CS 577 - Intro to Algorithms
Reductions

Dieter van Melkebeek

November 15, 2022

Outline

Paradigm
Solve a computational problem A using a blackbox for another
computational problem B.

Motivation
» Modular design
» NP-completeness

Today
» Notion
» Example where A and B have efficient algorithms

» Examples where A and B have no (known) efficient
algorithms: optimization vs search vs decision

Notion

Let A and B be two computational problems.

Definition
A reduction from A to B is an algorithm for A that can make use
of a blackbox for B.

Queries

» On a given input x4 of problem A, reduction can make
multiple queries xg to the blackbox for B.

» For a valid query xg of problem B, the blackbox returns a
valid output yg for problem B on input xg.

» Often times one query suffices.

Bipartite Matching and Integral Max Flow

A : Bipartite Matching

Input: bipartite graph G = (V, E)
where V=LURand ECLXR

Output: matching M such that |M| is maximized

B : Integral Max Flow
Input: network N = (V' E', c,s,t)
Output: integral flow f such that v(f) = fou(s) is maximized

Reduction from Bipartite Matching to Integral Max Flow

Correctness of a Reduction

Definition
On every valid input x4 of A:
» Each query xg to the blackbox is valid input of B.
» Assuming all queries to the blackbox are answered correctly,
the reduction produces a correct output ya for A on input xa.

Corollary
Replacing the blackbox for B by a correct algorithm for B yields a
correct algorithm for A.

Reduciblity

Definition
A < B if there exists a reduction from A to B.
Properties

» Reflexive: A< A

» Not symmetric: Bipartite Matching < Halting Problem, but
not the other way.

» Transitive: A< B and B < C implies A < C.

» If A< B and B can be solved algorithmically, then A can be
solved algorithmically.

Running Time of a Reduction

Definition
Time to run the reduction assuming blackbox queries are answered
instantaneously.

Case of one query

Reduction from Bipartite Matching to Integral Max Flow

R
¢
\6 O =0 ?‘ I {
a o - — (\ OI\ t
B tloo (V

Running Time of a Reduction

Definition
Time to run the reduction assuming blackbox queries are answered
instantaneously.

Case of one query
Running time of reduction consists of:
» Time to construct out of the input x4 to A the query xg to B.

» Time to construct out of the answer yg of B to query xg, the
answer ya for A on input x4.

» Not time to compute yg out of xg.

Corollary

Suppose reduction from A to B runs in time t. Replacing the
blackbox for B by an algorithm for B that runs in time tg(n) yields
an algorithm for A that runs in time t + ¢ - tg(t).

Polynomial Time

Bit-length
The bit-length of an input x is the number of bits needed to
represent x.
> binary strings: length
»> numbers: length of the binary representation (finite precision)
» graphs: O(n?) for adjacency matrix, O(n + mlog n) for
adjacency list
|

Definition
An algorithm/reduction runs in polynomial time if its running time
is O(n®) for some constant ¢, where n = bit-length of the input.

Robustness
Notion turns out to be the same for most (but perhaps not all)
reasonable input representations and models of computation.

Polynomial-Time Reduciblity

Definition
A <P B if there exists a polynomial-time reduction from A to B.
Properties

» Reflexive: A <P A

» Not symmetric

» Transitive: A <P B and B <P C implies A <P C.

» If A<P B and B can be solved in polynomial time, then A

can be solved in polynomial time.

v

If A <P B and A cannot be solved in polynomial time, then B
cannot be solved in polynomial time.

Independent Set

Definition
An independent set in a graph G = (V, E) is a subset S C V such
that ENS x S =10.

Example
Valid schedule for unweighted interval scheduling corresponds to
independent set in conflict graph.
Computational problems
» Optimization: solution or value
» Search

» Decision

Independent Set — problem specifications
OptSol
Input: graph G
Output: independent set S of G such that |S| is maximized

OptVal
Input: graph G
Output: size of largest independent set of G

Search
Input: graph G, k € N

Output: independent set S of G such that |S| > k, or report
that no such set exists

Decision
Input: graph G, k € N
Output: whether independent set S with |S| > k exists in G

Independent Set — Decision <P Search <P OptSol

» Decision <P Search

if Search(G, k) = “no solution” then
return “no”

else
return “yes”

» Search <P OptSol

I + OptSol(G)
if |I| > k then
return [
else
return “no solution”

Independent Set — Decision <P OptVal <P OptSol

» Decision <P OptVal

if £ < OptVal(G) then
return “yes”

else
return “no”

» OptVal <P OptSol
return |OptSol(G)|

Independent Set — Optimization <P Search <P Decision

» OptSol <P Search
o Linear search for maximum size
k+0
while Search(G, k) # “no solution” do
k—k+1
return Search(G, k)
o Binary search reduces number of queries from O(|V/|) to
O(log|V]).
» Search <P Decision: next slides
» Corollaries:
» OptSol <P Decision <P OptVal
> OptVal <P Decision

Independent Set — Search <P Decision

» Vertex v has to be in every independent set of size at least k
< Decision(G — {v}, k) = “no"
» Reluctant approach
if Decision(G, k) = “no” then
return “no solution”
I+V
for each v € V do
if Decision(G|p\ (0}, k) = “yes” then
I+ I\{v}
return [
» Considering vertices in lexicographical order results in

independent set of size at least k with the lexicographically
first characteristic vector.

Independent Set — Search <P Decision

» Vertex v can be in some independent set of size at least k
< Decision(G — ({v} U G(v)), k — 1) = “yes"
» Eager approach

if Decision(G, k) = “no” then
return “no solution”
1+ 0;5«V
while S # 0 do
pick v € S; 8 + S\ {v}
if Decision(G|s\g(v); k¥ — 1) = “yes” then
I+ Tu{v}
S+ S\ Gv)
k+k—-1
return [/
» Considering vertices in lexicographical order results in

independent set of size at least k with the lexicographically
last characteristic vector.

