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1. SET THEORY

1.1. Definition (A = B). Two sets A and B are equal if they have the same elements,
i.e. for every x ∈ A it is true that x ∈ B, and for every x ∈ B it is true that x ∈ A.

1.2. Definition (A ⊂ B). A set A is a subset of a set B if every x ∈ A also is an
element of B.

1.3. Definition (A∪B). The union of two sets A and B is

A∪B = {x | x ∈ A or x ∈ B}.

1.4. Definition (A∩B). The intersection of two sets A and B is

A∩B = {x | x ∈ A and x ∈ B}.

1.5. Definition (A×B). The product of two sets A and B is the set of all pairs (a,b)
where a ∈ A and b ∈ B:

A×B = {
(a,b) | a ∈ A,b ∈ B

}
.

2. VECTOR SPACES

2.1. Vector space axioms. (V ,F,+, ·) defines a vector space if V is a set, F is a
number field, and if addition of elements of V and multiplication of numbers and
vectors are defined so that they satisfy these axioms:

Commutativity: For all x, y ∈V one has x+ y= y+ x

Associativity: For all x, y, z ∈V one has (x+ y)+ z = x+ (y+ z)

Zero vector: There is a 0V ∈V such that for all x ∈V one has x+0V = x

Additive inverse: For each x ∈V there is a y ∈V such that x+ y= 0V

Multiplicative identity: For each x ∈V one has 1Fx = x

Associative and distributive properties: For all a,b ∈ F, and all x, y ∈V one has (ab)x =
a(bx), a(x+ y)= ax+ay, (a+b)x = ax+bx.

2.2. Definition (linear combination). A linear combination of vectors v1,v2, . . . ,vn ∈
V is any vector of the form a1v1 +·· ·+anvn, for any choice of numbers a1, . . . ,an ∈ F.

2.3. Definition (basis). n vectors v1, . . . ,vn ∈ V are called a basis for V if for every
v ∈V there exists a unique n-tuple of numbers a1, . . . ,an ∈ F with v = a1v1+·· ·+anvn.

1



2.4. Definition (generate, span). An n-tuple of vectors v1, . . . ,vn ∈ V generates V
if every v ∈V is a linear combination of v1, . . . ,vn.

2.5. Definition (independence). An n-tuple of vectors v1, . . . ,vn ∈V is linearly in-
dependent if the only linear combination c1v1 +·· ·+ cnvn with c1v1 +·· ·+ cnvn = 0 is
the one where all coefficients are zero.

In symbols: ∀c1, . . . , cn ∈ F : c1v1 +·· ·+ cnvn = 0 =⇒ c1 = ·· · = cn = 0

2.6. Theorem. Vectors v1, . . . ,vn ∈V are linearly dependent if and only if one of the
vectors vi can be written as a linear combination of the others.

In other words, v1, . . . ,vn ∈ V are linearly dependent if and only if there is an i ∈
{1,2, . . . ,n} and there are numbers a1, . . . ,ai−1,ai+1, . . . ,an ∈ F such that vi = a1v1 +
·· ·+ai−1vi−1 +ai+1vi+1 +·· ·+anvn.

2.7. Basis Selection Theorem. If v1, . . . ,vn spans V then there is a subset vi1 , . . . ,vi p

that is a basis for V .

2.8. Components of a vector with respect to a basis. Let u1, . . . ,un ∈V be given
vectors. Then u1, . . . ,un is a basis for V if and only if u1, . . . ,un is linearly indepen-
dent and spans V .

See Appendix A.1 for a proof.

The numbers x1, . . . , xn are called the components, or coefficients, of the vector x with
respect to the basis u1, . . . ,un.

3. LINEAR TRANSFORMATIONS

3.1. Definition — linear transformation. A map T : V →W from one vector space
V to another W is called linear if for all x, y ∈ V and all a,b ∈ F one has T(ax+ by) =
aT(x)+bT(y).

3.2. Definition — the zero transformation. If V and W are vector spaces then
the map O : V → W defined by O(x) = 0W for all x ∈ V is linear. O is called the zero
transformation.

3.3. Definition — the identity transformation. If V is a vector space then the
map I : V →V defined by I(x)= x for all x ∈V is called the identity transformation.

3.4. Theorem. If T,S : V → W are linear and if a ∈ F then the maps T +S : V → W
and aT : V → W are linear. The set L (V ,W) of linear maps T : V → W is a vector
space.



3.5. Theorem — the matrix of A : Fn → Fm. Let a11, . . . ,amn ∈ F be given numbers.
Then the map A : Fn → Fm defined by

(?) A


x1
x2
...

xn

=


a11x1 +·· ·+a1nxn
a21x1 +·· ·+a2nxn

...
am1x1 +·· ·+amnxn


is linear.

Conversely, if A : Fn → Fm is a linear map then there exist numbers a11, . . . ,amn ∈ F
such that Ax is given by (?).

The matrix of A is
a11 · · · a1n
a21 · · · a2n

...
...

am1 · · · amn


The equation (?) is written as a

matrix product

Ax =


a11 · · · a1n
a21 · · · a2n

...
...

am1 · · · amn


x1

...
xn



3.6. Theorem — finding the matrix of A : Fn → Fm. If the linear map A : Fn → Fm

is given by (?) then columns of the matrix of A are the vectors Ae1, Ae2, . . . , Aen,
i.e.

Ae1 =


a11
a21

...
am1

 , Ae2 =


a11
a22

...
am2

 , Ae3 =


a11
a23

...
am3

 , . . . , Aen =


a11
a2n

...
amn


Sometimes the following notation is used to express this:

A =
 | | |

Ae1 Ae2 · · · Aen
| | |


The matrices of the zero and identity transformations are

O =


0 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

 I =


1 0 · · · 0
0 1 · · · 0

. . .
0 0 · · · 1

 .

3.7. Definition — composition of linear transformations. If V ,W ,U are vector
spaces and if T : V → W and S : W →U are linear transformations, then the compo-
sition of S and T is the map S ◦T : V →U , with S ◦T(x)= S

(
T(x)

)
3.8. Theorem. The composition S ◦T is linear.



3.9. Theorem — matrix of the composition. If T : Fn → Fm and S : Fm → F` are
linear, and if their matrices are given by

T =

 t11 . . . t1n
...

...
tm1 . . . tmn

 S =

s11 . . . s1m
...

...
s`1 . . . s`m


then the matrix of the composition S ◦T is given by the matrix product

ST =

s11 . . . s1m
...

