
CS 577 - Intro to Algorithms

Reductions

Dieter van Melkebeek

November 15, 2022

Outline

Paradigm

Solve a computational problem A using a blackbox for another
computational problem B .

Motivation

I Modular design

I NP-completeness

Today

I Notion

I Example where A and B have e�cient algorithms

I Examples where A and B have no (known) e�cient
algorithms: optimization vs search vs decision

Notion

Let A and B be two computational problems.

Definition

A reduction from A to B is an algorithm for A that can make use
of a blackbox for B .

Queries

I On a given input xA of problem A, reduction can make
multiple queries xB to the blackbox for B .

I For a valid query xB of problem B , the blackbox returns a
valid output yB for problem B on input xB .

I Often times one query su�ces.

Bipartite Matching and Integral Max Flow

A : Bipartite Matching

Input: bipartite graph G = (V ,E)
where V = L t R and E ✓ L⇥ R

Output: matching M such that |M| is maximized

B : Integral Max Flow

Input: network N = (V 0,E 0, c , s, t)

Output: integral flow f such that ⌫(f)
.
= fout(s) is maximized

Reduction from Bipartite Matching to Integral Max Flow Correctness of a Reduction

Definition

On every valid input xA of A:

I Each query xB to the blackbox is valid input of B .

I Assuming all queries to the blackbox are answered correctly,
the reduction produces a correct output yA for A on input xA.

Corollary

Replacing the blackbox for B by a correct algorithm for B yields a
correct algorithm for A.

Reduciblity

Definition

A  B if there exists a reduction from A to B .

Properties

I Reflexive: A  A

I Not symmetric: Bipartite Matching  Halting Problem, but
not the other way.

I Transitive: A  B and B  C implies A  C .

I If A  B and B can be solved algorithmically, then A can be
solved algorithmically.

Running Time of a Reduction

Definition

Time to run the reduction assuming blackbox queries are answered
instantaneously.

Case of one query

Reduction from Bipartite Matching to Integral Max Flow Running Time of a Reduction

Definition

Time to run the reduction assuming blackbox queries are answered
instantaneously.

Case of one query

Running time of reduction consists of:

I Time to construct out of the input xA to A the query xB to B .

I Time to construct out of the answer yB of B to query xB , the
answer yA for A on input xA.

I Not time to compute yB out of xB .

Corollary

Suppose reduction from A to B runs in time t. Replacing the
blackbox for B by an algorithm for B that runs in time tB(n) yields
an algorithm for A that runs in time t + t · tB(t).

Polynomial Time

Bit-length

The bit-length of an input x is the number of bits needed to
represent x .

I binary strings: length

I numbers: length of the binary representation (finite precision)

I graphs: O(n2) for adjacency matrix, O(n +m log n) for
adjacency list

I . . .

Definition

An algorithm/reduction runs in polynomial time if its running time
is O(nc) for some constant c , where n

.
= bit-length of the input.

Robustness

Notion turns out to be the same for most (but perhaps not all)
reasonable input representations and models of computation.

Polynomial–Time Reduciblity

Definition

A p
B if there exists a polynomial-time reduction from A to B .

Properties

I Reflexive: A p
A

I Not symmetric

I Transitive: A p
B and B p

C implies A p
C .

I If A p
B and B can be solved in polynomial time, then A

can be solved in polynomial time.

I If A p
B and A cannot be solved in polynomial time, then B

cannot be solved in polynomial time.

Independent Set

Definition

An independent set in a graph G = (V ,E) is a subset S ✓ V such
that E \ S ⇥ S = ;.

Example

Valid schedule for unweighted interval scheduling corresponds to
independent set in conflict graph.

Computational problems

I Optimization: solution or value

I Search

I Decision

Independent Set – problem specifications

OptSol

Input: graph G

Output: independent set S of G such that |S | is maximized

OptVal

Input: graph G

Output: size of largest independent set of G

Search

Input: graph G , k 2 N
Output: independent set S of G such that |S | � k , or report

that no such set exists

Decision

Input: graph G , k 2 N
Output: whether independent set S with |S | � k exists in G

Independent Set – Decision p
Search p

OptSol

I Decision p Search

I Search p OptSol

Independent Set – Decision p
OptVal p

OptSol

I Decision p OptVal

I OptVal p OptSol

Independent Set – Optimization p
Search p

Decision

I OptSol p Search
� Linear search for maximum size

� Binary search reduces number of queries from O(|V |) to
O(log |V |).

I Search p Decision: next slides
I Corollaries:

I OptSol p Decision p OptVal
I OptVal p Decision

Independent Set – Search p
Decision

I Vertex v has to be in every independent set of size at least k
, Decision(G � {v}, k) = “no”

I Reluctant approach

I Considering vertices in lexicographical order results in
independent set of size at least k with the lexicographically
first characteristic vector.

Independent Set – Search p
Decision

I Vertex v can be in some independent set of size at least k
, Decision(G � ({v} [G (v)), k � 1) = “yes”

I Eager approach

I Considering vertices in lexicographical order results in
independent set of size at least k with the lexicographically
last characteristic vector.

CS 577 - Intro to Algorithms

Reductions

Dieter van Melkebeek

November 17, 2022

Outline

Definition

A reduction from computational problem A to computational

problem B is an algorithm for A that uses a blackbox for B .

Running time

Time to run reduction discounting time for blackbox.

Notation

A p B : A reduces to B in polynomial time.

