
- ▶ NP: class decision problems for which yes-instances have certificates that can be verified in polynomial time, i.e., there exists $c \in \mathbb{N}$ and $V \in \mathsf{P}$ such that

$$x$$
 is yes-instance \Leftrightarrow $(\exists y \in \{0,1\}^{|x|^c}) V(x,y) = 1$.

Fact: $P \subseteq NP$ Open: P = NP? Conjecture: $P \neq NP$

Note: Assuming $P \neq NP$, the "hardest" problems in NP cannot be solved in polynomial time (but some problems in NP can).

NP-Hardness and NP-Completeness

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\Leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Corollary

Assume $\mathsf{P} \neq \mathsf{NP}.$ If B is NP-hard then B cannot be solved in polynomial time.

Existence of NP-Complete Problems

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Proof

Consider any $A \in NP$.

- ▶ By the NP-hardness of CNF-SAT, $A \leq^p$ CNF-SAT.
- ▶ By previous lecture, CNF-SAT \leq^p Independent Set.
- ▶ By transitivity, $A
 \leq^p$ Independent Set.

Proving NP-Hardness

Strategy

To show a new problem C is NP-hard:

- ► Find a known NP-hard problem *B*.
- ▶ Show that $B \leq^p C$.

Motivation

- ► Recognizing infeasible approaches.
- ➤ Convincing your boss
 See cartoon from: [Garey and Johnson, Computers and
 Intractability A guide to the Theory of NP-Completeness]

Prevalence of NP-completeness

- ► Thousands of problems from all areas of science and engineering have been shown to be NP-complete.
- ▶ Considered strong evidence that $P \neq NP$.
- ▶ In fact, almost all of the known problems in NP that are not known to be in P, have been shown to be NP-hard.
- Notorious exceptions include: graph isomorphism, factoring integers.

CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 1, 2022

Outline

Motivation

- ► Recognizing infeasible approaches
- ▶ P vs NP problem

P, NP, and NPC

- ▶ P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- ► Fact: P ⊂ NP
- ► Conjecture: P ≠ NP
- ▶ NP-complete (NPC): hardest problems in NP
- ▶ Assume $P \neq NP$. If $B \in NPC$ then $B \notin P$.

Satisfiability: Circuit-SAT, 3-SAT, 2-SAT

NP Decision/Search/Optimization

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ computable in polynomial time
 - o $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ computable in polynomial time
- ▶ Solution set for input $x \in \{0, 1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

► Goal:

Decision Is $S_x \neq \emptyset$?

Search Find $y \in S_x$ or report that no such y exists.

OptVal Find $\min_{y \in S_x} (f(x, y))$ respectively

 $\max_{y \in S_x} (f(x, y)).$ OptSol Find $y^* \in S_x$ such that

Sol Find $y' \in S_X$ such that

 $f(x, y^*) = \min_{y \in S_x} (f(x, y))$ respectively

Logic Gates:

AND

 $f(x, y^*) = \max_{y \in S_x} (f(x, y))$

NP-Hardness and NP-Completeness

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

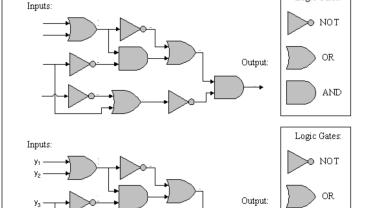
Proof

- $\ \, \Leftarrow \,\, B \in \mathsf{NP} \,\,\mathsf{and}\,\, \mathsf{P} = \mathsf{NP} \,\,\mathsf{implies}\,\, B \in \mathsf{P}.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Corollary

Assume P \neq NP. If B is NP-hard then $B \notin P$.

Circuit Satisfiability



Circuit-SAT is NP-Hard

Proof

- ▶ Need to show A < p Circuit-SAT for each A in NP.
- ▶ *A* is specified by $c \in \mathbb{N}$ and $V \in P$ such that $x \in \{0,1\}^n$ is yes-instance $\Leftrightarrow S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\} \neq \emptyset$.

Lemma

A Boolean circuit C_x on $\ell \doteq n^c$ inputs such that $C_x(y) = V(x,y)$ for all $y \in \{0,1\}^{\ell}$ can be constructed from x in time $n^{O(1)}$.

