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1. SET THEORY

1.1. Definition (A = B). Two sets A and B are equal if they have the same elements,
i.e. for every x € A it is true that x € B, and for every x € B it is true that x € A.

1.2. Definition (A < B). A set A is a subset of a set B if every x € A also is an
element of B.

1.3. Definition (A UB). The union of two sets A and B is
AUB={x|x€A orxeB]}.

1.4. Definition (A NnB). The intersection of two sets A and B is
AnNnB={x|xe€A and x € B}.

1.5. Definition (A x B). The product of two sets A and B is the set of all pairs (a,b)
where a € A and b € B:
AxB= {(a,b) la€A,beB}.

2. VECTOR SPACES

2.1. Vector space axioms. (V,[F,+,-) defines a vector space if V is a set, F is a
number field, and if addition of elements of V' and multiplication of numbers and
vectors are defined so that they satisfy these axioms:

Commutativity: For allx,yeV onehasx+y=y+x

Associativity: For all x,y,z€V one has (x+y)+z=x+(y+2)

Zero vector: There is a Oy € V such that for all x € V one has x + 0y = x
Additive inverse: For each x € V there is a y € V such that x+ y =0y
Multiplicative identity: For each x € V one has 1px=x

Associative and distributive properties: For all a,b € F, and all x,y € V one has (ab)x =
a(bx), alx+y)=ax+ay, (a+b)x=ax+bx.

2.2. Definition (linear combination). A linear combination of vectors vy,vs,...,v, €
V is any vector of the form a1v; + -+ + a,v,, for any choice of numbers a1,...,a, €F.

2.3. Definition (basis). n vectors v1,...,v, € V are called a basis for V if for every
v €V there exists a unique n-tuple of numbers a1,...,a, €F withv=ajv1+:--+a,v,.
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2.4. Definition (generate, span). An n-tuple of vectors vy,...,v, € V generates V
if every v € V is a linear combination of v1,...,v,.

2.5. Definition (independence). An n-tuple of vectors v1,...,v, €V is linearly in-
dependent if the only linear combination civ +--- +cpv, with civy+---+c,v, =01is
the one where all coefficients are zero.

In symbols: Veq,...,cp€F:civ1+--+cpv, =0 = ¢c1=---=¢, =0

2.6. Theorem. Vectors vi,...,v, € V are linearly dependent if and only if one of the
vectors v; can be written as a linear combination of the others.

In other words, v1,...,v, € V are linearly dependent if and only if there is an i €
{1,2,...,n} and there are numbers a1,...,a¢;-1,a;+1,...,a, € F such that v; = ajv1 +
o Qi-10i-1 T @i+ 1Vi+1 + o H A Un.

2.7. Basis Selection Theorem. Ifvy,...,v, spans V then thereis a subsetv;,,...,v;
that is a basis for V.

P

2.8. Components of a vector with respect to a basis. Let u1,...,u, €V be given
vectors. Then uy,...,u, is a basis for V if and only if u1,...,u, is linearly indepen-
dent and spans V.

See Appendix A.1 for a proof.

The numbers x1,...,x, are called the components, or coefficients, of the vector x with
respect to the basis u1,...,u,.

3. LINEAR TRANSFORMATIONS

3.1. Definition — linear transformation. A map 7' : V — W from one vector space
V to another W is called linear if for all x,y € V and all a,b € F one has T(ax+by) =
aT(x)+bT(y).

3.2. Definition — the zero transformation. If V and W are vector spaces then
the map O : V — W defined by O(x) = Ow for all x € V is linear. O is called the zero
transformation.

3.3. Definition — the identity transformation. If V is a vector space then the
map I :V — V defined by I(x) = x for all x € V is called the identity transformation.

3.4. Theorem. If T',S :V — W are linear and if a € F then the maps T+S:V - W
and aT : V — W are linear. The set £(V,W) of linear maps T : V — W is a vector
space.



3.5. Theorem — the matrix of A :F"* — ™. Let ai1,...,amn € F be given numbers.
Then the map A : F* — [ defined by

X1 a11x1+t--+QainXn

X9 a21X1t: - +agpXn
(*) Al . |=

Xn Am1X1+ "+ AmpXn
is linear.

