CS 577 - Intro to Algorithms	Outline
	Paradigm
	Solve a computational problem A using a blackbox for another computational problem B.
Reductions	Motivation - Modular design
Dieter van Melkebeek	- NP-completeness
	Today
November 15, 2022	- Notion
	- Example where A and B have efficient algorithms
	Examples where A and B have no (known) efficient algorithms: optimization vs search vs decision

Notion

Let A and B be two computational problems.
Definition
A reduction from A to B is an algorithm for A that can make use of a blackbox for B.

Queries

- On a given input x_{A} of problem A, reduction can make multiple queries x_{B} to the blackbox for B.
- For a valid query x_{B} of problem B, the blackbox returns a valid output y_{B} for problem B on input x_{B}.
- Often times one query suffices.

Bipartite Matching and Integral Max Flow

A : Bipartite Matching
Input: bipartite graph $G=(V, E)$ where $V=L \sqcup R$ and $E \subseteq L \times R$
Output: matching M such that $|M|$ is maximized
B : Integral Max Flow
Input: network $N=\left(V^{\prime}, E^{\prime}, c, s, t\right)$
Output: integral flow f such that $\nu(f) \doteq f_{\text {out }}(s)$ is maximized

Reduction from Bipartite Matching to Integral Max Flow

Correctness of a Reduction

Definition

On every valid input x_{A} of A :

- Each query x_{B} to the blackbox is valid input of B.
- Assuming all queries to the blackbox are answered correctly, the reduction produces a correct output y_{A} for A on input x_{A}.

Corollary

Replacing the blackbox for B by a correct algorithm for B yields a correct algorithm for A.

Reduciblity

Definition
$A \leq B$ if there exists a reduction from A to B.

Properties

- Reflexive: $A \leq A$
- Not symmetric: Bipartite Matching \leq Halting Problem, but not the other way.
- Transitive: $A \leq B$ and $B \leq C$ implies $A \leq C$.
- If $A \leq B$ and B can be solved algorithmically, then A can be solved algorithmically.

Running Time of a Reduction

Definition
Time to run the reduction assuming blackbox queries are answered instantaneously.

Case of one query

Running Time of a Reduction

Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

Case of one query
Running time of reduction consists of:

- Time to construct out of the input x_{A} to A the query x_{B} to B.
- Time to construct out of the answer y_{B} of B to query x_{B}, the answer y_{A} for A on input x_{A}.
- Not time to compute y_{B} out of x_{B}.

Corollary

Suppose reduction from A to B runs in time t. Replacing the blackbox for B by an algorithm for B that runs in time $t_{B}(n)$ yields an algorithm for A that runs in time $t+t \cdot t_{B}(t)$.

Polynomial Time

Bit-length
The bit-length of an input x is the number of bits needed to represent x.

- binary strings: length
- numbers: length of the binary representation (finite precision)
- graphs: $O\left(n^{2}\right)$ for adjacency matrix, $O(n+m \log n)$ for adjacency list
- ...

Definition

An algorithm/reduction runs in polynomial time if its running time is $O\left(n^{c}\right)$ for some constant c, where $n \doteq$ bit-length of the input.

Robustness
Notion turns out to be the same for most (but perhaps not all) reasonable input representations and models of computation.

Polynomial-Time Reduciblity

Definition
$A \leq^{p} B$ if there exists a polynomial-time reduction from A to B.

Properties

- Reflexive: $A \leq{ }^{p} A$
- Not symmetric
- Transitive: $A \leq^{p} B$ and $B \leq^{p} C$ implies $A \leq^{p} C$.
- If $A \leq^{p} B$ and B can be solved in polynomial time, then A can be solved in polynomial time.
- If $A \leq^{p} B$ and A cannot be solved in polynomial time, then B cannot be solved in polynomial time.

Independent Set

Definition
An independent set in a graph $G=(V, E)$ is a subset $S \subseteq V$ such that $E \cap S \times S=\emptyset$.

Example
Valid schedule for unweighted interval scheduling corresponds to independent set in conflict graph.

Computational problems

- Optimization: solution or value
- Search
- Decision

Independent Set - problem specifications
OptSol
Input: graph G
Output: independent set S of G such that $|S|$ is maximized
OptVal
Input: graph G
Output: size of largest independent set of G
Search
Input: graph $G, k \in \mathbb{N}$
Output: independent set S of G such that $|S| \geq k$, or report that no such set exists

Decision
Input: graph $G, k \in \mathbb{N}$
Output: whether independent set S with $|S| \geq k$ exists in G

Independent Set - Decision \leq^{p} Search \leq^{p} OptSol

- Decision \leq^{p} Search
if $\operatorname{Search}(G, k)=$ "no solution" then
return "no"
else
return "yes"
- Search \leq^{p} OptSol
$I \leftarrow \operatorname{OptSol}(G)$
if $|I| \geq k$ then

return I

else
return "no solution"