...
s`1 . . . s`m


 t11 . . . t1n

...
...

tm1 . . . tmn


The i j entry of ST is computed by taking the “dot product” of the ith row of S with
the jth column of T, e.g.:


[ST] j

· · · | ·
i — — — z —

· · · | ·

=


[S]

· · · ·
i a b c d

· · · ·




[T] j

· · · k ·
· · · l ·
· · · m ·
· · · n ·


z = ak+bl+ cm+dn.

3.10. Definition — injective, surjective, bijective. A linear transformation T :
V →W is

• injective (one-to-one, 1-1) if for all x, y ∈ V it is true that T(x) = T(y) implies
x = y

• surjective (onto) if for every w ∈W there is a v ∈V withTv = w
• bijective (invertible) if T is both injective and surjective

3.11. Definition — the inverse. If the linear map T : V → W is bijective then its
inverse T−1 : W →V is defined by

∀x ∈W , y ∈V : T−1(x)= y ⇐⇒ x = T(y).

3.12. Theorem. If T : V →W is bijective then the inverse T−1 : W →V is linear.

3.13. Theorem. If T : V →W is bijective, then T−1 ◦T = IV and T ◦T−1 = IW .

3.14. Theorem. If T : V → W is a linear map, then consider the equation Tx = y,
where y ∈W is given and x ∈V is unknown.

• If T is injective then the equation Tx = y has at most one solution.
• If T is surjective then the equation Tx = y has at least one solution.
• If T is bijective then the equation Tx = y has exactly one solution.

3.15. Definition — powers. If T : V → V is linear, then Tk, the kth power of T is

defined by Tk =
k factors︷ ︸︸ ︷

T ·T ·T · · ·T if k is a positive integer. If T is invertible, then one also
defines T−k = (

T−1)k.



3.16. Theorem — power law. Tk+l = TkT l for all k, l ∈N and all T ∈L (V ).

4. LINEAR SUBSPACES

4.1. Definition. Suppose V is a vector space. A subset W ⊂ V is a linear subspace
if it satisfies

• for all x, y ∈W one has x+ y ∈W
• for all x ∈W and a ∈ F one has ax ∈W
• 0 ∈W

4.2. Theorem. If V is a vector space then any linear subspace W ⊂V is also a vector
space.

4.3. Examples — smallest and largest subspaces. For any vector space V

• V is a subspace of V
• the set {0V } is a subspace of V

4.4. Definition of Null Space and Range. If T : V → W is a linear map then the
null space of T is

N(T)= {x ∈V | Tx = 0W }

and the range of T is
R(T)= {Tx | x ∈V }.

The null space is sometimes also called the kernel of T and one writes N(T)= ker(T).

4.5. Theorem. If T : V →W is linear then N(T) is a linear subspace of V and R(T)
is a linear subspace of W .

4.6. Definition. If V is a vector space and if v1, . . . ,vn ∈ V are given then the span
of v1, . . . ,vn is the set of all linear combinations of v1, . . . ,vn. In symbols:

span{v1, . . . ,vn}= {
a1v1 +·· ·+anvn | a1, . . . ,an ∈ F}

4.7. Theorem. span{v1, . . . ,vn} is a linear subspace of V .

4.8. Injectivity Theorem. A linear map T : V →W is injective iff N(T)= {0}. “ iff ” is a common
abbreviation for
“if and only if”4.9. Surjectivity Theorem. A linear map T : V →W is surjective iff R(T)=W .

5. LINEAR INDEPENDENCE, BASES, AND DIMENSION

5.1. Definition of independence. A set of vectors {u1, . . . ,un}⊂V is linearly inde-
pendent if for any a1, . . . ,an ∈ F one has a1u1+·· ·+anun = 0 =⇒ a1 = a2 = ·· · = an = 0.

5.2. Definition of basis. A set of vectors {u1, . . . ,un}⊂V is a basis for V if

• {u1, . . . ,un} is linearly independent, and
• {u1, . . . ,un} spans V .



5.3. Extension Theorem for Independent Sets. If u1, . . . ,un ∈ V are linearly in-
dependent, and v ∈V , then

v ∈ span(u1, . . . ,un) ⇐⇒ u1, . . . ,un,v are dependent

The proof is in Appendix A.2.

5.4. The Basis Selection Theorem. If u1, . . . ,un ∈V span the vector space V , then
there exist i1, . . . , ik ∈ {1, . . . ,n} such that {ui1 , . . . ,uik } is a basis for V .

A proof is in Appendix A.3.

5.5. The Dimension Theorem. If v1, . . . ,vm ∈ span(u1, . . . ,un) and if v1, . . . ,vm are
linearly independent then m ≤ n.

Appendix A.4 has the proof of this theorem.

5.6. First consequence of the Dimension Theorem. If {u1, . . . ,un} and {v1, . . . ,vm}
both are bases of a vector space V , then m = n.

Proof. This is true because {v1, . . . ,vm} ⊂ span(u1, . . . ,un) and {v1, . . . ,vm} is linearly
independent, so the Dimension Theorem implies m ≤ n.

On the other hand, u1, . . . ,un ∈ span(v1, . . . ,vn) and {u1, . . . ,un} is linearly indepen-
dent, so the Dimension Theorem implies n ≤ m.

Since n ≤ m and m ≤ n we conclude n = m. ////

5.7. Definition of dimension. If a vector space V has a basis {u1, . . . ,un} with n
elements, then n is the dimension of V .

If a vector space V has a basis with finitely many vectors then V is called finite
dimensional.

The Dimension Theorem and its corollary imply that the dimension as defined above
does not depend on which basis of V you consider.

5.8. Finite dimensional subspace theorem. If L ⊂ V is a linear subspace and V
is finite dimensional then dimL ≤ dimV . If dimL = dimV then L =V .

5.9. Extending a basis of a subspace to a basis of the whole space. If L ⊂ V
is a linear subspace and V is finite dimensional, and if {v1, . . . ,vk} ⊂ L is a basis for
L, then there exist vectors vk+1, . . . ,vn ∈V such that {v1, . . . ,vk,vk+1, . . . ,vn} is a basis
for V .

5.10. Definition of the Rank and Nullity of a linear transformation. Let T :
V →W be a linear transformation.

The rank of T : V →W is the dimension of the range of T.

The nullity of T : V →W is the dimension of the null space of T.

5.11. Rank+Nullity Theorem. If T : V →W is linear, and if V is finite dimensional,
then

dim N(T)+dimR(T)= dimV .
See Appendix A.4 for the proof.



5.12. Bijectivity Theorem. If V is a finite dimensional vector space, and if T : V →
V is a linear transformation then the following are equivalent:

(1) T is injective (one-to-one)
(2) N(T)= {0}
(3) rankT = dimV
(4) T is surjective (onto)

6. DETERMINANTS

6.1. Permutations. A permutation of (1,2, . . . ,n) is a sequence of n integers i1, . . . , in ∈
{1, . . . ,n} such that ik 6= i l for all k 6= l.