Conversely, if A :F* — " is a linear map then there exist numbers a11,...,amn €F
such that Ax is given by ().

The matrix of A is The equation (%) is written as a
ailr -t Qln matrix product
a1 -t Qon air ot Q1n
X1
ag1 -+ Q2
Ax =
Gm1 " C@mn
Xn
Aml *°° Qmn

3.6. Theorem — finding the matrix of A :F” — F™, If the linear map A :F* — F™

is given by (x) then columns of the matrix of A are the vectors Ae1, Aeg, ..., Ae,,
ie.
ail ail ail ail
az1 a2 a3 a2n
Aei=| . |, Aes=]| . |, Aeg= , .., Aep,=
Am1 Am2 Am3 Amn

Sometimes the following notation is used to express this:

I I I
A= Ael A62 Aen

The matrices of the zero and identity transformations are

0O 0 --- 0 1 0 --- 0
0O 0 --- 0 01 --- 0
O=|. . I=
0O 0 --- 0 o 0 --- 1

3.7. Definition — composition of linear transformations. If V,W, U are vector
spaces and if T:V — W and S : W — U are linear transformations, then the compo-
sition of S and 7' is the map SoT:V — U, with SoT(x)=S(T(x))

3.8. Theorem. The composition S o T is linear.



3.9. Theorem — matrix of the composition. If T :F* — F™ and S : F"* — F/ are
linear, and if their matrices are given by

t11 ... tin 811 .-- Sim
T=| B EE
tm1 --- tmn S¢e1 ... Seim
then the matrix of the composition S o T is given by the matrix product
811 ... S1im t11 ... tin
ST =
S¢1 ... Sem) \EIm1 ... tmn

The ij entry of ST is computed by taking the “dot product” of the i*" row of S with
the j* column of T, e.g.:

[T1]
[ST]

J [S]
i| — — — 2z —|=ila b ¢ d
o

z=ak+bl+cm+dn.
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3.10. Definition — injective, surjective, bijective. A linear transformation T :
V->Wis

e injective (one-to-one, 1-1) if for all x,y € V it is true that T'(x) = T'(y) implies

x=y
e surjective (onto) if for every w € W thereisav eV withTv =w
e bijective (invertible) if T' is both injective and surjective

3.11. Definition — the inverse. If the linear map 7 : V — W is bijective then its
inverse T~1: W — V is defined by

VeeW,yeV: T lx)=y < x=T(y).
3.12. Theorem. If T:V — W is bijective then the inverse T~ : W — V is linear.
3.13. Theorem. If T:V — W is bijective, then T 1o T =Iy and To T ! = I'y.

3.14. Theorem. If T:V — W is a linear map, then consider the equation Tx = y,
where y € W is given and x € V is unknown.

e If T is injective then the equation T'x = y has at most one solution.
e If T is surjective then the equation Tx = y has at least one solution.
o If T is bijective then the equation Tx = y has exactly one solution.

3.15. Definition — powers. If T:V — V is linear, then T%, the "™ power of T' is

k factors

——N—
defined by 7% =T -T-T---T if k is a positive integer. If T is invertible, then one also
defines T7* = (T’l)k.



3.16. Theorem — power law. T**! = T*T! for all £,/ e N and all T € £(V).

4. LINEAR SUBSPACES

4.1. Definition. Suppose V is a vector space. A subset W cV is a linear subspace
if it satisfies

o forall x,ye Wonehasx+yeW
e forallxe Wanda €F one hasaxeW
e 0eW

4.2. Theorem. IfV is a vector space then any linear subspace W c V is also a vector
space.
4.3. Examples — smallest and largest subspaces. For any vector space V

e V is a subspace of V

e the set {Oy} is a subspace of V'

4.4. Definition of Null Space and Range. If T:V — W is a linear map then the
null space of T is
N(T)={xeV |Tx=0w}
and the range of T is
R(T)={Tx|xeV}

The null space is sometimes also called the kernel of T' and one writes N(T') = ker(T).