Example polynomial-time reductions

I Bipartite Matching p
Integral Max Flow

I Between di↵erent versions of Independent Set: decision,

search, optimal value, optimal solution

I Independent Set vs Satisfiability

Boolean Formulas

Definition

I Base case: variables x1, x2, . . .
I Constructors:

� Conjunction (AND): ^
� Disjunction (inclusive OR): _
� Negation: ¬ also denoted as

Example

[(x1 _ x2 _ ¬x3) ^ ¬x1] _ x4 ⌘ [(x1 _ x2 _ x3) ^ x1] _ x4

Restricted types

I Literal: variable x , negated variable x

I Clause: disjunction of literals

I Conjunctive normal form (CNF): conjunction of clauses

Conjunctive Normal Form

(x1 _ x2 _ x4) ^ (x1 _ x3)

Theorem

For every f : {0, 1}k ! {0, 1} there exists a CNF-formula ' such

that for every x = x1 . . . xn 2 {0, 1}n

f (x1, . . . , xk) = 1 , '(x1, . . . , xk).

Proof

f (x1, . . . , xk) = 1 , ^a : f (a)=0(x 6= a)

, ^a : f (a)=0 _k
i=1 (xi 6= ai)

, ^a : f (a)=0 _k
i=1 x

1�ai
i

where x0
.
= x and x1

.
= x .

Note: Size of ' can be exponential in k .

Satisfiability

Search version

Input: Boolean formula '

Output: satisfying assignment of ': setting of the variables to

true/false that makes ' evaluate to true;

or report that no such setting exists

Decision version

Input: Boolean formula '

Output: whether ' has a satisfying assignment

Restricted problems

I CNF-SAT: ' is CNF

I k-SAT for fixed k 2 N: ' is k-CNF, i.e., CNF with each

clause containing at most k literals

CNF-SAT p
Independent Set

A : CNF-SAT Decision

Input: CNF-formula ': ^m
j=1Cj where Cj = _kj

r=1`jr and

`jr 2 {x1, x1, . . . xn, xn}
Output: whether ' has a satisfying assignment

B : Independent Set Decision

Input: graph G = (V ,E), k 2 N
Output: whether G has an independent set of size at least k

Typical properties of reduction A p B

I Makes a single query: (G , k)

I Mapping reduction: translation of CNF-SAT instance ' into

Independent Set instance (G , k) with same decision, i.e.,

' is satisfiable , G has independent set of size at least k .

I Gadget reduction

CNF-SAT p
Independent Set – variable gadgets

^m
j=1Cj with Cj = _kj

r=1`jr and `jr 2 {x1, x1, . . . xn, xn} ! (G , k)

Construction

For each variable xi , include two new vertices, one labeled xi and
the other xi , and include the edge (xi , xi).

Properties

I Maximum size of independent set is n.
I Bijection between

� independent sets of maximum size and

� assignments to variables x1, x2, . . . , xn.

CNF-SAT p
Independent Set – variable gadgets

(x1 _ x2 _ x4) ^ (x1 _ x3)

CNF-SAT p
Independent Set – clause gadgets

^m
j=1Cj with Cj = _kj

r=1`jr and `jr 2 {x1, x1, . . . xn, xn} ! (G , k)

Construction

For each clause Cj for j 2 [m], include a clique (complete graph)

on kj new vertices, where kj = number of literals of Cj . Label each

vertex of the clique with a unique literal of Cj .

Properties

I Maximum size of independent set is m.

I Bijection between

� independent sets of maximum size and

� choices of literal in each clause Cj for j 2 [m].

CNF-SAT p
Independent Set – clause gadgets

(x1 _ x2 _ x4) ^ (x1 _ x3)

CNF-SAT p
Independent Set – connections

Construction of G
I Disjoint union of all variable gadgets and clause gadgets.

I For each variable gadget vertex labeled `, and each clause

gadget vertex labeled `, include edge between them.

Properties

I Max independent set size in G is at most n +m.

I Independent set of size n in variable part can be extended

with vertex in gadget of clause Cj , assignment satisfies Cj .

I Max independent set size in G is at least k
.
= n +m

, ' has a satisfying assignment

I (G , k) can be constructed in polynomial time.

I Note: Bijection between

� independent sets of size n +m in G and

� satisfying assignments to x1, x2, . . . , xn combined with choices

of satisfying literal in each clause Cj for j 2 [m].

CNF-SAT p
Independent Set – connections

(x1 _ x2 _ x4) ^ (x1 _ x3)

Independent Set p
CNF-SAT

A : Independent Set Decision

Input: graph G = (V ,E), k 2 N
Output: whether G has an independent set of size at least k

B : CNF-SAT Decision

Input: CNF-formula '

Output: whether ' has a satisfying assignment

Typical properties of reduction A p B

I Makes a single query: '

I Mapping reduction: translation of Independent Set instance

(G , k) into CNF-SAT instance ' with same decision, i.e.,

G has independent set of size at least k , ' is satisfiable.

I Gadget reduction

Independent Set p
CNF-SAT (G , k) ! '

Modeling independent set

I Introduce variable xv for each vertex v 2 V .

I xv indicates whether v belongs to the independent set.

Enforcing independence condition

I For every edge e = (u, v) include clause xu _ xv .

Enforcing size requirement

I Introduce new variable for each bit of binary representation ofP
v2V xv .

I Include clauses to enforce correct values for the new variables.

I Involves introduction of auxiliary variables. [on board]

I Include additional clauses and auxiliary variables to enforceP
v2V xv � k using binary representation.