CS 577 - Intro to Algorithms
Reductions

Dieter van Melkebeek

November 17, 2022

QOutline

Definition
A reduction from computational problem A to computational
problem B is an algorithm for A that uses a blackbox for B.

Running time

Time to run reduction discounting time for blackbox.
Notation

A <P B: A reduces to B in polynomial time.
Example polynomial-time reductions

» Bipartite Matching <P Integral Max Flow

» Between different versions of Independent Set: decision,
search, optimal value, optimal solution

» Independent Set vs Satisfiability

Boolean Formulas

Definition
» Base case: variables x1, xo, ...
» Constructors:
o Conjunction (AND): A
o Disjunction (inclusive OR): V
o Negation: — also denoted as -

Example
[(aVxeV-ax3)A—x]Vxa =[(x1VxeVXE) AXT]V xa
Restricted types

> Literal: variable x, negated variable X

» Clause: disjunction of literals

» Conjunctive normal form (CNF): conjunction of clauses

Conjunctive Normal Form

(x1 VX2 Vxa) A (X1 V x3)

Theorem
For every f : {0,1}% — {0,1} there exists a CNF-formula ¢ such
that for every x = x1...x, € {0,1}"

f(x1,...,xk) =1 < p(x1,..., %)

Proof
f(xt, s xk) = 1 Ay pay=o(x # a)
& Na:r(a)=0 Vicy (xi # 1)
© Ay fay=o Vg X7
where x0 = X and x! = x.

Note: Size of ¢ can be exponential in k.

Satisfiability

Search version
Input: Boolean formula ¢

Output: satisfying assignment of ¢: setting of the variables to
true/false that makes ¢ evaluate to true;
or report that no such setting exists

Decision version
Input: Boolean formula ¢
Output: whether ¢ has a satisfying assignment

Restricted problems

» CNF-SAT: ¢ is CNF

> k-SAT for fixed k € N: ¢ is k-CNF, i.e., CNF with each
clause containing at most k literals

CNF-SAT <P” Independent Set

A : CNF-SAT Decision
Input: CNF-formula ¢: A2, C; where C; = V9 0, and
U € {x1,XT, ... Xn, Xn}

Output: whether ¢ has a satisfying assignment

B : Independent Set Decision
Input: graph G = (V,E), ke N
Output: whether G has an independent set of size at least k

Typical properties of reduction A <P B
»> Makes a single query: (G, k)
» Mapping reduction: translation of CNF-SAT instance ¢ into

Independent Set instance (G, k) with same decision, i.e.,
 is satisfiable < G has independent set of size at least k.

» Gadget reduction

CNF-SAT <P” Independent Set — variable gadgets

AT G with G =V, 0, and G € {x1, 5T, ... xn. %a} — (G, k)

Construction
For each variable x;, include two new vertices, one labeled x; and
the other X;, and include the edge (x;,X;).

Properties

» Maximum size of independent set is n.
» Bijection between

o independent sets of maximum size and
o assignments to variables xi, xa, .. ., Xp.

CNF-SAT <P” Independent Set — variable gadgets

(x1 VX2 Vxa)A(XTV x3)

CNF-SAT <P* Independent Set — clause gadgets

AT G with G =V 4, and 4y € {x1, 5T, ... xn, Xa} —+ (G, k)

Construction

For each clause C; for j € [m], include a clique (complete graph)
on kj new vertices, where k; = number of literals of C;. Label each
vertex of the clique with a unique literal of C;.

Properties

» Maximum size of independent set is m.
» Bijection between

o independent sets of maximum size and
o choices of literal in each clause C; for j € [m].

CNF-SAT <P” Independent Set — clause gadgets

(x1 VX2 Vxa) A (X1 V x3)

CNF-SAT <P” Independent Set — connections

Construction of G
» Disjoint union of all variable gadgets and clause gadgets.

> For each variable gadget vertex labeled ¢, and each clause
gadget vertex labeled /¢, include edge between them.

Properties

» Max independent set size in G is at most n+ m.

» Independent set of size n in variable part can be extended
with vertex in gadget of clause C; < assignment satisfies C;.

v

Max independent set size in G is at least k = n+m
< ¢ has a satisfying assignment

v

(G, k) can be constructed in polynomial time.
Note: Bijection between

o independent sets of size n+ m in G and
o satisfying assignments to xi, x2, ..., X, combined with choices
of satisfying literal in each clause C; for j € [m].

v

CNF-SAT <P” Independent Set — connections

(x1 VX2 Vxa) A (X1 V x3)

Independent Set <P CNF-SAT

A : Independent Set Decision
Input: graph G = (V,E), ke N

Output: whether G has an independent set of size at least k

B : CNF-SAT Decision
Input: CNF-formula ¢
Output: whether ¢ has a satisfying assignment

Typical properties of reduction A <P B
» Makes a single query: ¢

» Mapping reduction: translation of Independent Set instance
(G, k) into CNF-SAT instance ¢ with same decision, i.e.,
G has independent set of size at least k < ¢ is satisfiable.

» Gadget reduction

Independent Set <P CNF-SAT (G, k) = ¢

Modeling independent set

» Introduce variable x, for each vertex v € V.

» X, indicates whether v belongs to the independent set.

Enforcing independence condition

» For every edge e = (u, v) include clause X; V X;.

Enforcing size requirement

» Introduce new variable for each bit of binary representation of
ZVGV Xy

» Include clauses to enforce correct values for the new variables.

» Involves introduction of auxiliary variables. [on board)]

» Include additional clauses and auxiliary variables to enforce
Y vev Xv > k using binary representation.