Mapping reduction

$$\begin{array}{ccc} A & B = \text{Circuit-SAT} \\ x_A & \rightarrow & x_B = C_{x_A} \\ & & \downarrow \text{ [blackbox]} \\ y_A = y_B & \leftarrow & y_B \text{ with } C_{x_A}(y_B) = 1 \end{array}$$

Satisfiability

Specification

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Restrictions

- ightharpoonup CNF-SAT: φ is CNF, i.e., a conjunction of clauses.
 - Clause: disjunction of literals
 - o Literal: variable or negated variable
- ▶ k-SAT for fixed $k \in \mathbb{N}$: φ is k-CNF, i.e., CNF in which each clause contains at most k literals.

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_{k-1} \vee \ell_k \equiv \overline{\ell_1} \wedge \overline{\ell_2} \wedge \cdots \wedge \overline{\ell_{k-1}} \Rightarrow \ell_k$$

Complexity

- ▶ 3-SAT is NP-hard.
- ▶ 2-SAT can be solved in polynomial time.

Proving NP-Hardness

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Justification

Consider any $A \in NP$.

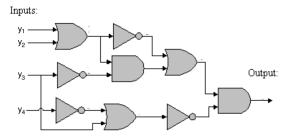
- ▶ By the NP-hardness of B, $A \leq^p B$.
- ▶ We show that $B <^p C$.
- ▶ Therefore A .
- ▶ By transitivity $A \leq^p C$.

3-SAT is NP-Hard

Strategy

Mapping reduction Circuit-SAT \leq^p 3-SAT

Gadget reduction



Reduction Circuit-SAT \leq^p 3-SAT

- ▶ Introduce a variable y_i for each input y_i of C, $i \in [\ell]$.
- Introduce a variable g for each gate g of C.
- For each gate g, include clauses with at most 3 literals each that force variable g to value of gate g on input y₁...y_ℓ.

$$\circ g' = \mathsf{NOT} \ g \to \left\{ \begin{array}{l} g \Rightarrow \overline{g'} \\ \overline{g} \Rightarrow g' \end{array} \right. \equiv \left\{ \begin{array}{l} \overline{g} \vee \overline{g'} \\ g \vee g' \end{array} \right.$$

$$\circ g' = g_1 \ \mathsf{AND} \ g_2 \to \left\{ \begin{array}{l} \overline{g_1} \Rightarrow \overline{g'} \\ \overline{g_2} \Rightarrow \overline{g'} \end{array} \right. \equiv \left\{ \begin{array}{l} g_1 \vee \overline{g'} \\ g_2 \vee \overline{g'} \\ \overline{g_1} \vee \overline{g_2} \vee \overline{g'} \end{array} \right.$$

▶ Add unit clause consisting of the variable for the output gate.

Correctness

- ightharpoonup C has satisfying assignment $\Leftrightarrow \varphi$ has satisfying assignment.
- **Each** satisfying assignment for φ includes one for C.

Polynomial running time

2-SAT

$$(x_1 \vee x_2) \wedge (\overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2})$$

Digraph representation G

- ▶ Introduce a vertex for each variable x_i that occurs in φ , and another one for its negation $\overline{x_i}$.
- ▶ Interpret each clause $\ell_1 \lor \ell_2$ as the implications $\overline{\ell_1} \Rightarrow \ell_2$ and $\overline{\ell_2} \Rightarrow \ell_1$.
- ▶ Include edges $(\overline{\ell_1}, \ell_2)$ and $(\overline{\ell_2}, \ell_1)$ in G.
- ► Handle unit clause ℓ as $\ell \vee \ell$.

Symmetry property

$$\ell_1 \leadsto \ell_2 \text{ in } G \Leftrightarrow \overline{\ell_2} \leadsto \overline{\ell_1} \text{ in } G$$

Polynomial-Time Algorithm for 2-SAT

Claim

 φ has a satisfying assignment

 \Leftrightarrow for no variable x_i there are paths $x_i \rightsquigarrow \overline{x_i}$ and $\overline{x_i} \rightsquigarrow x_i$ in G.

Proof

- \Rightarrow By contraposition.

Correctness:

- o Propagation ensures all clauses are satisfied.

Running time: O(n+m) for n variables and m clauses, using linear-time algorithm for finding strongly connected components.

CS 577 - Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 6, 2022

Recap

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NPConjecture: P ≠ NP
- ▶ Definition: *B* is NP-hard if $(\forall A \in NP) A \leq^p B$.
- ▶ Assume P \neq NP. If B is NP-hard then B \notin P.
- ► Theorem: Circuit-SAT is NP-hard.

