SUMMARY OF MATH 341

May 6, 2022

1. Set theory

1.1. **Definition** (A = B). Two sets A and B are equal if they have the same elements, i.e. for every $x \in A$ it is true that $x \in B$, and for every $x \in B$ it is true that $x \in A$.

1.2. **Definition** $(A \subset B)$. A set *A* is a subset of a set *B* if every $x \in A$ also is an element of *B*.

1.3. **Definition** $(A \cup B)$. The union of two sets *A* and *B* is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

1.4. **Definition** $(A \cap B)$. The intersection of two sets A and B is

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

1.5. **Definition** ($A \times B$). The product of two sets A and B is the set of all pairs (a, b) where $a \in A$ and $b \in B$:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}.$$

2. VECTOR SPACES

2.1. Vector space axioms. $(V, \mathbb{F}, +, \cdot)$ defines a vector space if V is a set, \mathbb{F} is a number field, and if addition of elements of V and multiplication of numbers and vectors are defined so that they satisfy these axioms:

Commutativity: For all $x, y \in V$ one has x + y = y + x

Associativity: For all $x, y, z \in V$ one has (x + y) + z = x + (y + z)

Zero vector: There is a $0_V \in V$ such that for all $x \in V$ one has $x + 0_V = x$

Additive inverse: For each $x \in V$ there is a $y \in V$ such that $x + y = 0_V$

Multiplicative identity: For each $x \in V$ one has $1_{\mathbb{F}}x = x$

Associative and distributive properties: For all $a, b \in \mathbb{F}$, and all $x, y \in V$ one has (ab)x = a(bx), a(x+y) = ax + ay, (a+b)x = ax + bx.

2.2. **Definition (linear combination).** A linear combination of vectors $v_1, v_2, ..., v_n \in V$ is any vector of the form $a_1v_1 + \cdots + a_nv_n$, for any choice of numbers $a_1, ..., a_n \in \mathbb{F}$.

2.3. **Definition (basis).** *n* vectors $v_1, \ldots, v_n \in V$ are called a basis for V if for every $v \in V$ there exists a unique *n*-tuple of numbers $a_1, \ldots, a_n \in \mathbb{F}$ with $v = a_1v_1 + \cdots + a_nv_n$.

2.4. **Definition (generate, span).** An *n*-tuple of vectors $v_1, \ldots, v_n \in V$ generates V if every $v \in V$ is a linear combination of v_1, \ldots, v_n .

2.5. **Definition (independence).** An *n*-tuple of vectors $v_1, \ldots, v_n \in V$ is linearly independent if the only linear combination $c_1v_1 + \cdots + c_nv_n$ with $c_1v_1 + \cdots + c_nv_n = 0$ is the one where all coefficients are zero.

In symbols: $\forall c_1, \dots, c_n \in \mathbb{F} : c_1v_1 + \dots + c_nv_n = 0 \implies c_1 = \dots = c_n = 0$

2.6. **Theorem.** Vectors $v_1, \ldots, v_n \in V$ are linearly dependent if and only if one of the vectors v_i can be written as a linear combination of the others.

In other words, $v_1, \ldots, v_n \in V$ are linearly dependent if and only if there is an $i \in \{1, 2, \ldots, n\}$ and there are numbers $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in \mathbb{F}$ such that $v_i = a_1v_1 + \cdots + a_{i-1}v_{i-1} + a_{i+1}v_{i+1} + \cdots + a_nv_n$.

2.7. **Basis Selection Theorem.** If v_1, \ldots, v_n spans V then there is a subset v_{i_1}, \ldots, v_{i_p} that is a basis for V.

2.8. Components of a vector with respect to a basis. Let $u_1, \ldots, u_n \in V$ be given vectors. Then u_1, \ldots, u_n is a basis for V if and only if u_1, \ldots, u_n is linearly independent and spans V.

See Appendix A.1 for a proof.

The numbers x_1, \ldots, x_n are called the components, or coefficients, of the vector x with respect to the basis u_1, \ldots, u_n .

3. LINEAR TRANSFORMATIONS

3.1. **Definition** — **linear transformation.** A map $T : V \to W$ from one vector space V to another W is called linear if for all $x, y \in V$ and all $a, b \in \mathbb{F}$ one has T(ax + by) = aT(x) + bT(y).

3.2. **Definition** — the zero transformation. If *V* and *W* are vector spaces then the map $O: V \to W$ defined by $O(x) = 0_W$ for all $x \in V$ is linear. *O* is called the zero transformation.

3.3. **Definition** — **the identity transformation.** If *V* is a vector space then the map $I: V \to V$ defined by I(x) = x for all $x \in V$ is called the identity transformation.

3.4. **Theorem.** If $T, S : V \to W$ are linear and if $a \in \mathbb{F}$ then the maps $T + S : V \to W$ and $aT : V \to W$ are linear. The set $\mathcal{L}(V, W)$ of linear maps $T : V \to W$ is a vector space.

3.5. **Theorem — the matrix of** $A : \mathbb{F}^n \to \mathbb{F}^m$. Let $a_{11}, \ldots, a_{mn} \in \mathbb{F}$ be given numbers. Then the map $A : \mathbb{F}^n \to \mathbb{F}^m$ defined by

$$(\star) \qquad \qquad A\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n\\ a_{21}x_1 + \dots + a_{2n}x_n\\ \vdots\\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$$

is linear.

Conversely, if $A : \mathbb{F}^n \to \mathbb{F}^m$ is a linear map then there exist numbers $a_{11}, \ldots, a_{mn} \in \mathbb{F}$ such that Ax is given by (\star) .

The matrix of A is	The equation (\star) is written as a							
$\begin{pmatrix} a_{11} & \cdots & a_{1n} \end{pmatrix}$	matrix product							
a_{21} ··· a_{2n}	$\begin{pmatrix} a_{11} & \cdots & a_{1n} \end{pmatrix}$							
	$A_{n-1} = \begin{bmatrix} a_{21} & \cdots & a_{2n} \\ \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \end{bmatrix}$							
$(a_{m1} \cdots a_{mn})$	$A\lambda - \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}$							
	$\begin{pmatrix} a_{m1} & \cdots & a_{mn} \end{pmatrix}$							

3.6. **Theorem — finding the matrix of** $A : \mathbb{F}^n \to \mathbb{F}^m$. If the linear map $A : \mathbb{F}^n \to \mathbb{F}^m$ is given by (\star) then columns of the matrix of A are the vectors Ae_1, Ae_2, \ldots, Ae_n , i.e.

$$Ae_{1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \quad Ae_{2} = \begin{pmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \quad Ae_{3} = \begin{pmatrix} a_{11} \\ a_{23} \\ \vdots \\ a_{m3} \end{pmatrix}, \quad \dots, \quad Ae_{n} = \begin{pmatrix} a_{11} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

Sometimes the following notation is used to express this:

$$A = \left[\begin{array}{cccc} | & | & | \\ Ae_1 & Ae_2 & \cdots & Ae_n \\ | & | & | \end{array} \right]$$

The matrices of the zero and identity transformations are

$$O = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

3.7. **Definition** — **composition of linear transformations.** If V, W, U are vector spaces and if $T: V \to W$ and $S: W \to U$ are linear transformations, then the composition of S and T is the map $S \circ T: V \to U$, with $S \circ T(x) = S(T(x))$

3.8. **Theorem.** The composition $S \circ T$ is linear.

