	Outline
CS 577 - Intro to Algorithms Reductions Dieter van Melkebeek November 15, 2022	 Paradigm Solve a computational problem A using a blackbox for another computational problem B. Motivation Modular design MP-completeness Today Notion Example where A and B have efficient algorithms Examples where A and B have no (known) efficient algorithms: optimization vs search vs decision

Notion	Bipartite Matching and Integral Max Flow
 Let A and B be two computational problems. Definition A reduction from A to B is an algorithm for A that can make use of a blackbox for B. Queries On a given input x_A of problem A, reduction can make multiple queries x_B to the blackbox for B. For a valid query x_B of problem B, the blackbox returns a valid output y_B for problem B on input x_B. Often times one query suffices. 	A : Bipartite Matching Input: bipartite graph $G = (V, E)$ where $V = L \sqcup R$ and $E \subseteq L \times R$ Output: matching M such that $ M $ is maximized B : Integral Max Flow Input: network $N = (V', E', c, s, t)$ Output: integral flow f such that $\nu(f) \doteq f_{out}(s)$ is maximized

Correctness of a Reduction

Definition

On every valid input x_A of A:

- Each query x_B to the blackbox is valid input of B.
- Assuming all queries to the blackbox are answered correctly, the reduction produces a correct output y_A for A on input x_A.

Corollary

Replacing the blackbox for B by a correct algorithm for B yields a correct algorithm for A.

Reduciblity	Running Time of a Reduction
Definition $A \le B$ if there exists a reduction from A to B. Properties Reflexing: $A \le A$	Definition Time to run the reduction assuming blackbox queries are answered instantaneously. Case of one query
 Reflexive: A ≤ A Not symmetric: Bipartite Matching ≤ Halting Problem, but not the other way. Transitive: A ≤ B and B ≤ C implies A ≤ C. If A ≤ B and B can be solved algorithmically, then A can be solved algorithmically. 	

Running Time of a Reduction

Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

Case of one query

Running time of reduction consists of:

- Time to construct out of the input x_A to A the query x_B to B.
- Time to construct out of the answer y_B of B to query x_B, the answer y_A for A on input x_A.
- Not time to compute y_B out of x_B.

Corollary

Suppose reduction from A to B runs in time t. Replacing the blackbox for B by an algorithm for B that runs in time $t_B(n)$ yields an algorithm for A that runs in time $t + t \cdot t_B(t)$.

Polynomial Time

Bit-length

The bit-length of an input x is the number of bits needed to represent x.

- binary strings: length
- numbers: length of the binary representation (finite precision)
- ▶ graphs: O(n²) for adjacency matrix, O(n + m log n) for adjacency list
- ► ...

Definition

An algorithm/reduction runs in polynomial time if its running time is $O(n^c)$ for some constant c, where $n \doteq$ bit-length of the input.

Robustness

Notion turns out to be the same for most (but perhaps not all) reasonable input representations and models of computation.

Polynomial-Time Reduciblity

Definition

 $A \leq^{p} B$ if there exists a polynomial-time reduction from A to B.

Properties

- ▶ Reflexive: $A \leq^{p} A$
- Not symmetric
- ▶ Transitive: $A \leq^{p} B$ and $B \leq^{p} C$ implies $A \leq^{p} C$.
- ► If A ≤^p B and B can be solved in polynomial time, then A can be solved in polynomial time.
- ▶ If $A \leq^{p} B$ and A cannot be solved in polynomial time, then B cannot be solved in polynomial time.

Independent Set

Definition

An independent set in a graph G = (V, E) is a subset $S \subseteq V$ such that $E \cap S \times S = \emptyset$.

Example

Valid schedule for unweighted interval scheduling corresponds to independent set in conflict graph.

Computational problems

Optimization: solution or value

- Search
- Decision

Independent Set - problem specifications

OptSol

Input: graph G Output: independent set S of G such that |S| is maximized

OptVal

Input: graph G Output: size of largest independent set of G

Search

Input: graph G, $k \in \mathbb{N}$ Output: independent set S of G such that $|S| \ge k$, or report that no such set exists

Decision

Input: graph G, $k \in \mathbb{N}$ Output: whether independent set S with $|S| \ge k$ exists in G

Independent Set – Search \leq^{p} Decision

- ► Vertex v can be in *some* independent set of size at least k \Leftrightarrow Decision $(G - (\{v\} \cup G(v)), k - 1) =$ "yes"
- Eager approach

 $\begin{array}{l} \textbf{if } \text{Decision}(G,k) = \text{``no" then} \\ \textbf{return ``no solution''} \\ I \leftarrow \emptyset; \ S \leftarrow V \\ \textbf{while} \ S \neq \emptyset \ \textbf{do} \\ \text{pick} \ v \in S; \ S \leftarrow S \setminus \{v\} \\ \textbf{if } \text{Decision}(G|_{S \backslash G(v)}, k-1) = \text{``yes'' then} \\ I \leftarrow I \cup \{v\} \\ S \leftarrow S \setminus G(v) \\ k \leftarrow k-1 \\ \textbf{return } I \end{array}$

Considering vertices in lexicographical order results in independent set of size at least k with the lexicographically last characteristic vector.