Establishing NP-Hardness

Strategy

To show a new problem *C* is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ► Circuit-SAT ≤^p 3-SAT
- ► 3-SAT ≤^p Independent Set

Today's instantiations

- ► Independent Set ≤^p Clique
- ► Independent Set ≤^p Vertex Cover
- ▶ 3-SAT \leq^p 3-Coloring
- ► 3-SAT ≤^p Subset Sum

Independent Set vs Clique vs Vertex Cover

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

- ▶ *S* is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.
- ▶ *S* is independent set in $G \Leftrightarrow \overline{S}$ is vertex cover in *G*.

Corollary

- ► Independent Set \equiv^p Clique
- ▶ Independent Set \equiv^p Vertex Cover

Satisfiability and Coloring

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$

Output: whether φ has a satisfying assignment.

3-Coloring

Input: graph G = (V, E)

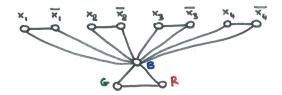
Output: whether G has a 3-coloring, i.e., a mapping $c: V \to [3]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$.

$3-SAT \leq^p 3-Coloring - variable gadgets$

- ► Include a color palette: complete graph on vertices {red, green, blue}
- ▶ For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$.
- ▶ Include the edges $(x_i, \overline{x_i})$, (x_i, blue) , and $(\overline{x_i}, \text{blue})$.
- ▶ Bijection between assignments to variables $x_1, ..., x_n$ and valid colorings with {red, green, blue}.

$3-SAT \leq^p 3-Coloring - variable gadgets$

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$$



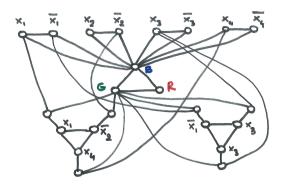
$3-SAT \le p$ 3-Coloring – clause gadgets & connections

- ▶ For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_i .
- ▶ Include for each new vertex v with label ℓ , another new vertex v'
- ▶ Include the edges (v, v'), (v', green), and (v', u), where u denotes the vertex in the variable gadget labeled ℓ .
- A valid 3-coloring to the variable gadget can be extended to gadget for clause C_i iff underlying assignment satisfies C_i.
- ► Clauses with less than 3 literals can be handled by repeating a literal in the clause until there are three.

Conclusion: φ is satisfiable \Leftrightarrow G is 3-colorable

$3-SAT \le p$ 3-Coloring – clause gadgets & connections

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$$



Satisfiability and Subset Sum

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$ Output: whether φ has a satisfying assignment.

output. Whether & has a satisfying

Subset Sum

Input: $a_1, a_2, \ldots, a_k \in \mathbb{N}$; $t \in \mathbb{N}$

Output: whether there exists $I \subseteq [k]$ such that $\sum_{i \in I} a_i = t$.

Note: Subset Sum \leq^p Knapsack

$3-SAT \leq^p Subset Sum - variable gadgets$

- For each variable x_i , include two numbers $a_{2i-1} = a_{2i} = 2^{i-1}$.
- ▶ Label a_{2i-1} with x_i , and a_{2i} with $\overline{x_i}$.
- ► Set $t = \sum_{i=1}^{n} 2^{i-1} = 2^n 1$.
- Bijection between assignments to variables x₁,...,x_n and subsets I ⊆ [2n] such that ∑_{i∈I} a_i = t.

$3-SAT \leq^p Subset Sum - variable gadgets$

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$$

PHASE I



. . .

Conclusion: φ is satisfiable \Leftrightarrow $(\exists I')$ $\sum_{i \in I'} a_i = t$.

$3-SAT \le p$ Subset Sum – clause gadgets & connections

For each clause C_j with k_j literals:

- ▶ Pick bit two new consecutive bit positions B_j .
- ▶ Set bits B_i to 01 in each number a_i labeled with literal in C_i .
- ▶ Set bits B_j in t equal to k_j (in binary).
- ▶ Include $k_i 1$ new a_i with all bits zero except B_i set to 01.

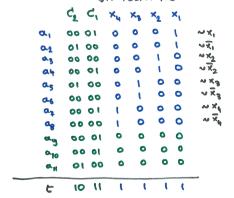
Claim

- ▶ Consider subset $I \subseteq [2n]$ corresponding to assignment to variables x_1, \ldots, x_n .
- $ightharpoonup \sum_{i \in I} a_i$ agrees with t in last n bit positions.
- ▶ I can be extended with subset of new indices to I' such that $\sum_{i \in I'} a_i$ agrees with t in positions B_j \Leftrightarrow underlying assignment satisfies C_j .