3.9. **Theorem — matrix of the composition.** If $T : \mathbb{F}^n \to \mathbb{F}^m$ and $S : \mathbb{F}^m \to \mathbb{F}^\ell$ are linear, and if their matrices are given by

$$T = \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \qquad S = \begin{pmatrix} s_{11} & \dots & s_{1m} \\ \vdots & & \vdots \\ s_{\ell 1} & \dots & s_{\ell m} \end{pmatrix}$$

then the matrix of the composition $S \circ T$ is given by the matrix product

$$ST = \begin{pmatrix} s_{11} & \dots & s_{1m} \\ \vdots & & \vdots \\ s_{\ell 1} & \dots & s_{\ell m} \end{pmatrix} \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix}$$

The ij entry of ST is computed by taking the "dot product" of the i^{th} row of S with the j^{th} column of T, e.g.:

	[ST]			j			[S]				1.4.1			j	1	1
	[31] [[•		•		•	L	•	•				k l	·	
ι		-	•	z 			a	0	c.	$\begin{bmatrix} a \\ \cdot \end{bmatrix}$		•	•	m n	•	
						<i>ak</i> +					ι.	•		11	.1	

3.10. **Definition — injective, surjective, bijective.** A linear transformation $T: V \rightarrow W$ is

- injective (one-to-one, 1-1) if for all $x, y \in V$ it is true that T(x) = T(y) implies x = y
- surjective (onto) if for every $w \in W$ there is a $v \in V$ with Tv = w
- **bijective** (invertible) if *T* is both injective and surjective

3.11. **Definition — the inverse.** If the linear map $T: V \to W$ is bijective then its inverse $T^{-1}: W \to V$ is defined by

$$\forall x \in W, y \in V : \quad T^{-1}(x) = y \iff x = T(y).$$

3.12. **Theorem.** If $T: V \to W$ is bijective then the inverse $T^{-1}: W \to V$ is linear.

3.13. **Theorem.** If $T: V \to W$ is bijective, then $T^{-1} \circ T = I_V$ and $T \circ T^{-1} = I_W$.

3.14. **Theorem.** If $T: V \to W$ is a linear map, then consider the equation Tx = y, where $y \in W$ is given and $x \in V$ is unknown.

- If *T* is injective then the equation Tx = y has at most one solution.
- If *T* is surjective then the equation Tx = y has at least one solution.
- If *T* is bijective then the equation Tx = y has exactly one solution.

3.15. **Definition** — **powers.** If $T: V \to V$ is linear, then T^k , the k^{th} power of T is k factors

defined by $T^k = \overline{T \cdot T \cdot T}$ if k is a positive integer. If T is invertible, then one also defines $T^{-k} = (T^{-1})^k$.

3.16. **Theorem — power law.** $T^{k+l} = T^k T^l$ for all $k, l \in \mathbb{N}$ and all $T \in \mathcal{L}(V)$.

4. LINEAR SUBSPACES

4.1. **Definition.** Suppose *V* is a vector space. A subset $W \subset V$ is a linear subspace if it satisfies

- for all $x, y \in W$ one has $x + y \in W$
- for all $x \in W$ and $a \in \mathbb{F}$ one has $ax \in W$
- 0 ∈ *W*

4.2. **Theorem.** If *V* is a vector space then any linear subspace $W \subset V$ is also a vector space.

4.3. Examples — smallest and largest subspaces. For any vector space V

- *V* is a subspace of *V*
- the set $\{0_V\}$ is a subspace of V

4.4. **Definition of Null Space and Range.** If $T: V \to W$ is a linear map then the null space of T is

$$N(T) = \{x \in V \mid Tx = 0_W\}$$

and the range of T is

$$R(T) = \{Tx \mid x \in V\}.$$

The null space is sometimes also called the kernel of *T* and one writes $N(T) = \ker(T)$.

4.5. **Theorem.** If $T: V \to W$ is linear then N(T) is a linear subspace of V and R(T) is a linear subspace of W.

4.6. **Definition.** If *V* is a vector space and if $v_1, \ldots, v_n \in V$ are given then the span of v_1, \ldots, v_n is the set of all linear combinations of v_1, \ldots, v_n . In symbols:

 $span\{v_1,...,v_n\} = \{a_1v_1 + \dots + a_nv_n \mid a_1,...,a_n \in \mathbb{F}\}$

4.7. **Theorem.** span{ v_1, \ldots, v_n } is a linear subspace of *V*.

4.8. Injectivity Theorem. A linear map $T: V \to W$ is injective iff $N(T) = \{0\}$.

"iff" is a common abbreviation for *"*if and only if"

4.9. Surjectivity Theorem. A linear map $T: V \to W$ is surjective *iff* R(T) = W.

5. LINEAR INDEPENDENCE, BASES, AND DIMENSION

5.1. **Definition of independence.** A set of vectors $\{u_1, \ldots, u_n\} \subset V$ is linearly independent if for any $a_1, \ldots, a_n \in \mathbb{F}$ one has $a_1u_1 + \cdots + a_nu_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0$.

5.2. **Definition of basis.** A set of vectors $\{u_1, \ldots, u_n\} \subset V$ is a basis for V if

- $\{u_1, \ldots, u_n\}$ is linearly independent, and
- $\{u_1, ..., u_n\}$ spans *V*.

5.3. Extension Theorem for Independent Sets. If $u_1, \ldots, u_n \in V$ are linearly independent, and $v \in V$, then

 $v \in \operatorname{span}(u_1, \dots, u_n) \iff u_1, \dots, u_n, v \text{ are dependent}$

The proof is in Appendix A.2.

5.4. **The Basis Selection Theorem.** If $u_1, \ldots, u_n \in V$ span the vector space *V*, then there exist $i_1, \ldots, i_k \in \{1, \ldots, n\}$ such that $\{u_{i_1}, \ldots, u_{i_k}\}$ is a basis for *V*.

A proof is in Appendix A.3.

5.5. **The Dimension Theorem.** If $v_1, \ldots, v_m \in \text{span}(u_1, \ldots, u_n)$ and if v_1, \ldots, v_m are linearly independent then $m \leq n$.

Appendix A.4 has the proof of this theorem.

5.6. **First consequence of the Dimension Theorem.** If $\{u_1, ..., u_n\}$ and $\{v_1, ..., v_m\}$ both are bases of a vector space *V*, then m = n.

Proof. This is true because $\{v_1, \ldots, v_m\} \subset \text{span}(u_1, \ldots, u_n)$ and $\{v_1, \ldots, v_m\}$ is linearly independent, so the Dimension Theorem implies $m \leq n$.

On the other hand, $u_1, \ldots, u_n \in \text{span}(v_1, \ldots, v_n)$ and $\{u_1, \ldots, u_n\}$ is linearly independent, so the Dimension Theorem implies $n \leq m$.

////

Since $n \le m$ and $m \le n$ we conclude n = m.

5.7. **Definition of dimension.** If a vector space *V* has a basis $\{u_1, \ldots, u_n\}$ with *n* elements, then *n* is the dimension of *V*.

If a vector space V has a basis with finitely many vectors then V is called finite dimensional.

The Dimension Theorem and its corollary imply that the dimension as defined above does not depend on which basis of V you consider.

5.8. Finite dimensional subspace theorem. If $L \subset V$ is a linear subspace and V is finite dimensional then dim $L \leq \dim V$. If dim $L = \dim V$ then L = V.

5.9. **Extending a basis of a subspace to a basis of the whole space.** If $L \subset V$ is a linear subspace and V is finite dimensional, and if $\{v_1, \ldots, v_k\} \subset L$ is a basis for L, then there exist vectors $v_{k+1}, \ldots, v_n \in V$ such that $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ is a basis for V.

5.10. **Definition of the Rank and Nullity of a linear transformation.** Let $T : V \rightarrow W$ be a linear transformation.

The rank of $T: V \to W$ is the dimension of the range of T.

The nullity of $T: V \to W$ is the dimension of the null space of T.

5.11. **Rank+Nullity Theorem.** If $T: V \to W$ is linear, and if *V* is finite dimensional, then

 $\dim N(T) + \dim R(T) = \dim V.$

See Appendix A.4 for the proof.

5.12. **Bijectivity Theorem.** If *V* is a finite dimensional vector space, and if $T: V \rightarrow V$ is a linear transformation then the following are equivalent:

- (1) T is injective (one-to-one)
- (2) $N(T) = \{0\}$
- (3) rank $T = \dim V$
- (4) T is surjective (onto)

6. Determinants

6.1. **Permutations.** A permutation of (1, 2, ..., n) is a sequence of *n* integers $i_1, ..., i_n \in \{1, ..., n\}$ such that $i_k \neq i_l$ for all $k \neq l$.

For example, all possible permutations of (1, 2, 3) are

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,2).

There are n! permutations of (1, 2, ..., n).