4.5. Theorem. If T:V — W is linear then N(T) is a linear subspace of V and R(T)
is a linear subspace of W.

4.6. Definition. If V is a vector space and if vy,...,v, € V are given then the span
of v1,...,v, is the set of all linear combinations of vy,...,v,. In symbols:

span{vi,...,vp} ={a1v1+---+anv, las,...,an €F}
4.7. Theorem. span{vi,...,v,} is a linear subspace of V.
4.8. Injectivity Theorem. A linear map 7 :V — W is injective iff N(T') = {0}.

4.9. Surjectivity Theorem. A linear map 7 :V — W is surjective iff R(T)=W.

5. LINEAR INDEPENDENCE, BASES, AND DIMENSION

5.1. Definition of independence. A set of vectors {u1,...,u,} <V is linearly inde-
pendent if for any a1,...,a, € Fonehasajui+:---+a,u, =0 = a;=ag=---=a, =0.
5.2. Definition of basis. A set of vectors {u1,...,u,} <V is a basis for V if

e {ui,...,un}is linearly independent, and
e {ui,...,un} spans V.

“iff" is a common
abbreviation for
“if and only if”



5.3. Extension Theorem for Independent Sets. If uy,...,u, €V are linearly in-
dependent, and v € V, then

v espan(uy,...,u,) < Uui,...,U,,v are dependent

The proof is in Appendix A.2.

5.4. The Basis Selection Theorem. Ifu1,...,u, €V span the vector space V, then

there exist i1,...,i; €{1,...,n} such that {u;,,...,u;,} is a basis for V.
A proof'is in Appendix A.3.
5.5. The Dimension Theorem. If v4,...,v,, € span(uy,...,u,) and if vy,...,v,, are

linearly independent then m < n.

Appendix A.4 has the proof of this theorem.

5.6. First consequence of the Dimension Theorem. If{u1,...,u,}and {v1,...,v,}
both are bases of a vector space V, then m =n.

Proof. This is true because {v1,...,v,,} € span(uy,...,u,) and {v1,...,v,,} is linearly
independent, so the Dimension Theorem implies m < n.

On the other hand, u1,...,u, € span(vy,...,v,) and {u1,...,u,} is linearly indepen-
dent, so the Dimension Theorem implies n < m.

Since n <m and m < n we conclude n = m. m
5.7. Definition of dimension. If a vector space V has a basis {u1,...,u,} with n

elements, then n is the dimension of V..

If a vector space V has a basis with finitely many vectors then V is called finite
dimensional.

The Dimension Theorem and its corollary imply that the dimension as defined above
does not depend on which basis of V you consider.

5.8. Finite dimensional subspace theorem. If L cV is a linear subspace and V
is finite dimensional then dimL <dimV. If dimL =dimV then L = V.

5.9. Extending a basis of a subspace to a basis of the whole space. If LcV
is a linear subspace and V is finite dimensional, and if {vy,...,v;} € L is a basis for
L, then there exist vectors vg1,...,Un € V such that {v1,...,vs,041,...,Un} is a basis
for V.

5.10. Definition of the Rank and Nullity of a linear transformation. Let T :
V — W be a linear transformation.

The rank of T': V — W is the dimension of the range of T.
The nullity of 7': V — W is the dimension of the null space of T'.

5.11. Rank+Nullity Theorem. If T:V — W is linear, and if V is finite dimensional,
then
dimN(T)+dimR(T) =dimV.

See Appendix A.4 for the proof.



5.12. Bijectivity Theorem. IfV is a finite dimensional vector space, and if T: V —
V is a linear transformation then the following are equivalent:

(1) T is injective (one-to-one)
(2) N(T)=1{0}

(3) rankT =dimV

(4) T is surjective (onto)

6. DETERMINANTS
6.1. Permutations. A permutation of (1,2,...,n)is a sequence of n integers iy,...,i, €
{1,...,n} such that ij, #i; for all & #1.
For example, all possible permutations of (1,2,3) are

(1,2,3), (1,3,2), (2,1,3), (2,3,1), 3,1,2), (3,2,2).

There are n! permutations of (1,2,...,n).