For example, all possible permutations of (1,2,3) are

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,2).

There are n! permutations of (1,2, . . . ,n).

6.2. Sign of a permutation. By definition, the number of inversions of a permu-
tation (i1, . . . , in) is

δ(i1, . . . , in) def= #{k < l | ik > i l}

A permutation (i1, i2, . . . , in) is called even if δ(i1, . . . , in) is even.

A permutation (i1, i2, . . . , in) is called odd if δ(i1, . . . , in) is odd.

The sign of the permutation (i1, . . . , in) is defined to be

εi1 i2···in = (−1)δ(i1,i2,...,in) =
{
+1 if δ(i1, . . . , in) is even
−1 if δ(i1, . . . , in) is odd

The quantity εi1 i2···in is called the Levi-Civita symbol.

6.3. Definition of the determinant.

det A = ∑
i1,...,in

εi1 i2···in a1i1 a2i2 · · ·anin

6.4. Properties of the sign εi1 i2···in .

• εi1···ik ···i`···in =−εi1···i`···ik ···in

• if i1, . . . , ik < ik+1, . . . , in then εi1 i2···in = εi1···ikεik+1···in

6.5. What is the sign of a14a22a35a43a51 when you expand a 5×5 determinant?∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
The question can be rephrased as: compute ε42531



6.6. Special case — 2×2 determinants.∣∣∣∣a b
c d

∣∣∣∣= ad−bc

6.7. Special case — 3×3 determinants.∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣= a1b2c3 −a1b3c2 −a2b1c3 +a2b3c1 +a3b1c2 −a3b2c1

6.8. Determinant of upper triangular matrices. If all entries of a matrix below
its diagonal are zero, then the determinant of the matrix is the product of its diagonal
entries: ∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · · · · a1n
0 a22 · · · · · · a2n
0 0 a33 · · · a3n
· · · · · · · · · · · · · · ·
0 0 · · · 0 ann

∣∣∣∣∣∣∣∣∣∣
= a11a22 · · ·ann

6.9. Determinant of the identity matrix.

det I = 1.

6.10. Determinant of block triangular matrices. If A is a k×k matrix, B a k× l
matrix, and C an l× l matrix then∣∣∣∣A B

0 C

∣∣∣∣= (det A)(detC)

6.11. Determinant of the transpose. det A> = det A

6.12. Swapping rows or columns changes the sign. If B is the matrix you get by
swapping two rows, or by swapping two columns in the matrix A, then det A =−detB

41

22
14

53

35

41

32

14

53

25

a14a22a35a41a53 a14a25a32a41a53



6.13. The determinant as a function of its rows. If we have n row vectors
a1, . . . ,an ∈ Fn, given by

a1 =
(
a11 a12 · · · a1n

)
,

a2 =
(
a21 a22 · · · a2n

)
,

...

an = (
an1 an2 · · · ann

)
,

then we define

det(a1,a2, . . . ,an)=

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
One has for all a,b,a1,a2, . . . ,an ∈ Fn and t ∈ F:

det(a+b,a2,a3, . . . ,an)= det(a,a2,a3, . . . ,an)+det(b,a2,a3, . . . ,an)

det(ta,a2,a3, . . . ,an)= tdet(a,a2,a3, . . . ,an)

det(a1, . . . ,ai, . . . ,a j, . . .an)=−det(a1, . . . ,a j, . . . ,ai, . . .an)

det(a1, . . . ,ai, . . . ,ai, . . .an)= 0

det(a1, . . . ,ai, . . . ,a j, . . .an)= det(a1, . . . ,ai+ta j, . . . ,a j, . . .an)

6.14. Cofactor expansion. The i j-minor of an n×n matrix A is the (n−1)× (n−1)
matrix obtained by deleting the ith row and jth column from A. Let us write Ã i j for
the i j-minor of A.

The i j-cofactor of the matrix A is the number

ci j = (−1)i+ j det Ã i j

6.15. Cofactor Expansion Theorem. If A = (ai j) is an n×n matrix, then one has

det A = ai1ci1 +ai2ci2 +·· ·+aincin

for any i ∈ {1,2, . . . ,n}.

A consequence of the cofactor expansion theorem is that if i 6= j then

a j1ci1 +a j2ci2 +·· ·+a jncin = 0.

6.16. Example. Expanding a 3×3 determinant along its middle row:∣∣∣∣∣∣
1 2 3
3 2 1
−2 4 3

∣∣∣∣∣∣= a21c21 +a22c22 +a23c23

=−3 ·
∣∣∣∣2 3
4 3

∣∣∣∣+2 ·
∣∣∣∣ 1 3
−2 3

∣∣∣∣−1 ·
∣∣∣∣ 1 2
−2 4

∣∣∣∣= ·· ·



6.17. A formula to invert a matrix. For any n×n matrix A one has

AC> = C>A = (det A) I,

where C is the cofactor matrix of A. If det A 6= 0 then A is invertible, and the inverse
matrix is given by

A−1 = 1
det A

C>.

Proof: see Appendix A.6.

6.18. Cramer’s rule. For any y ∈ Fn the solution of Ax = y is given by

x1 =

∣∣∣∣∣∣∣∣
y1 a12 . . . a1n
y2 a22 . . . a2n

. . .
yn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
, x2 =

∣∣∣∣∣∣∣∣
a11 y1 . . . a1n
a21 y2 . . . a2n

. . .
an1 yn . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
, . . . , xn =

∣∣∣∣∣∣∣∣
a11 a12 . . . y1
a21 a22 . . . y2

. . .
an1 an2 . . . yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
A proof is in Appendix A.7.

6.19. Example — the inverse of a 2×2 matrix.(
a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
6.20. Determinant of a matrix product. For any two n×n matrices A and B one
has

det(AB)= det(A) det(B)
See Appendix A.8 for a proof.

6.21. Theorem. A is invertible ⇐⇒ det A 6= 0

The proof is short: If A is invertible then the matrix B = A−1 satisfies AB = I. This
implies det(AB)= 1 and hence (det A)(detB)= 1. Therefore det A 6= 0.

Conversely, if det A 6= 0 then A is invertible because we have a formula for its inverse,
A−1 = C>

det A .

6.22. The determinant independence test. If a1, . . . ,an ∈ Fn then

{a1, . . . ,an} is linearly independent ⇐⇒ det(a1, . . . ,an) 6= 0

The proof is in Appendix A.9.



7. EIGENVALUES, SPECTRAL THEORY

7.1. Definition. Let V be a vector space and A : V → V a linear transformation. If
v ∈V and λ ∈ F satisfy

Av =λv, v 6= 0

then v is called an eigenvector of A and λ is called an eigenvalue of A.