6.2. Sign of a permutation. By definition, the number of inversions of a permutation (i_1, \ldots, i_n) is

$$\delta(i_1, \dots, i_n) \stackrel{\text{def}}{=} \#\{k < l \mid i_k > i_l\}$$

A permutation $(i_1, i_2, ..., i_n)$ is called **even** if $\delta(i_1, ..., i_n)$ is even.

A permutation $(i_1, i_2, ..., i_n)$ is called **odd** if $\delta(i_1, ..., i_n)$ is odd.

The sign of the permutation (i_1, \ldots, i_n) is defined to be

$$\epsilon_{i_1 i_2 \cdots i_n} = (-1)^{\delta(i_1, i_2, \dots, i_n)} = \begin{cases} +1 & \text{if } \delta(i_1, \dots, i_n) \text{ is even} \\ -1 & \text{if } \delta(i_1, \dots, i_n) \text{ is odd} \end{cases}$$

The quantity $\epsilon_{i_1i_2\cdots i_n}$ is called the Levi-Civita symbol.

6.3. Definition of the determinant.

$$\det A = \sum_{i_1,\ldots,i_n} \epsilon_{i_1 i_2 \cdots i_n} a_{1 i_1} a_{2 i_2} \cdots a_{n i_n}$$

6.4. Properties of the sign $\epsilon_{i_1i_2\cdots i_n}$.

• $\epsilon_{i_1\cdots i_k\cdots i_\ell\cdots i_n} = -\epsilon_{i_1\cdots i_\ell\cdots i_k\cdots i_n}$ • if $i_1,\ldots,i_k < i_{k+1},\ldots,i_n$ then $\epsilon_{i_1i_2\cdots i_n} = \epsilon_{i_1\cdots i_k}\epsilon_{i_{k+1}\cdots i_n}$

6.5. What is the sign of $a_{14}a_{22}a_{35}a_{43}a_{51}$ when you expand a 5×5 determinant?

$ a_{11} $	a_{12}	a_{13}	a_{14}	a_{15}
$ a_{21} $	a_{22}	a_{23}	a_{24}	a_{25}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}

The question can be rephrased as: compute ϵ_{42531}

6.6. Special case — 2×2 determinants.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

6.7. Special case — 3×3 determinants.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1$$

6.8. **Determinant of upper triangular matrices.** If all entries of a matrix below its diagonal are zero, then the determinant of the matrix is the product of its diagonal entries:

$ a_{11} $	a_{12}			a_{1n}	ļ
0	a_{22}		•••	a_{2n}	
0	0	a_{33}	•••	a_{3n}	$=a_{11}a_{22}\cdots a_{nn}$
0	0		0	a_{nn}	$=a_{11}a_{22}\cdots a_{nn}$

6.9. Determinant of the identity matrix.

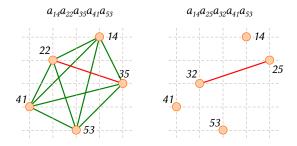
$$\det I = 1.$$

6.10. **Determinant of block triangular matrices.** If A is a $k \times k$ matrix, B a $k \times l$ matrix, and C an $l \times l$ matrix then

$$\begin{vmatrix} A & B \\ 0 & C \end{vmatrix} = (\det A)(\det C)$$

6.11. Determinant of the transpose. $det A^{\top} = det A$

6.12. Swapping rows or columns changes the sign. If *B* is the matrix you get by swapping two rows, or by swapping two columns in the matrix *A*, then det $A = -\det B$



6.13. The determinant as a function of its rows. If we have *n* row vectors $a_1, \ldots, a_n \in \mathbb{F}^n$, given by

$$a_1 = (a_{11} \quad a_{12} \quad \cdots \quad a_{1n}),$$

 $a_2 = (a_{21} \quad a_{22} \quad \cdots \quad a_{2n}),$
 \vdots
 $a_n = (a_{n1} \quad a_{n2} \quad \cdots \quad a_{nn}),$

then we define

$$\det(a_1, a_2, \dots, a_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

One has for all $a, b, a_1, a_2, \dots, a_n \in \mathbb{F}^n$ and $t \in \mathbb{F}$:

$$det(a + b, a_2, a_3, ..., a_n) = det(a, a_2, a_3, ..., a_n) + det(b, a_2, a_3, ..., a_n)$$
$$det(ta, a_2, a_3, ..., a_n) = t det(a, a_2, a_3, ..., a_n)$$
$$det(a_1, ..., a_i, ..., a_j, ..., a_n) = - det(a_1, ..., a_j, ..., a_i, ..., a_n)$$
$$det(a_1, ..., a_i, ..., a_i, ..., a_n) = 0$$
$$det(a_1, ..., a_i, ..., a_j, ..., a_n) = det(a_1, ..., a_i + ta_j, ..., a_j, ..., a_n)$$

6.14. **Cofactor expansion.** The *ij*-minor of an $n \times n$ matrix A is the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column from A. Let us write \tilde{A}_{ij} for the *ij*-minor of A.

The *ij*-cofactor of the matrix *A* is the number

$$c_{ij} = (-1)^{i+j} \det \tilde{A}_{ij}$$

6.15. **Cofactor Expansion Theorem.** If $A = (a_{ij})$ is an $n \times n$ matrix, then one has

$$\det A = a_{i1}c_{i1} + a_{i2}c_{i2} + \dots + a_{in}c_{in}$$

for any $i \in \{1, 2, ..., n\}$.

A **consequence** of the cofactor expansion theorem is that if $i \neq j$ then

$$a_{j1}c_{i1} + a_{j2}c_{i2} + \dots + a_{jn}c_{in} = 0.$$

6.16. **Example.** Expanding a 3 × 3 determinant along its middle row:

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ -2 & 4 & 3 \end{vmatrix} = a_{21}c_{21} + a_{22}c_{22} + a_{23}c_{23}$$
$$= -3 \cdot \begin{vmatrix} 2 & 3 \\ 4 & 3 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 3 \\ -2 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 2 \\ -2 & 4 \end{vmatrix} = \cdots$$

6.17. A formula to invert a matrix. For any $n \times n$ matrix A one has

$$AC^{\top} = C^{\top}A = (\det A)I,$$

where *C* is the cofactor matrix of *A*. If det $A \neq 0$ then *A* is invertible, and the inverse matrix is given by

$$A^{-1} = \frac{1}{\det A} C^{\top}.$$

Proof: see Appendix A.6.

6.18. **Cramer's rule.** For any $y \in \mathbb{F}^n$ the solution of Ax = y is given by

	y1	a_{12}		a_{1n}		$ a_{11} $	y_1		a_{1n}			$ a_{11} $	a_{12}		<i>y</i> 1
	y_2	a_{22}		a_{2n}		$ a_{21} $	y_2	•••	a_{2n}			a_{21}	a_{22}		y 2
								•••							
<i>~</i>	y_n	a_{n2}	•••	a_{nn}	m a =	$ a_{n1} $	y_n	•••	a_{nn}			$ a_{n1} $	a_{n2}		y_n
<i>x</i> ₁ =	$ a_{11} $	a_{12}		a_{1n}	$x_2 = - a $	$ a_{11} $	a_{12}		a_{1n}	,,		$ a_{11} $	a_{12}		a_{1n}
	$ a_{21} $	a_{22}		a_{2n}		a_{21}	a_{22}	•••	a_{2n}			$ a_{21} $	a_{22}	•••	a_{2n}
			•••											•••	
	$ a_{n1} $	a_{n2}	•••	a_{nn}		$ a_{n1} $	a_{n2}		a_{nn}			a_{n1}	a_{n2}		a_{nn}

A proof is in Appendix A.7.

6.19. Example — the inverse of a 2×2 matrix.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

6.20. **Determinant of a matrix product.** For any two $n \times n$ matrices *A* and *B* one has

$$det(AB) = det(A) det(B)$$

See Appendix A.8 for a proof.

6.21. **Theorem.** A is invertible $\iff \det A \neq 0$

The proof is short: If A is invertible then the matrix $B = A^{-1}$ satisfies AB = I. This implies det(AB) = 1 and hence (det A)(det B) = 1. Therefore $det A \neq 0$.