6.2. Sign of a permutation. By definition, the number of inversions of a permu-
tation (i1,...,1,) is

5G1ynin) Sk <11ip > i)
A permutation (i1,i9,...,i,) is called even if 6(i1,...,i,) is even.
A permutation (i1,i9,...,i,) is called odd if 6(i1,...,i,) is odd.
The sign of the permutation (i1,...,i,) is defined to be

+1 if6(iq,...,i,) 18 even

€. = (_1)5(i1,i2,-~-,in) —
e ~1 if6(i1,...,in) is odd
The quantity €;,;,...;, is called the Levi-Civita symbol.

6.3. Definition of the determinant.
detA= ) €ijiyei, @1i,02iy Ani,
11,ee0sln

6.4. Properties of the sign ¢; ;,..; .

® Eiqipipin — €igipipin
o ifiq,...,ip <Tp41,...,0n then € iy, =€i1ify€ipy iy

6.5. What is the sign of a14a99a35043051 when you expand a 5x5 determinant?

@11 Q@12 ai3 ai4 ais
a21 Q@22 Q@23 Q24 Q25
@31 a3z2 ag3 az4 ass
@41 Q42 Q43 Q44 Q45
as51 @52 @53 Qas54 As5s

The question can be rephrased as: compute 49531



6.6. Special case — 2 x 2 determinants.

a b
c d

‘:ad—bc

6.7. Special case — 3 x 3 determinants.

aiy ag as
b1 bz b3 :a1b203—a1b302—a2b103 +a2b301 +a3b16‘2—a3b201
Ci1 C2 (3

6.8. Determinant of upper triangular matrices. If all entries of a matrix below
its diagonal are zero, then the determinant of the matrix is the product of its diagonal
entries:

all a12 .o .o aln
O a22 .o .o azn
0 0 a3z3 - agp|=a11a22:""Gnn
0 0 0 ann

6.9. Determinant of the identity matrix.

detl =1.

6.10. Determinant of block triangular matrices. If A is a k xk matrix, Ba k x!
matrix, and C an [ x [ matrix then

'AB

0 C‘ = (detA)(detC)

6.11. Determinant of the transpose. detA' =detA

6.12. Swapping rows or columns changes the sign. If B is the matrix you get by
swapping two rows, or by swapping two columns in the matrix A, then det A = —detB

Q1402035041053 Q1405032041053

o N
41// 75 ) w
857



6.13. The determinant as a function of its rows. If we have n row vectors
ai,...,a, €F", given by

ar=(enn a2 -+ ain),
ag=(ag1 aze -+ agn),
an :(anl (227 ann),
then we define
a1l a2 - Qip
a1 Qg - Qg

det(ai,as,...,a,) =
Anl Q@n2 - Qnn

One has for all ,b,a1,a9,...,a, € F* and t € F:

det(a + b,a9,as,...,a,) =det(a,as,as,...,a,)+det(b,as,as,...,ay)
det(ta,as,as,...,a,) =tdet(a,as,as,...,a,)
det(ay,...,ai,...,a;,...ap) = —detlay,...,aj,...,a;,...an)
det(ai,...,a;,...,ai,...a,)=0

det(ay,...,ai,...,a;,...ap) =det(ay,...,a;+taj,...,a;,...a,)

6.14. Cofactor expansion. The ij-minor of an n x n matrix A is the (n—1)x(n—1)
matrix obtained by deleting the i** row and j* column from A. Let us write A; ; for
the ij-minor of A.

The ij-cofactor of the matrix A is the number

cij= (—1)i+j detAi]’

6.15. Cofactor Expansion Theorem. If A =(a;;) is an n x n matrix, then one has
detA =a;ici1+aiocio+ - +ainCin

for any i €{1,2,...,n}.

A consequence of the cofactor expansion theorem is that if i # j then

a;1Ci1ta;2Ci2+ - +Qa;nCin =0.

6.16. Example. Expanding a 3 x 3 determinant along its middle row:

1 2 3
3 2 1| =ag1co1 +ageces +asgcog
-2 4 3
S T I

4 3 -2 3 -2 4



6.17. A formula to invert a matrix. For any n x n matrix A one has
ACT =CTA =(detA)I,

where C is the cofactor matrix of A. If det A # 0 then A is invertible, and the inverse

matrix is given by
1
-1 T
= C'.
detA

Proof: see Appendix A.6.