The set

Spec(A) def= {
λ |λ is an eigenvalue of A

}
is called the spectrum of A.

7.2. Theorem. If A : V →V is a linear transformation then

Ï v ∈V is an eigenvector of A with eigenvalue λ ⇐⇒ v 6= 0 and v ∈ N(λI − A)
Ï λ ∈ F is an eigenvalue of A if and only if N(λI − A) 6= {0}
Ï λ ∈ F is an eigenvalue of A if and only if det(λI − A)= 0

This theorem gives a method of finding all eigenvalues and vectors, namely:

• Compute the characteristic polynomial det(λI − A)
• Solve det(λI − A)= 0 for λ. Let λ1, . . . , λk be all the solutions you find
• For each i = 1, . . . ,k find all the vectors in N(λi I − A), i.e. solve λiv− Av = 0

for v.

7.3. Finding eigenvalues/vectors for A : Fn → Fn. The characteristic polynomial
of A : Fn → Fn is, by definition,

det(λI − A)=

∣∣∣∣∣∣∣∣∣
λ−a11 −a12 · · · −a1n
−a21 λ−a22 · · · −a2n

. . .
−a11 −a12 · · · λ−ann

∣∣∣∣∣∣∣∣∣
After expanding, this turns out to be a polynomial in λ of degree n

det(λI − A)=λn + c1λ
n−1 + c2λ

n−2 +·· ·+ cn−1λ+ cn.

Here

−c1 = a11 +a22 +·· ·+ann

is called the trace of the matrix A, and

(−1)ncn = det A

is its determinant.

7.4. Independence of Eigenvectors Theorem. If v1, . . . ,vm ∈ V are eigenvectors
of A : V → V with eigenvalues λ1, . . . ,λm, and if the eigenvalues are distinct (i.e.
λi 6=λ j for all i 6= j) then {v1, . . . ,vm} is linearly independent.



7.5. The use of eigenvalues and vectors. If a vector v ∈ V is known as a linear
combination of eigenvectors of A then it is easy to compute Av, A2v, etc. If

v = a1v1 +·· ·+akvk

where Avi =λivi, then
Av =λ1a1v1 +·· ·+λkakvk

A2v =λ2
1a1v1 +·· ·+λ2

kakvk

...

A`v =λ`1a1v1 +·· ·+λ`kakvk

for any ` ∈N. If none of the eigenvalues λi vanishes then one solution of Aw = v is
given by

w = a1

λ1
v1 +·· ·+ ak

λk
vk.

For this to be useful we need to find as many eigenvectors as we can.

7.6. Solving a system of linear differential equations.
dx1

dt
= a11x1 +·· ·+a1nxn

dx2

dt
= a21x1 +·· ·+a2nxn

...
dxn

dt
= an1x1 +·· ·+annxn

⇐⇒ dx
dt

= Ax, x =
( x1

...
xn

)
, A =

( a11 ... a1n
...

...
an1 ... ann

)

If v1, . . . ,vn are a basis of eigenvectors of A with eigenvalues λ1, . . . ,λn, then a solu-
tion is a vector function of the form

x(t)= c1(t)v1 +·· ·+ cn(t)vn.

x′(t)= c′1(t)v1 +·· ·+ c′n(t)vn and Ax(t)= c1(t)λ1v1 +·· ·+ cn(t)λnvn

The diffeq x′ = Ax is then equivalent with

c′1(t)=λ1c1(t), . . . c′n(t)=λncn(t)

whose solutions are c1(t)= eλ1 tc1(0), . . . , cn(t)= eλn tcn(0).

The solution x(t) is therefore

x(t)= eλ1 tc1(0)v1 +·· ·+ eλn tcn(0)vn

DIAGONALIZATION

Since the characteristic polynomial det(λI − A) is a polynomial of degree n, it has at
most n zeroes. If it has n distinct zeroes, λ1, . . . , λn then we choose an eigenvector
vi for each eigenvalue λi. The vectors v1, . . . ,vn are linearly independent in Fn and
therefore they form a basis for Fn.



Diagonalization Theorem (version 1). If a linear transformation A : V → V has
a basis v1, . . . ,vn ∈V of eigenvectors, with corresponding eigenvalues λ1, . . . , λn, then
the matrix of A with respect to this basis is

[A]v1,...,vn =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0

. . .
0 0 0 . . . λn


This follows directly from the fact that Avi =λivi for i = 1,2, . . . ,n.

Diagonalization Theorem (version 2). If an n×n matrix A has a basis v1, . . . ,vn ∈
Fn of eigenvectors, with corresponding eigenvalues λ1, . . . , λn, then we have

S−1 AS = D,

where

S =
 | |

v1 · · · vn
| |


is the matrix whose columns are the eigenvectors, and D is the diagonal matrix

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0

. . .
0 0 0 . . . λn



7.7. Definition – Similarity of linear transformations. Two linear transforma-
tions A : V → V and B : W → W are called similar if there is an invertible linear
transformation S : V →W such that

SA = BS, or A = S−1BS, or SAS−1 = B.

The three conditions are equivalent.

8. INNER PRODUCT SPACES, SYMMETRIC MATRICES,
AND THEIR EIGENVALUES

In the theory of inner product spaces we assume that the number field F is either the
real numbers or the complex numbers:

F=R or F=C
The theories for real and complex inner products are very similar.



8.1. Definition. An real inner product on a real vector space V is a real valued func-
tion on V ×V , usually written as (x, y) or 〈x, y〉 that satisfies the following properties

• 〈x, y〉 = 〈y, x〉
• 〈ax, y〉 = a〈x, y〉
• 〈x+ y, z〉 = 〈x, z〉+〈y, z〉
• 〈x, x〉 > 0 if x 6= 0

for all x, y, z ∈V and a ∈R.

8.2. Definition. A complex inner product on a complex vector space V is a complex
valued function on V ×V , usually written as (x, y) or 〈x, y〉 that satisfies the following
properties

• 〈x, y〉 = 〈y, x〉 where z is the complex conjugate of z ∈C
• 〈ax, y〉 = a〈x, y〉
• 〈x+ y, z〉 = 〈x, z〉+〈y, z〉
• 〈x, x〉 > 0 if x 6= 0

for all x, y, z ∈V and a ∈C.

8.3. Example — Rn and the dot product. On Rn we have the dot-product from
vector calculus, i.e.

〈x, y〉 = x · y def= x1 y1 +·· ·+ xn yn

for any two vectors x =
( x1...

xn

)
, y=

( y1...
yn

)
.