Conversely, if det $A \neq 0$ then A is invertible because we have a formula for its inverse, $A^{-1} = \frac{C^{\top}}{\det A}$.

6.22. The determinant independence test. If $a_1, \ldots, a_n \in \mathbb{F}^n$ then

 $\{a_1,\ldots,a_n\}$ is linearly independent $\iff \det(a_1,\ldots,a_n) \neq 0$

The proof is in Appendix A.9.

7.1. **Definition.** Let *V* be a vector space and $A: V \to V$ a linear transformation. If $v \in V$ and $\lambda \in \mathbb{F}$ satisfy

$$Av = \lambda v, \quad v \neq 0$$

then v is called an eigenvector of A and λ is called an eigenvalue of A.

The set

Spec(A) $\stackrel{\text{def}}{=} \{ \lambda \mid \lambda \text{ is an eigenvalue of } A \}$

is called the spectrum of A.

7.2. **Theorem.** If $A: V \to V$ is a linear transformation then

- ► $v \in V$ is an eigenvector of A with eigenvalue $\lambda \iff v \neq 0$ and $v \in N(\lambda I A)$
- ► $\lambda \in \mathbb{F}$ is an eigenvalue of *A* if and only if $N(\lambda I A) \neq \{0\}$
- ► $\lambda \in \mathbb{F}$ is an eigenvalue of *A* if and only if det($\lambda I A$) = 0

This theorem gives a method of finding all eigenvalues and vectors, namely:

- Compute the characteristic polynomial $det(\lambda I A)$
- Solve $det(\lambda I A) = 0$ for λ . Let $\lambda_1, \ldots, \lambda_k$ be all the solutions you find
- For each i = 1, ..., k find all the vectors in $N(\lambda_i I A)$, i.e. solve $\lambda_i v Av = 0$ for v.

7.3. Finding eigenvalues/vectors for $A : \mathbb{F}^n \to \mathbb{F}^n$. The characteristic polynomial of $A : \mathbb{F}^n \to \mathbb{F}^n$ is, by definition,

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ & & \ddots & \\ -a_{11} & -a_{12} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

After expanding, this turns out to be a polynomial in λ of degree *n*

$$\det(\lambda I - A) = \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_{n-1} \lambda + c_n$$

Here

$$-c_1 = a_{11} + a_{22} + \dots + a_{nn}$$

is called the trace of the matrix A, and

 $(-1)^n c_n = \det A$

is its determinant.

7.4. **Independence of Eigenvectors Theorem.** If $v_1, \ldots, v_m \in V$ are eigenvectors of $A : V \to V$ with eigenvalues $\lambda_1, \ldots, \lambda_m$, and if the eigenvalues are distinct (i.e. $\lambda_i \neq \lambda_j$ for all $i \neq j$) then $\{v_1, \ldots, v_m\}$ is linearly independent.

7.5. The use of eigenvalues and vectors. If a vector $v \in V$ is known as a linear combination of eigenvectors of A then it is easy to compute Av, A^2v , etc. If

$$v = a_1 v_1 + \dots + a_k v_k$$

where $Av_i = \lambda_i v_i$, then

$$Av = \lambda_1 a_1 v_1 + \dots + \lambda_k a_k v_k$$
$$A^2 v = \lambda_1^2 a_1 v_1 + \dots + \lambda_k^2 a_k v_k$$
$$\vdots$$

$$A^{\ell}v = \lambda_1^{\ell}a_1v_1 + \dots + \lambda_k^{\ell}a_kv_k$$

for any $\ell \in \mathbb{N}$. If none of the eigenvalues λ_i vanishes then one solution of Aw = v is given by

$$w = \frac{a_1}{\lambda_1}v_1 + \dots + \frac{a_k}{\lambda_k}v_k.$$

For this to be useful we need to find as many eigenvectors as we can.

7.6. Solving a system of linear differential equations.

$$\frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n$$

$$\frac{dx_2}{dt} = a_{21}x_1 + \dots + a_{2n}x_n$$

$$\Leftrightarrow \frac{dx}{dt} = Ax, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots \\ a_{n1} \dots a_{nn} \end{pmatrix}$$

$$\frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n$$

If v_1, \ldots, v_n are a basis of eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$, then a solution is a vector function of the form

$$x(t) = c_1(t)v_1 + \dots + c_n(t)v_n.$$

$$x'(t) = c'_1(t)v_1 + \dots + c'_n(t)v_n$$
 and $Ax(t) = c_1(t)\lambda_1v_1 + \dots + c_n(t)\lambda_nv_n$
The diffeq $x' = Ax$ is then equivalent with

$$c_1'(t) = \lambda_1 c_1(t), \qquad c_n'(t) = \lambda_n c_n(t)$$

$$c_1(t) = \lambda_1 c_1(t), \quad \dots \quad c_n(t) = \lambda_n c_n(t)$$

whose solutions are $c_1(t) = e^{\lambda_1 t} c_1(0), \ldots, c_n(t) = e^{\lambda_n t} c_n(0)$.

The solution x(t) is therefore

$$x(t) = e^{\lambda_1 t} c_1(0) v_1 + \dots + e^{\lambda_n t} c_n(0) v_n$$

DIAGONALIZATION

Since the characteristic polynomial det $(\lambda I - A)$ is a polynomial of degree *n*, it has at most *n* zeroes. If it has *n* distinct zeroes, $\lambda_1, \ldots, \lambda_n$ then we choose an eigenvector v_i for each eigenvalue λ_i . The vectors v_1, \ldots, v_n are linearly independent in \mathbb{F}^n and therefore they form a basis for \mathbb{F}^n .

Diagonalization Theorem (version 1). If a linear transformation $A: V \to V$ has a basis $v_1, \ldots, v_n \in V$ of eigenvectors, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, then the matrix of A with respect to this basis is

$$[A]_{v_1,\dots,v_n} = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

This follows directly from the fact that $Av_i = \lambda_i v_i$ for i = 1, 2, ..., n.

Diagonalization Theorem (version 2). If an $n \times n$ matrix A has a basis $v_1, \ldots, v_n \in \mathbb{F}^n$ of eigenvectors, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, then we have

$$S^{-1}AS = D,$$

where

$$S = \begin{bmatrix} | & | \\ v_1 & \cdots & v_n \\ | & | \end{bmatrix}$$

is the matrix whose columns are the eigenvectors, and D is the diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

7.7. **Definition – Similarity of linear transformations.** Two linear transformations $A: V \to V$ and $B: W \to W$ are called similar if there is an invertible linear transformation $S: V \to W$ such that

$$SA = BS$$
, or $A = S^{-1}BS$, or $SAS^{-1} = B$.

The three conditions are equivalent.

8. INNER PRODUCT SPACES, SYMMETRIC MATRICES, AND THEIR EIGENVALUES

In the theory of inner product spaces we assume that the number field \mathbb{F} is either the real numbers or the complex numbers:

$$\mathbb{F} = \mathbb{R} \text{ or } \mathbb{F} = \mathbb{C}$$

The theories for real and complex inner products are very similar.

8.1. **Definition.** An real inner product on a real vector space V is a real valued function on $V \times V$, usually written as (x, y) or $\langle x, y \rangle$ that satisfies the following properties

- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle ax, y \rangle = a \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle x, x \rangle > 0$ if $x \neq 0$

for all $x, y, z \in V$ and $a \in \mathbb{R}$.

8.2. **Definition.** A complex inner product on a complex vector space V is a complex valued function on $V \times V$, usually written as (x, y) or $\langle x, y \rangle$ that satisfies the following properties

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$ where \overline{z} is the complex conjugate of $z \in \mathbb{C}$
- $\langle ax, y \rangle = a \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle x, x \rangle > 0$ if $x \neq 0$

for all $x, y, z \in V$ and $a \in \mathbb{C}$.