6.18. Cramer’s rule. For any y € " the solution of Ax = y is given by

Y1 a2 Qln a1l Y1 Aln ail ai2 Y1
y2 @22 ... a2n az1 Y2 ... Q2p azr a2 ... )2
Yn Qn2 ... Qnn anpl Yn .-~ Qnn apl QAn2 -~ Yn
x1= , X2 = L, e, Xp =
ailr @12 ... Qip ailp @12 ... Qip ailp @12 ... Qip
azi a2 a2n azi a2 a2n azi azz a2n
anl @np2 .- Qnn anl @np2 .- Qnn anl @n2 ... Qnn
A proofis in Appendix A.7.

6.19. Example — the inverse of a 2 x 2 matrix.
a b\' 1 (d -b
c d/ ad-bc\-c a

6.20. Determinant of a matrix product. For any two n x n matrices A and B one

has
det(AB) = det(A) det(B)

See Appendix A.8 for a proof.

6.21. Theorem. A is invertible < detA #0
The proof is short: If A is invertible then the matrix B = A~! satisfies AB = I. This
implies det(AB) =1 and hence (det A)(detB) = 1. Therefore detA #0.

Conversely, if det A # 0 then A is invertible because we have a formula for its inverse,

-1__CT
AT = A

6.22. The determinant independence test. Ifaq,...,a, € F” then
{ai,...,a,} is linearly independent < det(ay,...,a,)#0

The proof is in Appendix A.9.



7. EIGENVALUES, SPECTRAL THEORY

7.1. Definition. Let V be a vector space and A : V — V a linear transformation. If
v eV and A € F satisfy

Av=2A, v#0

then v is called an eigenvector of A and A is called an eigenvalue of A.

The set
Spec(A) dgf{/l | A is an eigenvalue of A}
is called the spectrum of A.

7.2. Theorem. If A:V — V is a linear transformation then

» v €V is an eigenvector of A with eigenvalue A < v#0andve N(AI -A)
» A €[ is an eigenvalue of A if and only if N(A1 — A) # {0}
» A €[ is an eigenvalue of A if and only if det(Al —A)=0

This theorem gives a method of finding all eigenvalues and vectors, namely:

e Compute the characteristic polynomial det(1] — A)

e Solve det(AI —A) =0 for A. Let 11, ..., Az be all the solutions you find

e For each i =1,...,k find all the vectors in N(A;I — A), i.e. solve L;v—Av =0
for v.

7.3. Finding eigenvalues/vectors for A : " — [". The characteristic polynomial
of A :F" — " is, by definition,

A-ay1  -apg - —ai
—ag1 A-agz -+ —ag

det(AI —A)=
—ail —aiz - A—apy

After expanding, this turns out to be a polynomial in A of degree n
det(Al —A) = A" +c1A" 4 oA 2+ -+ cp1 A+ cy
Here
—C1=a11taget: - +an,
is called the trace of the matrix A, and
(-1"c, =detA
is its determinant.
7.4. Independence of Eigenvectors Theorem. If vy,...,v,, € V are eigenvectors

of A:V — V with eigenvalues A1,...,A,,, and if the eigenvalues are distinct (i.e.
Ai # Aj for all i # j) then {vy,...,v,} is linearly independent.



7.5. The use of eigenvalues and vectors. If a vector v € V is known as a linear
combination of eigenvectors of A then it is easy to compute Av, A2v, etc. If
V=a1V1+ - -+aplg
where Av; = A;v;, then
Av=Naivi+---+Apapvp

A%y = )L?alvl +---+/lzakvk

Alv= A{alvl +-o 4 lzakvk
for any ¢ € N. If none of the eigenvalues A; vanishes then one solution of Aw =v is
given by

ail + +ak
Ww=-—v1+-+—Ug.
A Ak

For this to be useful we need to find as many eigenvectors as we can.