A variation on this example is the weighted dot product given by

〈x, y〉w
def= w1x1 y1 +·· ·+wnxn yn

for all x, y ∈ Rn, and where w1, . . . ,wn > 0 are given constants, called the weights in
the inner product.

8.4. Example — Cn and the complex dot product. For any two vectors x =
( x1...

xn

)
,

y=
( y1...

yn

)
∈Cn the complex dot product of x and y is defined by:

〈x, y〉 = x · y def= x1 y1 +·· ·+ xn yn

8.5. Example — Inner product on a Function Space. Let V be the space of
continuous functions f : [0,1]→R. Then

〈 f , g〉 def=
∫ 1

0
f (t)g(t)dt

defines an inner product on V .

This kind of inner product plays a large role in Quantum Mechanics and in the theory
of Fourier series.



8.6. Inner Product when you have a Basis. If {v1, . . . ,vn} is a basis for a complex
vector space, and if x, y ∈V satisfy

x = x1v1 +·· ·+ xnvn, y= y1v1 +·· ·+ ynvn,

then

〈x, y〉 =
n∑

i=1

n∑
j=1

g i j xi yj where g i j
def= 〈

vi,v j
〉

.

NORMS, DISTANCES, ANGLES, AND INEQUALITIES

8.7. Definition. Let V be a real or complex inner product space with inner product
〈x, y〉. Then the norm (or length) of a vector x ∈V is

‖x‖ =
√

〈x, x〉.
Note that 〈x, x〉 is never negative, so the square root is always defined.

8.8. Theorem — properties of the length.

• ‖x‖ > 0 for all x ∈V with x 6= 0
• ‖ax‖ = |a|‖x‖ for all x ∈V and a ∈ F
• |〈x, y〉| ≤ ‖x‖‖y‖ (the Cauchy-Schwarz inequality)
• ‖x+ y‖ ≤ ‖x‖+‖y‖ (the triangle inequality)

8.9. Definition. The distance between two vectors x, y ∈V is d(x, y) def= ‖x− y‖.

8.10. Definition. Two vectors x, y ∈V are said to be orthogonal if 〈x, y〉 = 0.

Notation: x ⊥ y means x, y are orthogonal.

In particular, the zero vector is orthogonal to every other vector, because 〈x,0〉 = 0 for
all x ∈V .

More generally, if V is a real inner product space, then the angle between two non-
zero vectors x, y ∈V is defined to be

∠(x, y) def= arccos
〈x, y〉
‖x‖‖y‖

The Cauchy-Schwarz inequality implies −1 ≤ 〈x,y〉
‖x‖‖y‖ ≤ 1 so the inverse cosine is al-

ways defined.

8.11. Example in R4. Find the lengths and the angle between the vectors u =
(1

0
2
3

)
and v =

(−1
2
1
3

)
with respect to to the standard inner product on R4. Also find the

distance between u and v.

Solution: We have

‖u‖ =
√

12 +02 +22 +32 =
p

14

‖v‖ =
√

(−1)2 +22 +12 +32 =
p

15

〈u,v〉 = 1 · (−1)+0 ·2+2 ·1+3 ·3= 10 .



Therefore

∠(u,v)= arccos
10p

14
p

15
= arccos

10p
210

≈ 46.3647 . . .◦

Finally, the distance between u and v is

‖u−v‖ =
√

(1− (−1))2 + (0−2)2 + (2−1)2 + (3−3)2 =
p

10 .

8.12. Example in a function space. Find the lengths and angle between the func-
tions f (t)= 1 and f (t)= t2 in the real function space V = C([0,1]) with inner product
〈 f , g〉 = ∫ 1

0 f (t)g(t)dt.

Solution: By definition we have

‖ f ‖ =
√∫ 1

0
12dt =

p
1= 1

‖g‖ =
√∫ 1

0

(
t2

)2 dt =
√∫ 1

0
t4dt =

√
1
5
= 1

5

p
5

〈 f , g〉 =
∫ 1

0
1 · t2 dt = 1

3

cos∠( f , g)= 1/3

1 · 1
5
p

5
= 1

3

p
5 =⇒ ∠( f , g)= arccos

p
5

3
≈ 41.81 . . .◦

ORTHOGONAL SETS OF VECTORS

Let V be a real or complex inner product space

8.13. Definition. A set of vectors {v1, . . . ,vk}⊂V is orthogonal if

• vi 6= 0 for all i
• vi ⊥ v j for all i 6= j

An orthogonal set {v1, . . . ,vk}⊂V is called orthonormal if ‖vi‖ = 1 for i = 1, . . . ,k.

8.14. Theorem. If {v1, . . . ,vn}⊂V is orthogonal, then {v1, . . . ,vn} is linearly indepen-
dent.

If, in addition, n = dimV , then {v1, . . . ,vn} is a basis for V . In this case {v1, . . . ,vn} is
called an orthogonal basis.

For vectors expressed in terms of an orthogonal basis one has the following formulas
for the inner product and norm: if x = x1v1 +·· ·+ xnvn, y= y1v1 +·· ·+ ynvn, then

〈x, y〉 = w1x1 y1 +·· ·+wnxn yn, ‖x‖2 = w1x2
1 +·· ·+wnx2

n

where the weights wi are given by wi = ‖vi‖2.

If the basis {v1, . . . ,vn} is orthonormal, then wi = ‖vi‖2 = 1 for all i, and thus

〈x, y〉 = x1 y1 +·· ·+ xn yn, ‖x‖2 = x2
1 +·· ·+ x2

n

8.15. Theorem. Every finite dimensional inner product space has an orthonormal
basis.



8.16. Proof using the Gram–Schmidt procedure. Let {v1, . . . ,vm} be a basis of
V . Define

w1 = v1 u1 = v1

‖v1‖
w2 = v2 −〈v2,u1〉u1 u2 = w2

‖w2‖
w3 = v3 −〈v3,u1〉u1 −〈v3,u2〉u2 u3 = w3

‖w3‖
and in general,

w j = v j −〈v j,u1〉u1 −·· ·−〈v j,u j−1〉u j−1,

u j =
w j

‖w j‖
Then {u1, . . . ,un} is an orthonormal basis of V . More precisely, by induction on j one
shows that

• w j ⊥ {v1, . . . ,v j−1} and hence u j ⊥ {v1, . . . ,v j−1}
• span{v1, . . . ,v j}= span{u1, . . . ,u j}

The above procedure that created the orthonormal basis {u1, . . . ,un} from the given
basis {v1, . . . ,vn} is called Gram–Schmidt orthognoalization.