$3-SAT \leq^p Subset Sum - clause gadgets & connections$

 $(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3)$ PHASE 2

BIT POSITIONS $C_2 \quad C_1 \quad x_4 \quad x_3 \quad x_2 \quad x_1$



Classical NP-Complete Problems

- ► Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- ► Covering: Vertex Cover
- ► Partitioning: 3-Colorability
- Numerical: Subset Sum, Knapsack
- ► Sequencing: Traveling Salesperson

Hamiltonicity

Input: (di)graph G = (V, E)

Output: whether there exists a (directed) cycle/path that

visits every vertex once

CS 577- Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

December 8, 2022

Outline

How to handle NP-complete problems

- ► Instance structure
- ► Parameter bounds
- Approximations
- Heuristics

Instance Structure

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for:

- ► Trees
- ► Bipartite graphs
- ► Interval graphs
- **.**..

Parameter Bounds

lde:

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

Using vertex cover size k as additional parameter:

- ightharpoonup Polynomial-time solvable for each fixed k
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.
- ► Fixed-parameter tractable
 - Running time $O(2^k \cdot (|V| + |E|))$
- ► Kernelization
 - o Kernel consisting of at most k^2 edges

Fixed-Parameter Tractability

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^c$ for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

▶ Principle of optimality applied to edge

```
procedure VC-Decision(V, E, k)
   if E = \emptyset then return "yes"
   if k = 0 then return "no"
   pick e = (u, v) \in E
   return VC-Decision(V, E \setminus (\{u\} \times V), k-1) or
             VC-Decision(V, E \setminus (\{v\} \times V), k-1)
```

▶ Running time: $O(2^k \cdot (|V| + |E|))$

Kernelization

Definition

Self-reduction where instances of bit-length n with parameter k are reduced in time n^c to instances of size at most g(k) for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

- ▶ Vertices of degree more than *k* need to be included.
- ▶ A graph G' in which each vertex has degree at most d and has a vertex cover of size s, can have at most $s \cdot d$ edges.
- Kernelization:

$$\begin{split} S \leftarrow \{v \in V \ : \ \deg(v) > k\} \\ E' \leftarrow E \setminus S \times V \\ \text{if } |E'| > (k - |S|) \cdot k \ \text{then return "no"} \\ \text{return VC-Decision}(V(E'), E', k - |S|) \end{split}$$

▶ Reduced instance G' = (V(E'), E) has at most k^2 edges and $2k^2$ vertices.

Approximations

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Vertex Cover

Has 2-approximation algorithms:

- Greedy
- Linear programming relaxation

Greedy 2-Approximation for Vertex Cover

- ▶ Consider maximal matching *M* in *G*, i.e., matching that cannot be extended.
- ▶ OPT ≥ |M|
- ▶ Let S be set of all endpoints of edges in M.
 - S is a vertex cover.

 - $\begin{array}{l} \circ \ |S| \leq 2 \cdot |M| \\ \circ \ |S| \leq 2 \cdot |M| \leq 2 \cdot \mathsf{OPT} \end{array}$

Linear Programming

- ightharpoonup Optimizing a linear objective function over \mathbb{R}^n under linear inequality constraints.
- ▶ Widely used algorithm: simplex
- Can be solved in polynomial time.
- No strongly polynomial-time algorithm known.

LP-Based 2-Approximation for Vertex Cover

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $(\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

- ▶ Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.
- ▶ $f(x^*) \leq \mathsf{OPT}$
- ▶ Let $S \doteq \{v \in V : x_v^* \ge 1/2\}$.
 - S is a vertex cover.
 - $|S| \le 2 \cdot \sum_{v \in S} x_v^* \le 2 \cdot \sum_{v \in V} x_v^* = 2 \cdot f(x^*) \le 2 \cdot \mathsf{OPT}$

Hardness of Approximation

- For every NP-hard approximation problem, achieving an approximation factor $\rho=1$ is NP-hard.
- For every NP-hard approximation problem, there exists $\rho(n) > 1$ that is NP-hard to achieve.
- For some NP-hard approximation problems a tight threshold $\tau(n)$ for efficiently achievable $\rho(n)$ is known:
 - o Every $\rho(\mathbf{n})$ worse than $\tau(\mathbf{n})$ can be achieved in polynomial time
 - o Achieving any $\rho(n)$ better than $\tau(n)$ is NP-hard.

Problem	$\tau(n)$
Knapsack	$1 + \epsilon$
Vertex Cover	2
Set Cover	$\ln(n)$ $n^{1-\epsilon}$
Independent Set	$n^{1-\epsilon}$

Heuristics

- Algorithms that have returned good results in some settings, but no known guarantees.
- Often combine local search with restarts to get out of local optimum, using randomness.
- Often based on physical processes that minimize energy or entropy.
- Examples: Metropolis, simulated annealing, etc.