7.6. Solving a system of linear differential equations.

dxl
ar a11X1+ - +A1pXn
dxz x a a
E =ag1x1+---+aguxn dax 1 11 - Q1n
— —=Ax, x=('], A=]|":
. dt
: Xn Qnl Qnn
dxp,
W =Qp1X1+ -+ AppXn

If vy,...,v, are a basis of eigenvectors of A with eigenvalues 11,...,1,, then a solu-
tion is a vector function of the form

x(t)=c1(B)v1 +---+cp,(Dvy,.
()= c/l(t)vl +oe c;l(t)vn and Ax(t) = c1(H)A1v1 +---+cn(B)Anvp
The diffeq x’ = Ax is then equivalent with
c'l(t) =d1c1(®), ... ch(@®)=Ancn(t)
whose solutions are c1(£) = e*tc1(0), ..., c,(2) = eMtc,(0).
The solution x(¢) is therefore

x(t) = e’wcl(O)vl +-ee 4 ekntcn(O)vn
DIAGONALIZATION

Since the characteristic polynomial det(1/ — A) is a polynomial of degree n, it has at
most n zeroes. If it has n distinct zeroes, 11, ..., 1, then we choose an eigenvector
v; for each eigenvalue ;. The vectors vq,...,v, are linearly independent in F* and
therefore they form a basis for F”.



Diagonalization Theorem (version 1). If a linear transformation A:V — V has
abasis vy,...,v, € V of eigenvectors, with corresponding eigenvalues 14, ..., A,, then
the matrix of A with respect to this basis is

A0 0 .. 0
0 A 0 ... 0
Al 0 =|0 0 A3 .. 0
0 0 0 ... A&

This follows directly from the fact that Av; = A;v; for i =1,2,...,n.

Diagonalization Theorem (version 2). If an n xn matrix A has a basis vy,...,v, €
" of eigenvectors, with corresponding eigenvalues 11, ..., 1,, then we have

S~ 1AS=D,

| |
vl .o vn
| |

is the matrix whose columns are the eigenvectors, and D is the diagonal matrix

where

S =

A0 0 ... 0
0 2 0 .. 0
p=|0 0 13 ... ©
0 0 0 .. A

7.7. Definition - Similarity of linear transformations. Two linear transforma-
tions A:V —V and B : W — W are called similar if there is an invertible linear
transformation S : V — W such that

SA=BS, or A=S7'BS, or SAS™!=B.

The three conditions are equivalent.

8. INNER PRODUCT SPACES, SYMMETRIC MATRICES,
AND THEIR EIGENVALUES

In the theory of inner product spaces we assume that the number field [ is either the
real numbers or the complex numbers:

F=RorF=C

The theories for real and complex inner products are very similar.



8.1. Definition. An real inner product on a real vector space V is a real valued func-
tion on V x V usually written as (x,y) or (x, y) that satisfies the following properties

o (x,y) =(y,%)

o (ax,y) =alx,y)

e (x+y,2)=(x,2) +(y,2)
(x,x) >0if x #0

for all x,y,z€V and a € R.

8.2. Definition. A complex inner product on a complex vector space V is a complex
valued function on V x V', usually written as (x, y) or {x, y) that satisfies the following
properties

e (x,y) = (y,x) where Z is the complex conjugate of z € C
» {ax,y) =alx,y)

o (x+y,2)=(x,2) +(y,2)

(x,x)>0ifx #0

for all x,y,z€V and a € C.

8.3. Example — R"” and the dot product. On R” we have the dot-product from
vector calculus, i.e.

def
(x’y> :x.y = x1y1+...+xnyn
X1 Y1
for any two vectors x = ( ), y= ( )
Xn In
A variation on this example is the weighted dot product given by
def
X, Pw = W1X1Y1+- +WaXnYn

for all x,y € R”, and where w1,...,w, > 0 are given constants, called the weights in
the inner product.

x1
8.4. Example — C"” and the complex dot product. For any two vectors x = ( ),

Xn

1
y= ( ) € C" the complex dot product of x and y is defined by:
In

def _— J—
(X, y)=x-y = X1¥1+ "+ %nYn
8.5. Example — Inner product on a Function Space. Let V be the space of
continuous functions f :[0,1] — R. Then

def

1
{f,8) fo fg@®)dt

defines an inner product on V.