Independent Set - Decision \leq^{p} OptVal \leq^{p} OptSol

- Decision \leq^{p} OptVal
if $k \leq \operatorname{OptVal}(G)$ then
return "yes"
else
return "no"
- OptVal \leq^{p} OptSol
return $|\operatorname{OptSol}(G)|$

Independent Set - Optimization \leq^{p} Search \leq^{p} Decision

- OptSol \leq^{p} Search
- Linear search for maximum size

$$
k \leftarrow 0
$$

while $\operatorname{Search}(G, k) \neq$ "no solution" do

$$
k \leftarrow k+1
$$

return $\operatorname{Search}(G, k)$

- Binary search reduces number of queries from $O(|V|)$ to $O(\log |V|)$.
- Search \leq^{p} Decision: next slides
- Corollaries:
- OptSol \leq^{p} Decision \leq^{p} OptVal
- OptVal \leq^{p} Decision

Independent Set - Search \leq^{p} Decision

- Vertex v has to be in every independent set of size at least k $\Leftrightarrow \operatorname{Decision}(G-\{v\}, k)=$ "no"
- Reluctant approach

$$
\begin{aligned}
& \text { if } \operatorname{Decision}(G, k)=\text { "no" then } \\
& \quad \text { return "no solution" } \\
& I \leftarrow V \\
& \text { for each } v \in V \text { do } \\
& \quad \text { if Decision }\left(\left.G\right|_{I \backslash\{v\}}, k\right)=\text { "yes" then } \\
& \quad I \leftarrow I \backslash\{v\} \\
& \text { return } I
\end{aligned}
$$

- Considering vertices in lexicographical order results in independent set of size at least k with the lexicographically first characteristic vector.

Independent Set - Search \leq^{p} Decision

- Vertex v can be in some independent set of size at least k $\Leftrightarrow \operatorname{Decision}(G-(\{v\} \cup G(v)), k-1)=$ "yes"
- Eager approach
if $\operatorname{Decision}(G, k)=$ "no" then return "no solution"
$I \leftarrow \emptyset ; S \leftarrow V$
while $S \neq \emptyset$ do
pick $v \in S ; S \leftarrow S \backslash\{v\}$
if $\operatorname{Decision}\left(\left.G\right|_{S \backslash G(v)}, k-1\right)=$ "yes" then
$I \leftarrow I \cup\{v\}$
$S \leftarrow S \backslash G(v)$
$k \leftarrow k-1$
return I
- Considering vertices in lexicographical order results in independent set of size at least k with the lexicographically last characteristic vector.

CS 577 - Intro to Algorithms
Reductions

Dieter van Melkebeek

November 17, 2022

Outline

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses a blackbox for B.

Running time
Time to run reduction discounting time for blackbox.
Notation
$A \leq^{p} B$: A reduces to B in polynomial time.
Example polynomial-time reductions

- Bipartite Matching \leq^{p} Integral Max Flow
- Between different versions of Independent Set: decision, search, optimal value, optimal solution
- Independent Set vs Satisfiability

Boolean Formulas

Definition

- Base case: variables x_{1}, x_{2}, \ldots
- Constructors:
- Conjunction (AND): ^
- Disjunction (inclusive OR): \vee
- Negation: ᄀ also denoted as -

Example
$\left[\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge \neg x_{1}\right] \vee x_{4} \equiv\left[\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge \overline{x_{1}}\right] \vee x_{4}$

Restricted types

- Literal: variable x, negated variable \bar{x}
- Clause: disjunction of literals
- Conjunctive normal form (CNF): conjunction of clauses

Conjunctive Normal Form

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

Theorem
For every $f:\{0,1\}^{k} \rightarrow\{0,1\}$ there exists a CNF-formula φ such that for every $x=x_{1} \ldots x_{n} \in\{0,1\}^{n}$

$$
f\left(x_{1}, \ldots, x_{k}\right)=1 \Leftrightarrow \varphi\left(x_{1}, \ldots, x_{k}\right) .
$$

Proof

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{k}\right)=1 & \Leftrightarrow \wedge_{a}: f(a)=0(x \neq a) \\
& \Leftrightarrow \wedge_{a: f(a)=0} \vee_{i=1}^{k}\left(x_{i} \neq a_{i}\right) \\
& \Leftrightarrow \wedge_{a}: f(a)=0 \vee_{i=1}^{k} x_{i}^{1-a_{i}}
\end{aligned}
$$

where $x^{0} \doteq \bar{x}$ and $x^{1} \doteq x$.
Note: Size of φ can be exponential in k.