EXAMPLES

8.17. Example — in the plane. The vectors
(1
1
) ∈ R2 and

( 1
−1

) ∈ R2 are orthogonal.
Therefore they are independent, and, since there are two of them, they form a basis
of R2. Since, they are orthogonal,

(1
1
)
,
( 1
−1

)
is an orthogonal basis for R2.

On the other hand ‖(1
1
)‖ = ‖( 1

−1
)‖ =p

2 6= 1 so
(1
1
)
,
( 1
−1

)
is not an orthonormal basis for

R2.

8.18. Example — in Rn and Cn. The standard basis {e1, . . . , en} is orthonormal and
hence is an orthonormal basis for Rn and also for Cn.

8.19. Example — in a function space. Take F=R.

We define V to be the set of continuous functions f : R → R that are 2π-periodic,
i.e. all continuous functions f :R→R that satisfy

∀x ∈R : f (x+2π)= f (x).

Then V is a real vector space, and one defines an inner product on V by setting
〈 f , g〉 = ∫ 2π

0 f (t)g(t)dt.

The set of functions
cos t,cos2t,cos3t, . . .

is orthogonal. To prove this, compute the integrals∫ 2π

0
cosnt cosmt dt =

{
π if n = m
0 if n 6= m

We can add more functions to this set and still have an orthogonal set: the set of
functions

β : 1,cos t,sin t,cos2t,sin2t,cos3t,sin3t, . . .
is also an orthogonal set in V .



The theory of Fourier series says that β is a “basis” for V , in the sense that every
function f ∈V can be written as

f (t)= a0 +a1 cos t+b1 sin t+a2 cos2t+b2 sin2t+a3 cos3t+b3 sin3t+·· ·
for suitable a0,a1,b1, · · · ∈ R. This statement does not quite fit in the linear algebra
from this course because the sum above contains infinitely many terms.

THE ADJOINT OF A MATRIX

8.20. Definition. Let F=R or C. If A : Fn → Fn has matrix

A =

a11 · · · a1n
...

...
an1 · · · ann

 ,

then the adjoint of A is the complex conjugate of the transpose of A, i.e.

A∗ = A> =

a11 · · · an1
...

...
a1n · · · ann

 .

In the real case there is no need to take the complex conjugate, and for real matrices
one has A∗ = A>.

8.21. Definition.

• A real n×n matrix is called symmetric if A = A>.
• A complex n×n matrix is called Hermitian if A = A>.

In both cases the matrix, and the corresponding linear operator A : Fn → Fn are called
self-adjoint.

8.22. Theorem. Let F=R or C. For any x, y ∈ Fn and any matrix A one has〈
x, A y

〉= 〈
A∗x, y

〉
8.23. Example. The matrices(

1 2
2 3

)
and

(
0 i
−i 0

)
are Hermitian.

8.24. Theorem. All eigenvalues of a Hermitian matrix are real

Proof. If Av =λv, then

λ‖v‖2 = 〈Av,v〉 = 〈
v, A∗v

〉= 〈v, Av〉 = 〈v,λv〉 =λ〈v,v〉 =λ‖v‖2.

Since ‖v‖ 6= 0, this implies λ=λ, i.e. λ is real.



8.25. Theorem. If A : Fn → Fn is Hermitian and if v,w are eigenvectors correspond-
ing to different eigenvalues λ 6=µ, then v ⊥ w.

Proof. Since A is self adjoint, all its eigenvalues are real, and thus λ,µ ∈R.

We have Av =λv and Aw =µw, and therefore

λ〈v,w〉 = 〈Av,w〉 = 〈v, Aw〉 = 〈
v,µw

〉=µ〈v,w〉 =µ〈v,w〉
because µ ∈R. We find

(λ−µ)〈v,w〉 = 0.
The eigenvalues λ and µ are different, so λ−µ 6= 0. Therefore 〈v,w〉 = 0.

8.26. The Spectral Theorem. Let F=R or F=C, and let A : Fn → Fn be Hermitian.
Then Fn has an orthonormal basis consisting of eigenvectors of A.

For a proof see appendix A.11.



APPENDIX A. PROOFS

A.1. Proof of the Components from a Basis Theorem. Suppose u1, . . . ,un is a
basis. By definition, every vector is a linear combination of u1, . . . ,un, so u1, . . . ,un
spans V .

If c1u1 +·· ·+ cnun = 0, then c1u1 +·· ·+ cnun = 0= 0 ·u1 +·· ·+0 ·un = 0. Since u1, ,̇un
is a basis we the coefficients in the expansion are unique, i.e. c1 = 0, . . . , cn = 0.
Therefore the vectors are linearly independent.

Next, we show the converse: suppose u1, . . . ,un spans V and is linearly independent.
Then, for any vector x ∈V there exist numbers x1, . . . , xn ∈ F such that

x = x1u1 +·· ·+ xnun.

The coefficients x1, . . . , xn are uniquely determined by the vectors x and u1, . . . ,un.
Namely, if x′1u1 + ·· · + x′nun = x1u1 + ·· · + xnun then subtract x1u1, . . . , xnun from
both sides. We end up with (x′1 − x1)u1 + ·· · + (x′n − xn)un = 0. Since u1, . . . ,un are
independent, this implies x1 = x′1, . . . , xn = x′n.

A.2. Proof of the Extension Theorem for Independent Sets. The theorem claims
“if and only if” so we have to prove two implications.

First we prove: v ∈ span(u1, . . . ,un) =⇒ {u1, . . . ,un,v} is linearly dependent.

If v ∈ span(u1, . . . ,un) then there are a1, . . . ,an ∈ Fwith v = a1u1+·· ·+anun. Therefore
−a1u1−·· ·−anun+v = 0, so we have a nontrivial linear combination of {u1, . . . ,un,v}
that adds up to zero. Hence {u1, . . . ,un,v} is linearly dependent.

Next, we show: {u1, . . . ,un,v} is linearly dependent =⇒ v ∈ span(u1, . . . ,un).

Suppose {u1, . . . ,un,v} is linearly dependent. Then there exist a1, . . . ,an,b ∈ F such
that a1u1+·· ·+anun+bv = 0, and such that at least one of the coefficients a1, . . . ,an,b
is nonzero.

If b = 0 then we have a1u1 + ·· · + anun = 0. Since {u1, . . . ,un} is independent, this
implies a1 = ·· · = an = 0, which is impossible because at least one of a1, . . . ,an,b does
not vanish.

Therefore b 6= 0. This implies that v =− a1
b u1 −·· ·− an

b un ∈ span(u1, . . . ,un).

A.3. Proof of the Bases Selection Theorem. For any subset {i1, . . . , ik}⊂ {1, . . . ,n}
the vectors ui1 , . . . ,uik either are independent or they are dependent.