8.3. **Example** — \mathbb{R}^n and the dot product. On \mathbb{R}^n we have the dot-product from vector calculus, i.e.

$$\langle x, y \rangle = x \cdot y \stackrel{\text{def}}{=} x_1 y_1 + \dots + x_n y_n$$

for any two vectors $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

A variation on this example is the weighted dot product given by

1 0

$$\langle x, y \rangle_w \stackrel{\text{def}}{=} w_1 x_1 y_1 + \dots + w_n x_n y_n$$

for all $x, y \in \mathbb{R}^n$, and where $w_1, \ldots, w_n > 0$ are given constants, called the weights in the inner product.

8.4. **Example** — \mathbb{C}^n and the complex dot product. For any two vectors $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{C}^n$ the complex dot product of x and y is defined by:

$$\langle x, y \rangle = x \cdot y \stackrel{\text{def}}{=} x_1 \overline{y_1} + \dots + x_n \overline{y_n}$$

8.5. Example — Inner product on a Function Space. Let V be the space of continuous functions $f : [0, 1] \rightarrow \mathbb{R}$. Then

$$\langle f,g \rangle \stackrel{\text{def}}{=} \int_0^1 f(t)g(t)dt$$

defines an inner product on V.

This kind of inner product plays a large role in Quantum Mechanics and in the theory of Fourier series.

8.6. Inner Product when you have a Basis. If $\{v_1, ..., v_n\}$ is a basis for a complex vector space, and if $x, y \in V$ satisfy

$$x = x_1v_1 + \dots + x_nv_n, \quad y = y_1v_1 + \dots + y_nv_n,$$

then

$$\langle x, y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} x_i \overline{y_j} \quad \text{where} \quad g_{ij} \stackrel{\text{def}}{=} \langle v_i, v_j \rangle.$$

8.7. **Definition.** Let *V* be a real or complex inner product space with inner product $\langle x, y \rangle$. Then the norm (or length) of a vector $x \in V$ is

$$\|x\| = \sqrt{\langle x, x \rangle}$$

Note that $\langle x, x \rangle$ is never negative, so the square root is always defined.

8.8. Theorem — properties of the length.

- ||x|| > 0 for all $x \in V$ with $x \neq 0$
- ||ax|| = |a| ||x|| for all $x \in V$ and $a \in \mathbb{F}$
- $|\langle x, y \rangle| \le ||x|| ||y||$
- $||x + y|| \le ||x|| + ||y||$

8.9. **Definition.** The distance between two vectors $x, y \in V$ is $d(x, y) \stackrel{\text{def}}{=} ||x - y||$.

(the Cauchy-Schwarz inequality)

(the triangle inequality)

8.10. **Definition.** Two vectors $x, y \in V$ are said to be orthogonal if $\langle x, y \rangle = 0$.

Notation: $x \perp y$ means x, y are orthogonal.

In particular, the zero vector is orthogonal to every other vector, because $\langle x, 0 \rangle = 0$ for all $x \in V$.

More generally, if *V* is a real inner product space, then the angle between two non-zero vectors $x, y \in V$ is defined to be

$$\angle (x, y) \stackrel{\text{def}}{=} \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

The Cauchy-Schwarz inequality implies $-1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$ so the inverse cosine is always defined.

8.11. **Example in** \mathbb{R}^4 . Find the lengths and the angle between the vectors $u = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$

and $v = \begin{pmatrix} -1 \\ 2 \\ \frac{1}{3} \end{pmatrix}$ with respect to to the standard inner product on \mathbb{R}^4 . Also find the distance between u and v.

Solution: We have

$$\begin{aligned} \|u\| &= \sqrt{1^2 + 0^2 + 2^2 + 3^2} = \sqrt{14} \\ \|v\| &= \sqrt{(-1)^2 + 2^2 + 1^2 + 3^2} = \sqrt{15} \\ \langle u, v \rangle &= 1 \cdot (-1) + 0 \cdot 2 + 2 \cdot 1 + 3 \cdot 3 = 10 \end{aligned}$$

Therefore

$$\angle(u,v) = \arccos\frac{10}{\sqrt{14}\sqrt{15}} = \arccos\frac{10}{\sqrt{210}} \approx 46.3647\dots^{6}$$

Finally, the distance between u and v is

$$||u - v|| = \sqrt{(1 - (-1))^2 + (0 - 2)^2 + (2 - 1)^2 + (3 - 3)^2} = \sqrt{10}.$$

8.12. **Example in a function space.** Find the lengths and angle between the functions f(t) = 1 and $f(t) = t^2$ in the real function space V = C([0,1]) with inner product $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$.

Solution: By definition we have

$$\begin{split} \|f\| &= \sqrt{\int_0^1 1^2 dt} = \sqrt{1} = 1\\ \|g\| &= \sqrt{\int_0^1 (t^2)^2 dt} = \sqrt{\int_0^1 t^4 dt} = \sqrt{\frac{1}{5}} = \frac{1}{5}\sqrt{5}\\ \langle f,g \rangle &= \int_0^1 1 \cdot t^2 dt = \frac{1}{3}\\ \cos \angle (f,g) &= \frac{1/3}{1 \cdot \frac{1}{5}\sqrt{5}} = \frac{1}{3}\sqrt{5} \implies \angle (f,g) = \arccos \frac{\sqrt{5}}{3} \approx 41.81\dots^\circ \end{split}$$

ORTHOGONAL SETS OF VECTORS

Let V be a real or complex inner product space

8.13. **Definition.** A set of vectors $\{v_1, \ldots, v_k\} \subset V$ is orthogonal if

- $v_i \neq 0$ for all i
- $v_i \perp v_j$ for all $i \neq j$

An orthogonal set $\{v_1, \ldots, v_k\} \subset V$ is called orthonormal if $||v_i|| = 1$ for $i = 1, \ldots, k$.

8.14. **Theorem.** If $\{v_1, \ldots, v_n\} \subset V$ is orthogonal, then $\{v_1, \ldots, v_n\}$ is linearly independent.

If, in addition, $n = \dim V$, then $\{v_1, \ldots, v_n\}$ is a basis for V. In this case $\{v_1, \ldots, v_n\}$ is called an orthogonal basis.

For vectors expressed in terms of an orthogonal basis one has the following formulas for the inner product and norm: if $x = x_1v_1 + \cdots + x_nv_n$, $y = y_1v_1 + \cdots + y_nv_n$, then

$$\langle x, y \rangle = w_1 x_1 y_1 + \dots + w_n x_n y_n, \qquad ||x||^2 = w_1 x_1^2 + \dots + w_n x_n^2$$

where the weights w_i are given by $w_i = ||v_i||^2$.

If the basis $\{v_1, \ldots, v_n\}$ is orthonormal, then $w_i = ||v_i||^2 = 1$ for all *i*, and thus

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n, \qquad ||x||^2 = x_1^2 + \dots + x_n^2$$

8.15. **Theorem.** Every finite dimensional inner product space has an orthonormal basis.

8.16. **Proof using the Gram–Schmidt procedure.** Let $\{v_1, \ldots, v_m\}$ be a basis of *V*. Define

$$w_{1} = v_{1} \qquad u_{1} = \frac{v_{1}}{\|v_{1}\|}$$

$$w_{2} = v_{2} - \langle v_{2}, u_{1} \rangle u_{1} \qquad u_{2} = \frac{w_{2}}{\|w_{2}\|}$$

$$w_{3} = v_{3} - \langle v_{3}, u_{1} \rangle u_{1} - \langle v_{3}, u_{2} \rangle u_{2} \qquad u_{3} = \frac{w_{3}}{\|w_{3}\|}$$

and in general,

$$w_j = v_j - \langle v_j, u_1 \rangle u_1 - \dots - \langle v_j, u_{j-1} \rangle u_{j-1},$$
$$u_j = \frac{w_j}{\|w_j\|}$$

Then $\{u_1, \ldots, u_n\}$ is an orthonormal basis of V. More precisely, by induction on j one shows that

• $w_j \perp \{v_1, \dots, v_{j-1}\}$ and hence $u_j \perp \{v_1, \dots, v_{j-1}\}$ • $\operatorname{span}\{v_1, \dots, v_j\} = \operatorname{span}\{u_1, \dots, u_j\}$

The above procedure that created the orthonormal basis $\{u_1, \ldots, u_n\}$ from the given basis $\{v_1, \ldots, v_n\}$ is called Gram-Schmidt orthognoalization.