Outline

Definition

A reduction from computational problem A to computational problem B is an algorithm for A that uses a blackbox for B.

Running time

Time to run reduction discounting time for blackbox.

Notation

 $A \leq^{p} B$: A reduces to B in polynomial time.

Example polynomial-time reductions

- ▶ Bipartite Matching \leq^{p} Integral Max Flow
- Between different versions of Independent Set: decision, search, optimal value, optimal solution
- Independent Set vs Satisfiability

CS 577 - Intro to Algorithms

Reductions

Dieter van Melkebeek

November 17, 2022

Boolean Formulas

Definition

- Base case: variables x₁, x₂, ...
- Constructors:
 - Conjunction (AND): \land
 - $\circ~$ Disjunction (inclusive OR): $\lor~$
 - $\circ~$ Negation: $\neg~$ also denoted as –

Example

$[(x_1 \lor x_2 \lor \neg x_3) \land \neg x_1] \lor x_4 \equiv [(x_1 \lor x_2 \lor \overline{x_3}) \land \overline{x_1}] \lor x_4$

Restricted types

- \blacktriangleright Literal: variable x, negated variable \overline{x}
- Clause: disjunction of literals
- Conjunctive normal form (CNF): conjunction of clauses

Conjunctive Normal Form

 $(x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_3)$

Theorem

For every $f : \{0,1\}^k \to \{0,1\}$ there exists a CNF-formula φ such that for every $x = x_1 \dots x_n \in \{0,1\}^n$

 $f(x_1,\ldots,x_k)=1 \Leftrightarrow \varphi(x_1,\ldots,x_k).$

Proof

 $f(x_1, \dots, x_k) = 1 \Leftrightarrow \wedge_{a:f(a)=0} (x \neq a)$ $\Leftrightarrow \wedge_{a:f(a)=0} \lor_{i=1}^k (x_i \neq a_i)$ $\Leftrightarrow \wedge_{a:f(a)=0} \lor_{i=1}^k x_i^{1-a_i}$

where $x^0 \doteq \overline{x}$ and $x^1 \doteq x$.

Note: Size of φ can be exponential in k.

Satisfiability

Search version

Input: Boolean formula φ

Output: satisfying assignment of φ : setting of the variables to true/false that makes φ evaluate to true; or report that no such setting exists

Decision version

Input: Boolean formula φ

Output: whether φ has a satisfying assignment

Restricted problems

- CNF-SAT: φ is CNF
- ► *k*-SAT for fixed $k \in \mathbb{N}$: φ is *k*-CNF, i.e., CNF with each clause containing at most *k* literals

$CNF-SAT \leq^{p} Independent Set$

A : CNF-SAT Decision

Input: CNF-formula φ : $\wedge_{j=1}^{m}C_{j}$ where $C_{j} = \bigvee_{r=1}^{k_{j}}\ell_{jr}$ and $\ell_{jr} \in \{x_{1}, \overline{x_{1}}, \dots, x_{n}, \overline{x_{n}}\}$ Output: whether φ has a satisfying assignment

B : Independent Set Decision

Input: graph G = (V, E), $k \in \mathbb{N}$ Output: whether G has an independent set of size at least k

Typical properties of reduction $A \leq^{p} B$

- ▶ Makes a single query: (G, k)
- Mapping reduction: translation of CNF-SAT instance φ into Independent Set instance (G, k) with same decision, i.e., φ is satisfiable ⇔ G has independent set of size at least k.
- Gadget reduction

$CNF-SAT \leq^{p} Independent Set - variable gadgets$

$$\wedge_{j=1}^m C_j$$
 with $C_j = \bigvee_{r=1}^{k_j} \ell_{jr}$ and $\ell_{jr} \in \{x_1, \overline{x_1}, \dots, x_n, \overline{x_n}\} \to (G, k)$

Construction

For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$, and include the edge $(x_i, \overline{x_i})$.

Properties

- Maximum size of independent set is *n*.
- Bijection between
 - independent sets of maximum size and
 - assignments to variables x_1, x_2, \ldots, x_n .

Independent Set \leq^{p} CNF-SAT $(G, k) \rightarrow \varphi$

Modeling independent set

- lntroduce variable x_v for each vertex $v \in V$.
- > x_v indicates whether v belongs to the independent set.

Enforcing independence condition

For every edge e = (u, v) include clause $\overline{x_u} \vee \overline{x_v}$.

Enforcing size requirement

- Introduce new variable for each bit of binary representation of $\sum_{v \in V} x_v$.
- Include clauses to enforce correct values for the new variables.
- Involves introduction of auxiliary variables. [on board]
- Include additional clauses and auxiliary variables to enforce $\sum_{v \in V} x_v \ge k$ using binary representation.