Of all possible choices {i1, . . . , ik} ⊂ {1, . . . ,n}for which the vectors ui1 , . . . ,uik are in-
dependent, choose one with the largest possible k. For any i ∈ {1, . . . ,n} with i 6=
i1, . . . , i 6= ik the vectors ui1 , . . . ,uik ,ui must be dependent. The Extension Theo-
rem 5.3 implies that ui ∈ span(ui1 , . . . ,uik ).

We have shown that every ui either is one of the ui1 , . . . ,uik , or else is a linear com-
bination of ui1 , . . . ,uik .

Since every v ∈V is a linear combination of u1, . . . ,un it follows that v also is a linear
combination of ui1 , . . . ,uik .

Hence ui1 , . . . ,uik span V . Since they are also independent we have shown that
ui1 , . . . ,uik is a basis for V .



A.4. Proof of the dimension theorem. Statement of the theorem: If v1, . . . ,vm ∈
span(u1, . . . ,un) and if v1, . . . ,vm are linearly independent then m ≤ n.

We will show that if m > n and v1, . . . ,vm are linear combinations of u1, . . . ,un, then
{v1, . . . ,vm} is linearly dependent.

To do this we use mathematical induction on n.

We begin with the case n = 1. There is only one vector u1, and each v1 and v2 are
linear combinations of u1, i.e. multiples of u1. Thus for certain numbers a1,a2 ∈ F
we have v1 = a1u1, v2 = a2u1. If a1 = 0 then v1 = 0 and {v1,v2} is dependent.

If a1 6= 0 then we have −a2v1 + a1v2 + 0 · v3 + ·· · + 0 · vm = 0. Since a1 6= 0 this is a
nontrivial linear combination of v1, . . . ,vm that adds up to zero. Hence {v1, . . . ,vm} is
dependent.

Next we consider the general case n > 1, and we assume that the case n−1 has already
been proven.

In this case each vi is a linear combination of the vectors u1, . . . ,un. So we have

v1 = a11u1 +·· ·+a1nun

v2 = a21u1 +·· ·+a2nun

...

vm = am1u1 +·· ·+amnun

for certain numbers a11, . . . ,amn ∈ F.

If all the coefficients a1n,a2n, . . . ,amn = 0 then the vi are linear combinations of
u1, . . . ,un−1. Since m > n we have m > n−1 and therefore the induction hypothe-
sis tells us that v1, . . . ,vm are linearly dependent.

We are left with the case in which one of the coefficients a1n, . . . ,amn does not vanish.
Assume that a1n 6= 0. Then we consider the vectors

w2 = v2 − a2n

a1n
v1, . . . wm = vm − amn

a1n
v1.

The vectors w2, . . . ,wm are linear combinations of u1, . . . ,un−1. Since m−1 > n−1
the induction hypothesis applies. We therefore know that w2, . . . ,wm are linearly
dependent, i.e. there exist c2, . . . , cm ∈ F such that

c2w2 +·· ·+ cmwm = 0,

and such that at least one of c2, . . . , cm does not vanish.

By substituting the definition of the wi in this linear combination, we find

c2
(
v2 − a2n

a1n
v1

)+·· ·+ cm
(
vm − amn

a1n
v1

)= 0

This implies

−
(

a2n

a1n
c2 +·· ·+ amn

a1n
cm

)
v1 + c2v2 +·· ·+ cmvm = 0.

Thus v1, . . . ,vm is linearly dependent.



A.5. Proof of the Rank+Nullity Theorem. Choose a basis {v1, . . . ,vr} of the null
space N(T). Then choose vectors vr+1, . . . ,vn ∈ V so that {v1, . . . ,vr,vr+1, . . . ,vn} is a
basis for V . We will show that {Tvr+1, . . . ,Tvn} is a basis for R(T). The rank+nullity
formula then follows because we will have shown that dimV = n, dim N(T) = r, and
dimR(T)= n− r.

Tvr+1, . . . ,Tvn spans R(T):
if y ∈ R(T) then there is an x ∈ V with y = Tx. We can write x = x1v1 + ·· · + xnvn.
Since Tv1 = ·· · = Tvr = 0 we have

y= Tx = T(x1v1 +·· ·+ xnvn)

= xr+1Tvr+1 +·· ·+ xnTvn

= xr+1wr+1 +·· ·+ xnwn

∈ span(wr+1, . . . ,wn).

Tvr+1, . . . ,Tvn is linearly independent:
Suppose cr+1wr+1 +·· ·+ cnwn = 0 for certain cr+1, . . . , cn ∈ F. Then

T
(
cr+1vr+1 +·· ·+ cnvn

)= 0,

which implies cr+1vr+1+·· ·+cnvn ∈ N(T). It follows that there are numbers c1, . . . , cr
such that

cr+1vr+1 +·· ·+ cnvn = c1v1 +·· ·+ crvr.

Since {v1, . . . ,vn} is a basis for V we conclude that c1 = ·· · = cn = 0. Hence Tvr+1, . . . ,Tvn
is linearly independent.

A.6. Proof of the matrix inverse formula (Theorem 6.17). Let A = (ai j) and
C = (ci j) where ci j = (−1)i+ j det Ã i j. Consider B = AC>. By definition of matrix
multiplication you have

Bi j = ai1c j1 +·· ·+ainc jn

The expression on the right is what we get if we replace the jth row of the matrix A
with (ai1 · · · ain), i.e. with the ith row of A.

If i 6= j then rows i and j in the resulting determinant are equal, so the determinant
vanishes: Bi j = 0 for all i 6= j.

If i = j then replacing row j with row i does nothing, and we just get det A: you get
Bii = det A for all i.

The result is

AC> =


det A 0 0 · · · 0

0 det A 0 · · · 0
0 0 det A · · · 0

. . .
0 0 0 det A

= (det A) I.



A.7. Proof of Cramer’s rule. Compute C> y:

C> y=

c11 c21 · · · cn1
...

...
c1n c2n · · · cnn


y1

...
yn

=

 y1c11 +·· ·+ yncn1
...

y1c1n +·· ·+ yncnn


Our formula for the inverse of A implies that the solution x = A−1 y is given by

x = 1
det A

 y1c11 +·· ·+ yncn1
...

y1c1n +·· ·+ yncnn


Thus the ith component x1 of the solution is given by

xi = y1c1i +·· ·+ yncni

det A
.

The numerator in this fraction is the determinant that we get by replacing the ith

column in det A with the column vector y.