EXAMPLES

8.17. **Example** — in the plane. The vectors $\binom{1}{1} \in \mathbb{R}^2$ and $\binom{1}{-1} \in \mathbb{R}^2$ are orthogonal. Therefore they are independent, and, since there are two of them, they form a basis of \mathbb{R}^2 . Since, they are orthogonal, $\binom{1}{1}, \binom{1}{-1}$ is an orthogonal basis for \mathbb{R}^2 .

On the other hand $\|\binom{1}{1}\| = \|\binom{1}{-1}\| = \sqrt{2} \neq 1$ so $\binom{1}{1}, \binom{1}{-1}$ is not an orthonormal basis for \mathbb{R}^2 .

8.18. **Example** — in \mathbb{R}^n and \mathbb{C}^n . The standard basis $\{e_1, \ldots, e_n\}$ is orthonormal and hence is an orthonormal basis for \mathbb{R}^n and also for \mathbb{C}^n .

8.19. **Example — in a function space.** Take $\mathbb{F} = \mathbb{R}$.

We define V to be the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ that are 2π -periodic, i.e. all continuous functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

$$\forall x \in \mathbb{R} : f(x+2\pi) = f(x).$$

Then V is a real vector space, and one defines an inner product on V by setting $\langle f,g \rangle = \int_0^{2\pi} f(t)g(t)dt$.

The set of functions

$$\cos t$$
, $\cos 2t$, $\cos 3t$,...

is orthogonal. To prove this, compute the integrals

$$\int_0^{2\pi} \cos nt \cos mt \, dt = \begin{cases} \pi & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$

We can add more functions to this set and still have an orthogonal set: the set of functions

$$\beta: \qquad 1, \cos t, \sin t, \cos 2t, \sin 2t, \cos 3t, \sin 3t, \dots$$

is also an orthogonal set in V.

The theory of Fourier series says that β is a "basis" for V, in the sense that every function $f \in V$ can be written as

$$f(t) = a_0 + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + a_3 \cos 3t + b_3 \sin 3t + \cdots$$

for suitable $a_0, a_1, b_1, \dots \in \mathbb{R}$. This statement does not quite fit in the linear algebra from this course because the sum above contains infinitely many terms.

THE ADJOINT OF A MATRIX

8.20. **Definition.** Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . If $A : \mathbb{F}^n \to \mathbb{F}^n$ has matrix

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix},$$

then the adjoint of A is the complex conjugate of the transpose of A, i.e.

$$A^* = \overline{A^{\top}} = \begin{pmatrix} \overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \vdots & & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{pmatrix}.$$

In the real case there is no need to take the complex conjugate, and for real matrices one has $A^* = A^\top$.

8.21. Definition.

- A real *n* × *n* matrix is called symmetric if *A* = *A*^T.
 A complex *n* × *n* matrix is called Hermitian if *A* = *A*^T.

In both cases the matrix, and the corresponding linear operator $A: \mathbb{F}^n \to \mathbb{F}^n$ are called self-adjoint.

8.22. **Theorem.** Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For any $x, y \in \mathbb{F}^n$ and any matrix A one has

$$\langle x, Ay \rangle = \langle A^*x, y \rangle$$

8.23. Example. The matrices

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

are Hermitian.

8.24. Theorem. All eigenvalues of a Hermitian matrix are real

Proof. If $Av = \lambda v$, then

$$\lambda \|v\|^2 = \langle Av, v \rangle = \langle v, A^*v \rangle = \langle v, Av \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle = \overline{\lambda} \|v\|^2.$$

Since $||v|| \neq 0$, this implies $\lambda = \overline{\lambda}$, i.e. λ is real.

8.25. **Theorem.** If $A : \mathbb{F}^n \to \mathbb{F}^n$ is Hermitian and if v, w are eigenvectors corresponding to different eigenvalues $\lambda \neq \mu$, then $v \perp w$.

Proof. Since *A* is self adjoint, all its eigenvalues are real, and thus $\lambda, \mu \in \mathbb{R}$.

We have $Av = \lambda v$ and $Aw = \mu w$, and therefore

$$\lambda \langle v, w \rangle = \langle Av, w \rangle = \langle v, Aw \rangle = \langle v, \mu w \rangle = \overline{\mu} \langle v, w \rangle = \mu \langle v, w \rangle$$

because $\mu \in \mathbb{R}$. We find

$$(\lambda - \mu) \langle v, w \rangle = 0.$$

The eigenvalues λ and μ are different, so $\lambda - \mu \neq 0$. Therefore $\langle v, w \rangle = 0$.

8.26. **The Spectral Theorem.** Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, and let $A : \mathbb{F}^n \to \mathbb{F}^n$ be Hermitian. Then \mathbb{F}^n has an orthonormal basis consisting of eigenvectors of A.

For a proof see appendix A.11.

APPENDIX A. PROOFS

A.1. **Proof of the Components from a Basis Theorem.** Suppose u_1, \ldots, u_n is a basis. By definition, every vector is a linear combination of u_1, \ldots, u_n , so u_1, \ldots, u_n spans *V*.

If $c_1u_1 + \cdots + c_nu_n = 0$, then $c_1u_1 + \cdots + c_nu_n = 0 = 0 \cdot u_1 + \cdots + 0 \cdot u_n = 0$. Since u_1, u_n is a basis we the coefficients in the expansion are unique, i.e. $c_1 = 0, \ldots, c_n = 0$. Therefore the vectors are linearly independent.

Next, we show the converse: suppose u_1, \ldots, u_n spans *V* and is linearly independent. Then, for any vector $x \in V$ there exist numbers $x_1, \ldots, x_n \in \mathbb{F}$ such that

 $x = x_1 u_1 + \dots + x_n u_n.$

The coefficients x_1, \ldots, x_n are uniquely determined by the vectors x and u_1, \ldots, u_n . Namely, if $x'_1u_1 + \cdots + x'_nu_n = x_1u_1 + \cdots + x_nu_n$ then subtract x_1u_1, \ldots, x_nu_n from both sides. We end up with $(x'_1 - x_1)u_1 + \cdots + (x'_n - x_n)u_n = 0$. Since u_1, \ldots, u_n are independent, this implies $x_1 = x'_1, \ldots, x_n = x'_n$.

A.2. **Proof of the Extension Theorem for Independent Sets.** The theorem claims "if and only if" so we have to prove two implications.

First we prove: $v \in \text{span}(u_1, \dots, u_n) \implies \{u_1, \dots, u_n, v\}$ is linearly dependent.

If $v \in \operatorname{span}(u_1, \ldots, u_n)$ then there are $a_1, \ldots, a_n \in \mathbb{F}$ with $v = a_1u_1 + \cdots + a_nu_n$. Therefore $-a_1u_1 - \cdots - a_nu_n + v = 0$, so we have a nontrivial linear combination of $\{u_1, \ldots, u_n, v\}$ that adds up to zero. Hence $\{u_1, \ldots, u_n, v\}$ is linearly dependent.

Next, we show: $\{u_1, \ldots, u_n, v\}$ is linearly dependent $\implies v \in \text{span}(u_1, \ldots, u_n)$.

Suppose $\{u_1, \ldots, u_n, v\}$ is linearly dependent. Then there exist $a_1, \ldots, a_n, b \in \mathbb{F}$ such that $a_1u_1 + \cdots + a_nu_n + bv = 0$, and such that at least one of the coefficients a_1, \ldots, a_n, b is nonzero.

If b = 0 then we have $a_1u_1 + \cdots + a_nu_n = 0$. Since $\{u_1, \ldots, u_n\}$ is independent, this implies $a_1 = \cdots = a_n = 0$, which is impossible because at least one of a_1, \ldots, a_n, b does not vanish.

Therefore $b \neq 0$. This implies that $v = -\frac{a_1}{b}u_1 - \dots - \frac{a_n}{b}u_n \in \text{span}(u_1, \dots, u_n)$.

A.3. **Proof of the Bases Selection Theorem.** For any subset $\{i_1, ..., i_k\} \subset \{1, ..., n\}$ the vectors $u_{i_1}, ..., u_{i_k}$ either are independent or they are dependent.