Satisfiability

Search version
Input: Boolean formula φ
Output: satisfying assignment of φ : setting of the variables to true/false that makes φ evaluate to true; or report that no such setting exists

Decision version
Input: Boolean formula φ
Output: whether φ has a satisfying assignment

Restricted problems

- CNF-SAT: φ is CNF
- k-SAT for fixed $k \in \mathbb{N}: \varphi$ is k-CNF, i.e., CNF with each clause containing at most k literals

CNF-SAT \leq^{p} Independent Set

A : CNF-SAT Decision
Input: CNF-formula $\varphi: \wedge_{j=1}^{m} C_{j}$ where $C_{j}=\vee_{r=1}^{k_{j}} \ell_{j r}$ and $\ell_{j r} \in\left\{x_{1}, \overline{x_{1}}, \ldots x_{n}, \overline{x_{n}}\right\}$
Output: whether φ has a satisfying assignment
B : Independent Set Decision
Input: graph $G=(V, E), k \in \mathbb{N}$
Output: whether G has an independent set of size at least k
Typical properties of reduction $A \leq^{p} B$

- Makes a single query: (G, k)
- Mapping reduction: translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision, i.e., φ is satisfiable $\Leftrightarrow G$ has independent set of size at least k.
- Gadget reduction

CNF-SAT \leq^{p} Independent Set - variable gadgets
$\wedge_{j=1}^{m} C_{j}$ with $C_{j}=\vee_{r=1}^{k_{j}} \ell_{j r}$ and $\ell_{j r} \in\left\{x_{1}, \overline{x_{1}}, \ldots x_{n}, \overline{x_{n}}\right\} \rightarrow(G, k)$

Construction

For each variable x_{i}, include two new vertices, one labeled x_{i} and the other $\overline{x_{i}}$, and include the edge ($x_{i}, \overline{x_{i}}$).

Properties

- Maximum size of independent set is n.
- Bijection between
- independent sets of maximum size and
- assignments to variables $x_{1}, x_{2}, \ldots, x_{n}$.

CNF-SAT \leq^{p} Independent Set - variable gadgets

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

CNF-SAT \leq^{p} Independent Set - clause gadgets
$\wedge_{j=1}^{m} C_{j}$ with $C_{j}=\vee_{r=1}^{k_{j}} \ell_{j r}$ and $\ell_{j r} \in\left\{x_{1}, \overline{x_{1}}, \ldots x_{n}, \overline{x_{n}}\right\} \rightarrow(G, k)$

Construction

For each clause C_{j} for $j \in[m]$, include a clique (complete graph) on k_{j} new vertices, where $k_{j}=$ number of literals of C_{j}. Label each vertex of the clique with a unique literal of C_{j}.

Properties

- Maximum size of independent set is m.
- Bijection between
- independent sets of maximum size and
- choices of literal in each clause C_{j} for $j \in[m]$.

CNF-SAT \leq^{p} Independent Set - clause gadgets

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

CNF-SAT $\leq{ }^{p}$ Independent Set - connections

Construction of G

- Disjoint union of all variable gadgets and clause gadgets.
- For each variable gadget vertex labeled ℓ, and each clause gadget vertex labeled $\bar{\ell}$, include edge between them.

Properties

- Max independent set size in G is at most $n+m$.
- Independent set of size n in variable part can be extended with vertex in gadget of clause $C_{j} \Leftrightarrow$ assignment satisfies C_{j}.
- Max independent set size in G is at least $k \doteq n+m$ $\Leftrightarrow \varphi$ has a satisfying assignment
- (G, k) can be constructed in polynomial time.
- Note: Bijection between
- independent sets of size $n+m$ in G and
- satisfying assignments to $x_{1}, x_{2}, \ldots, x_{n}$ combined with choices of satisfying literal in each clause C_{j} for $j \in[m]$.

CNF-SAT $\leq{ }^{p}$ Independent Set - connections

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

Independent Set \leq^{p} CNF-SAT
$(G, k) \rightarrow \varphi$
Modeling independent set

- Introduce variable x_{v} for each vertex $v \in V$.
- x_{v} indicates whether v belongs to the independent set.

Enforcing independence condition

- For every edge $e=(u, v)$ include clause $\overline{x_{u}} \vee \overline{x_{v}}$.

Enforcing size requirement

- Introduce new variable for each bit of binary representation of $\sum_{v \in V} x_{v}$.
- Include clauses to enforce correct values for the new variables.
- Involves introduction of auxiliary variables. [on board]
- Include additional clauses and auxiliary variables to enforce $\sum_{v \in V} x_{v} \geq k$ using binary representation.

Independent Set $\leq{ }^{p}$ CNF-SAT
A : Independent Set Decision
Input: graph $G=(V, E), k \in \mathbb{N}$
Output: whether G has an independent set of size at least k
B : CNF-SAT Decision
Input: CNF-formula φ
Output: whether φ has a satisfying assignment
Typical properties of reduction $A \leq^{p} B$

- Makes a single query: φ
- Mapping reduction: translation of Independent Set instance (G, k) into CNF-SAT instance φ with same decision, i.e., G has independent set of size at least $k \Leftrightarrow \varphi$ is satisfiable.
- Gadget reduction