A.8. Proof that det AB = det A ·detB. The short version of the proof uses block ma-
trix notation and goes like this:

det(A)det(B)=
∣∣∣∣ A 0
−I B

∣∣∣∣ (
add the first n columns B times

to the second n columns

)
=

∣∣∣∣ A AB
−I 0

∣∣∣∣
= (−1)n

∣∣∣∣−I A
0 AB

∣∣∣∣
= (−1)n det(−I)det(AB)

= det(AB)

If we avoid block matrix notation then we get the following more detailed version of
the computation. By definition,

∣∣∣∣ A 0
−I B

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n 0 0 · · · 0
a21 a22 · · · a2n 0 0 · · · 0

...
. . .

an1 an2 · · · ann 0 0 · · · 0

−1 0 · · · 0 b11 b12 · · · b1n
0 −1 0 b21 b22 · · · b2n

...
...

...
...

0 0 · · · −1 bn1 bn2 · · · bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Add the first column b11 times to column (n+ 1), the second column b12 times to
column (n+2), etc, clearing out the top row in the b section. The result is:



∣∣∣∣ A 0
−I B

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n a11b11 a11b12 · · · a11b1n
a21 a22 · · · a2n a21b11 a21b12 · · · a21b1n

...
. . .

an1 an2 · · · ann an1b11 an1b12 · · · an1b1n

−1 0 · · · 0 0 0 · · · 0
0 −1 0 b21 b22 · · · b2n

...
...

...
...

0 0 · · · −1 bn1 bn2 · · · bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Next clear out the second row in the b-section. We get

∣∣∣∣ A 0
−I B

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n a11b11 +a12b21 · · · a11b1n +a12b21
a21 a22 · · · a2n a21b11 +a22b21 · · · a21b1n +a22b21

...
. . .

an1 an2 · · · ann an1b11 +an2b21 · · · an1b1n +an2b21

−1 0 · · · 0 0 · · · 0
0 −1 0 0 · · · 0

...
...

...
...

0 0 · · · −1 bn1 · · · bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Repeating this for the remaining rows in the b-section of the determinant, we end
up with

∣∣∣∣ A 0
−I B

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n a11b11 +·· ·+a1nbn1 · · · a11b1n +·· ·+a1nbnn
a21 a22 · · · a2n a21b11 +·· ·+a2nbn1 · · · a21b1n +·· ·+a2nbnn

...
. . .

an1 an2 · · · ann an1b11 +·· ·+annbn1 · · · an1b1n +·· ·+annbnn

−1 0 · · · 0 0 · · · 0
0 −1 0 0 · · · 0

...
...

...
...

0 0 · · · −1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
i.e. we have ∣∣∣∣ A 0

−I B

∣∣∣∣= ∣∣∣∣ A AB
−I 0

∣∣∣∣ .

A.9. Proof of Theorem 6.22, the determinant-independence test. Consider
the matrix A whose columns are a1, . . . ,an. Then for any c1, . . . , cn ∈ F we have

c1a1 +·· ·+ cnan = A

c1
...

cn

 .

det A 6= 0 =⇒ {a1, . . . ,an} independent. If det A 6= 0 then A is invertible. This implies
that N(A)= {0}. Suppose that there are c1, . . . , cn ∈ F with c1a1 +·· ·+ cnan = 0. Then



c =
( c1

...
cn

)
satisfies Ac = 0, so c ∈ N(A). Therefore c = 0, i.e. c1 = ·· · = cn = 0. This

implies that {a1, . . . ,an} is independent.

{a1, . . . ,an} independent implies det A 6= 0. Any c ∈ N(A) satisfies c1a1+·· ·+cnan = 0.
Since {a1, . . . ,an} is independent this implies c1 = ·· · = cn = 0, i.e. c = 0. We conclude
that N(A) = {0}. It follows that A is injective, and hence also that A is bijective
(because of the Bijectivity Theorem). Bijective means the same as invertible, so A is
invertible, and thus det A 6= 0.

A.10. Proof of the independence of eigenvectors. The proof goes by induction
on m.

A.10.1. The case m = 1: There is only one vector v1. Since v1 is an eigenvector we
have v1 6= 0. Therefore v1 is independent.

A.10.2. The induction step: Assume we have already proved the theorem for m−1.

Let v1, . . . ,vm be eigenvectors with different eigenvalues, and assume

c1v1 + c2v2 +·· · cmvm = 0.

Then we will show that c1 = ·· · = cm = 0.

Multiply the equation with A to get

A(c1v1 + c2v2 +·· · cmvm)= 0

=⇒ c1 Av1 + c2 Av2 +·· · cm Avm = 0

=⇒ c1λ1v1 + c2λ2v2 +·· · cmλmvm = 0

We can also multiply c1v1 + c2v2 +·· · cmvm = 0 with λm to get

c1λmv1 + c2λmv2 +·· · cmλmvm = 0

Subtract the last two equations:

c1(λ1 −λm)v1 +·· ·+ cm−1(λm−1 −λm)vm−1 = 0.

The vectors v1, . . . ,vm−1 are eigenvectors for A with distinct eigenvalues. The induc-
tion hypothesis implies that they are independent, and therefore we find

c1(λ1 −λm)= 0, c2(λ2 −λm)= 0, . . . cm−1(λm−1 −λm)= 0.

The eigenvalues are distinct, so λ1 −λm 6= 0, . . . , λm−1 −λm 6= 0. It follows that
c1 = ·· · = cm−1 = 0.

We still have to show that cm = 0. Since c1 = ·· · = cm−1 = 0 we have

c1v1 +·· ·+ cmvm = cmvm = 0.

The vector vm is an eigenvector so vm 6= 0. Therefore cmvm = 0 implies cm = 0.



A.11. Proof of the spectral theorem.

Lemma. Let v be an eigenvector of a self-adjoint operator A : V → V and consider
the set L = {x ∈V | x ⊥ v}. Then

• L is a linear subspace of V
• if dimV <∞ then dimL = dimV −1
• L is invariant under A, i.e. for all x ∈ L one has Ax ∈ L

Proof of the Lemma: an exercise.

To prove the Spectral theorem we use induction on n = dimV .

A is self-adjoint so all its eigenvalues are real. Let v be an eigenvector with eigen-
value λ ∈R: Av =λv and v 6= 0.

We may assume ‖v‖ = 1.

Define L = {x ∈ V | x ⊥ v}. The Lemma implies that L is invariant under A. Then
A : L → L is also self-adjoint and, since dimL < dimV , there is an orthonormal basis
{v1, . . . ,vn−1} of L consisting of eigenvectors of A.

Since v ⊥ {v1, . . . ,vn−1} the set {v1, . . . ,vn−1,v} is an orthonormal, and therefore lin-
early independent set of vectors in V . Moreover, the set {v1, . . . ,vn−1,v} contains
exactly dimV vectors, so that {v1, . . . ,vn−1,v} is a basis of V .
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