Of all possible choices $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ for which the vectors u_{i_1}, \ldots, u_{i_k} are independent, choose one with the largest possible k. For any $i \in \{1, \ldots, n\}$ with $i \neq i_1, \ldots, i \neq i_k$ the vectors $u_{i_1}, \ldots, u_{i_k}, u_i$ must be dependent. The Extension Theorem 5.3 implies that $u_i \in \text{span}(u_{i_1}, \ldots, u_{i_k})$.

We have shown that every u_i either is one of the u_{i_1}, \ldots, u_{i_k} , or else is a linear combination of u_{i_1}, \ldots, u_{i_k} .

Since every $v \in V$ is a linear combination of u_1, \ldots, u_n it follows that v also is a linear combination of u_{i_1}, \ldots, u_{i_k} .

Hence u_{i_1}, \ldots, u_{i_k} span V. Since they are also independent we have shown that u_{i_1}, \ldots, u_{i_k} is a basis for V.

A.4. **Proof of the dimension theorem.** Statement of the theorem: If $v_1, \ldots, v_m \in \text{span}(u_1, \ldots, u_n)$ and if v_1, \ldots, v_m are linearly independent then $m \leq n$.

We will show that if m > n and v_1, \ldots, v_m are linear combinations of u_1, \ldots, u_n , then $\{v_1, \ldots, v_m\}$ is linearly dependent.

To do this we use mathematical induction on n.

We begin with the case n = 1. There is only one vector u_1 , and each v_1 and v_2 are linear combinations of u_1 , i.e. multiples of u_1 . Thus for certain numbers $a_1, a_2 \in \mathbb{F}$ we have $v_1 = a_1u_1$, $v_2 = a_2u_1$. If $a_1 = 0$ then $v_1 = 0$ and $\{v_1, v_2\}$ is dependent.

If $a_1 \neq 0$ then we have $-a_2v_1 + a_1v_2 + 0 \cdot v_3 + \dots + 0 \cdot v_m = 0$. Since $a_1 \neq 0$ this is a nontrivial linear combination of v_1, \dots, v_m that adds up to zero. Hence $\{v_1, \dots, v_m\}$ is dependent.

Next we consider the general case n > 1, and we assume that the case n-1 has already been proven.

In this case each v_i is a linear combination of the vectors u_1, \ldots, u_n . So we have

$$v_1 = a_{11}u_1 + \dots + a_{1n}u_n$$
$$v_2 = a_{21}u_1 + \dots + a_{2n}u_n$$
$$\vdots$$
$$v_m = a_{m1}u_1 + \dots + a_{mn}u_n$$

for certain numbers $a_{11}, \ldots, a_{mn} \in \mathbb{F}$.

If all the coefficients $a_{1n}, a_{2n}, \ldots, a_{mn} = 0$ then the v_i are linear combinations of u_1, \ldots, u_{n-1} . Since m > n we have m > n-1 and therefore the induction hypothesis tells us that v_1, \ldots, v_m are linearly dependent.

We are left with the case in which one of the coefficients a_{1n}, \ldots, a_{mn} does not vanish. Assume that $a_{1n} \neq 0$. Then we consider the vectors

$$w_2 = v_2 - \frac{a_{2n}}{a_{1n}}v_1, \quad \dots \quad w_m = v_m - \frac{a_{mn}}{a_{1n}}v_1.$$

The vectors w_2, \ldots, w_m are linear combinations of u_1, \ldots, u_{n-1} . Since m-1 > n-1 the induction hypothesis applies. We therefore know that w_2, \ldots, w_m are linearly dependent, i.e. there exist $c_2, \ldots, c_m \in \mathbb{F}$ such that

$$c_2w_2 + \dots + c_mw_m = 0,$$

and such that at least one of c_2, \ldots, c_m does not vanish.

By substituting the definition of the w_i in this linear combination, we find

$$c_2(v_2 - \frac{a_{2n}}{a_{1n}}v_1) + \dots + c_m(v_m - \frac{a_{mn}}{a_{1n}}v_1) = 0$$

This implies

$$-\left(\frac{a_{2n}}{a_{1n}}c_2 + \dots + \frac{a_{mn}}{a_{1n}}c_m\right)v_1 + c_2v_2 + \dots + c_mv_m = 0.$$

Thus v_1, \ldots, v_m is linearly dependent.

A.5. **Proof of the Rank+Nullity Theorem.** Choose a basis $\{v_1, \ldots, v_r\}$ of the null space N(T). Then choose vectors $v_{r+1}, \ldots, v_n \in V$ so that $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$ is a basis for V. We will show that $\{Tv_{r+1}, \ldots, Tv_n\}$ is a basis for R(T). The rank+nullity formula then follows because we will have shown that dim V = n, dim N(T) = r, and dim R(T) = n - r.

 Tv_{r+1}, \ldots, Tv_n spans R(T):

if $y \in R(T)$ then there is an $x \in V$ with y = Tx. We can write $x = x_1v_1 + \dots + x_nv_n$. Since $Tv_1 = \dots = Tv_r = 0$ we have

$$y = Tx = T(x_1v_1 + \dots + x_nv_n)$$
$$= x_{r+1}Tv_{r+1} + \dots + x_nTv_n$$
$$= x_{r+1}w_{r+1} + \dots + x_nw_n$$
$$\in \operatorname{span}(w_{r+1}, \dots, w_n).$$

 Tv_{r+1}, \ldots, Tv_n is linearly independent: Suppose $c_{r+1}w_{r+1} + \cdots + c_nw_n = 0$ for certain $c_{r+1}, \ldots, c_n \in \mathbb{F}$. Then

$$T(c_{r+1}v_{r+1}+\cdots+c_nv_n)=0,$$

which implies $c_{r+1}v_{r+1} + \cdots + c_nv_n \in N(T)$. It follows that there are numbers c_1, \ldots, c_r such that

$$c_{r+1}v_{r+1}+\cdots+c_nv_n=c_1v_1+\cdots+c_rv_r.$$

Since $\{v_1, \ldots, v_n\}$ is a basis for *V* we conclude that $c_1 = \cdots = c_n = 0$. Hence Tv_{r+1}, \ldots, Tv_n is linearly independent.

A.6. **Proof of the matrix inverse formula (Theorem 6.17).** Let $A = (a_{ij})$ and $C = (c_{ij})$ where $c_{ij} = (-1)^{i+j} \det \tilde{A}_{ij}$. Consider $B = AC^{\top}$. By definition of matrix multiplication you have

$$B_{ij} = a_{i1}c_{j1} + \dots + a_{in}c_{jn}$$

The expression on the right is what we get if we replace the j^{th} row of the matrix A with $(a_{i1} \cdots a_{in})$, i.e. with the i^{th} row of A.

If $i \neq j$ then rows *i* and *j* in the resulting determinant are equal, so the determinant vanishes: $B_{ij} = 0$ for all $i \neq j$.

If i = j then replacing row j with row i does nothing, and we just get det A: you get $B_{ii} = \det A$ for all i.

The result is

$$AC^{\top} = \begin{pmatrix} \det A & 0 & 0 & \cdots & 0 \\ 0 & \det A & 0 & \cdots & 0 \\ 0 & 0 & \det A & \cdots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & & \det A \end{pmatrix} = (\det A)I.$$

A.7. **Proof of Cramer's rule.** Compute $C^{\top}y$:

$$C^{\top}y = \begin{pmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ \vdots & & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} y_1c_{11} + \cdots + y_nc_{n1} \\ \vdots \\ y_1c_{1n} + \cdots + y_nc_{nn} \end{pmatrix}$$

Our formula for the inverse of *A* implies that the solution $x = A^{-1}y$ is given by

$$x = \frac{1}{\det A} \begin{pmatrix} y_1 c_{11} + \dots + y_n c_{n1} \\ \vdots \\ y_1 c_{1n} + \dots + y_n c_{nn} \end{pmatrix}$$

Thus the i^{th} component x_1 of the solution is given by

$$x_i = \frac{y_1 c_{1i} + \dots + y_n c_{ni}}{\det A}.$$

The numerator in this fraction is the determinant that we get by replacing the i^{th} column in det *A* with the column vector *y*.

A.8. **Proof that** det $AB = \det A \cdot \det B$. The short version of the proof uses block matrix notation and goes like this:

$$det(A)det(B) = \begin{vmatrix} A & 0 \\ -I & B \end{vmatrix} \qquad \begin{pmatrix} add \text{ the first } n \text{ columns } B \text{ times} \\ \text{ to the second } n \text{ columns} \end{pmatrix}$$
$$= \begin{vmatrix} A & AB \\ -I & 0 \end{vmatrix}$$
$$= (-1)^n \begin{vmatrix} -I & A \\ 0 & AB \end{vmatrix}$$
$$= (-1)^n det(-I) det(AB)$$
$$= det(AB)$$

If we avoid block matrix notation then we get the following more detailed version of the computation. By definition,

$$\begin{vmatrix} A & 0 \\ -I & B \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 0 & \cdots & 0 \\ & \vdots & & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & -1 & & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\ & \vdots & \vdots & \vdots & \vdots & & \\ 0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}.$$

Add the first column b_{11} times to column (n + 1), the second column b_{12} times to column (n + 2), etc, clearing out the top row in the *b* section. The result is:

$$\begin{vmatrix} A & 0 \\ -I & B \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} & a_{21}b_{11} & a_{21}b_{12} & \cdots & a_{21}b_{1n} \\ \vdots & & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} & a_{n1}b_{11} & a_{n1}b_{12} & \cdots & a_{n1}b_{1n} \\ -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn} \end{vmatrix}$$

Next clear out the second row in the b-section. We get

		$a_{11} \\ a_{21}$	$a_{12} \\ a_{22}$	 		$a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21}$		
A	0	a_{n1}	a_{n2}	:	a_{nn}	$a_{n1}b_{11} + a_{n2}b_{21}$	••. 	$a_{n1}b_{1n} + a_{n2}b_{21}$
-I	$\left B \right =$	-1 0	$0 \\ -1$		0 0	0 0	 	$a_{n1}b_{1n} + a_{n2}b_{21}$ 0 0
		0	0	:	: -1	\vdots b_{n1}		\vdots b_{nn}

Repeating this for the remaining rows in the b-section of the determinant, we end up with

$$\begin{vmatrix} A & 0 \\ -I & B \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & a_{11}b_{11} + \cdots + a_{1n}b_{n1} & \cdots & a_{11}b_{1n} + \cdots + a_{1n}b_{nn} \\ a_{21} & a_{22} & \cdots & a_{2n} & a_{21}b_{11} + \cdots + a_{2n}b_{n1} & \cdots & a_{21}b_{1n} + \cdots + a_{2n}b_{nn} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & a_{n1}b_{11} + \cdots + a_{nn}b_{n1} & \cdots & a_{n1}b_{1n} + \cdots + a_{nn}b_{nn} \\ -1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 & 0 & \cdots & 0 \end{vmatrix}$$

i.e. we have

$$\begin{vmatrix} A & 0 \\ -I & B \end{vmatrix} = \begin{vmatrix} A & AB \\ -I & 0 \end{vmatrix}.$$

A.9. **Proof of Theorem 6.22, the determinant-independence test.** Consider the matrix *A* whose columns are a_1, \ldots, a_n . Then for any $c_1, \ldots, c_n \in \mathbb{F}$ we have

$$c_1a_1 + \dots + c_na_n = A \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}.$$

 $\det A \neq 0 \implies \{a_1, \dots, a_n\}$ independent. If $\det A \neq 0$ then A is invertible. This implies that $N(A) = \{0\}$. Suppose that there are $c_1, \dots, c_n \in \mathbb{F}$ with $c_1a_1 + \dots + c_na_n = 0$. Then

 $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ satisfies Ac = 0, so $c \in N(A)$. Therefore c = 0, i.e. $c_1 = \cdots = c_n = 0$. This implies that $\{a_1, \ldots, a_n\}$ is independent.

 $\{a_1,\ldots,a_n\}$ independent implies det $A \neq 0$. Any $c \in N(A)$ satisfies $c_1a_1 + \cdots + c_na_n = 0$. Since $\{a_1,\ldots,a_n\}$ is independent this implies $c_1 = \cdots = c_n = 0$, i.e. c = 0. We conclude that $N(A) = \{0\}$. It follows that A is injective, and hence also that A is bijective (because of the Bijectivity Theorem). Bijective means the same as invertible, so A is invertible, and thus det $A \neq 0$.

A.10. **Proof of the independence of eigenvectors.** The proof goes by induction on m.

A.10.1. The case m = 1: There is only one vector v_1 . Since v_1 is an eigenvector we have $v_1 \neq 0$. Therefore v_1 is independent.

A.10.2. *The induction step:* Assume we have already proved the theorem for m - 1.

Let v_1, \ldots, v_m be eigenvectors with different eigenvalues, and assume

 $c_1v_1+c_2v_2+\cdots c_mv_m=0.$

Then we will show that $c_1 = \cdots = c_m = 0$.

Multiply the equation with *A* to get

 $A(c_1v_1+c_2v_2+\cdots c_mv_m)=0$

$$\implies c_1 A v_1 + c_2 A v_2 + \cdots + c_m A v_m = 0$$
$$\implies c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + \cdots + c_m \lambda_m v_m = 0$$

We can also multiply $c_1v_1 + c_2v_2 + \cdots + c_mv_m = 0$ with λ_m to get

$$c_1\lambda_m v_1 + c_2\lambda_m v_2 + \cdots + c_m\lambda_m v_m = 0$$

Subtract the last two equations:

$$c_1(\lambda_1-\lambda_m)v_1+\cdots+c_{m-1}(\lambda_{m-1}-\lambda_m)v_{m-1}=0.$$

The vectors v_1, \ldots, v_{m-1} are eigenvectors for A with distinct eigenvalues. The induction hypothesis implies that they are independent, and therefore we find

$$c_1(\lambda_1 - \lambda_m) = 0$$
, $c_2(\lambda_2 - \lambda_m) = 0$, ... $c_{m-1}(\lambda_{m-1} - \lambda_m) = 0$

The eigenvalues are distinct, so $\lambda_1 - \lambda_m \neq 0, \ldots, \lambda_{m-1} - \lambda_m \neq 0$. It follows that $c_1 = \cdots = c_{m-1} = 0$.

We still have to show that $c_m = 0$. Since $c_1 = \cdots = c_{m-1} = 0$ we have

$$c_1v_1 + \dots + c_mv_m = c_mv_m = 0.$$

The vector v_m is an eigenvector so $v_m \neq 0$. Therefore $c_m v_m = 0$ implies $c_m = 0$.

A.11. Proof of the spectral theorem.

Lemma. Let *v* be an eigenvector of a self-adjoint operator $A : V \to V$ and consider the set $L = \{x \in V \mid x \perp v\}$. Then

- L is a linear subspace of V
- if dim $V < \infty$ then dim $L = \dim V 1$
- *L* is invariant under *A*, i.e. for all $x \in L$ one has $Ax \in L$

Proof of the Lemma: an exercise.

To prove the Spectral theorem we use induction on $n = \dim V$.

A is self-adjoint so all its eigenvalues are real. Let *v* be an eigenvector with eigenvalue $\lambda \in \mathbb{R}$: $Av = \lambda v$ and $v \neq 0$.

We may assume ||v|| = 1.

Define $L = \{x \in V \mid x \perp v\}$. The Lemma implies that *L* is invariant under *A*. Then $A: L \rightarrow L$ is also self-adjoint and, since dim $L < \dim V$, there is an orthonormal basis $\{v_1, \ldots, v_{n-1}\}$ of *L* consisting of eigenvectors of *A*.

Since $v \perp \{v_1, \ldots, v_{n-1}\}$ the set $\{v_1, \ldots, v_{n-1}, v\}$ is an orthonormal, and therefore linearly independent set of vectors in *V*. Moreover, the set $\{v_1, \ldots, v_{n-1}, v\}$ contains exactly dim *V* vectors, so that $\{v_1, \ldots, v_{n-1}, v\}$ is a basis of *V*.