This kind of inner product plays a large role in Quantum Mechanics and in the theory
of Fourier series.



8.6. Inner Product when you have a Basis. If {vy,...,v,} is a basis for a complex
vector space, and if x,y € V satisfy
X=X101+ "+ XpUp, Y=Y1V1t: " -+YpUp,

then

non _ def
6, )=Y. Y gijxiy; where gi;<= (v;,v;).
i=1j=1

NORMS, DISTANCES, ANGLES, AND INEQUALITIES

8.7. Definition. Let V be a real or complex inner product space with inner product
(x,y). Then the norm (or length) of a vector x € V is

llxll = v/ {x, x).

Note that (x,x) is never negative, so the square root is always defined.

8.8. Theorem — properties of the length.

o x| >0forallxeV withx #0

e |lax| =lalllx| forallxeV anda €l

o [, = llxll iyl (the Cauchy-Schwarz inequality)
o lx+yl<lxl+lyl (the triangle inequality)

8.9. Definition. The distance between two vectors x,y € V is d(x,y) def lx = yll.

8.10. Definition. Two vectors x,y € V are said to be orthogonal if (x,y) = 0.
Notation: x L y means x,y are orthogonal.

In particular, the zero vector is orthogonal to every other vector, because (x,0) = 0 for
allxeV.

More generally, if V is a real inner product space, then the angle between two non-
zero vectors x,y € V is defined to be

(x,9)
lll Iyl

(x,y)
[ETNIRG

Z(x,y) def recos
The Cauchy-Schwarz inequality implies —1 < < 1 so the inverse cosine is al-
ways defined.

1
8.11. Example in R*. Find the lengths and the angle between the vectors u = (g)

3
-1

and v = ( % ) with respect to to the standard inner product on R*. Also find the

3
distance between u and v.

Solution: We have
lull = V12+02+22+32 = V14
vl = V(-1)2+22+12+32=V15
(w,v)=1-(-1)+0-2+2-1+3-3=10.




Therefore

Z(u,v) = arccos ————— = arccos ~46.3647...°

10
V14V15 V210

Finally, the distance between u and v is

lu—vll = V(@1 -(-1)2+(0-2)2+(2-1)2+(3-3)2 = V10.

8.12. Example in a function space. Find the lengths and angle between the func-
tions £(¢) = 1 and f(¢) = t2 in the real function space V = C([0, 1]) with inner product

(f,8) = [y F(Hg)dt.

Solution: By definition we have

||f||=\/f0112dt=\/1=1
||g||=\/fol(t2)2dt=\/f()lt4dt= é:%\/g

1
<f,g>:f 1-¢%dt=

1/3
1\/— 3

1

3
5

cos/(f,8)=——— \/_ = é(f,g):arccosg ~41.81...°

ORTHOGONAL SETS OF VECTORS

Let V be a real or complex inner product space

8.13. Definition. A set of vectors {v1,...,v3} =V is orthogonal if

e v; Z0for all i
ev;lvjforalli#j

An orthogonal set {v1,...,v3} €V is called orthonormal if |v;|| =1 for i =1,...,k.

8.14. Theorem. If {vy,...,v,} =V is orthogonal, then {v1,...,v,} is linearly indepen-
dent.

If, in addition, n = dimV, then {vq,...,v,} is a basis for V. In this case {v1,...,v,} is
called an orthogonal basis.

For vectors expressed in terms of an orthogonal basis one has the following formulas
for the inner product and norm: if x = xqv1+---+x,Up, ¥y = Y101+ + YUy, then
2 2 2
(X, ¥) =w1x1y1+ -+ WnXnYn, lxll® = wixy + -+ wnxy,
where the weights w; are given by w; = ||v; 2.

If the basis {v1,...,v,} is orthonormal, then w; = ||v; I2=1 for all i i, and thus

9y =x1y1+- X yn,  lxlZ=x2++a2
8.15. Theorem. Every finite dimensional inner product space has an orthonormal
basis.



8.16. Proof using the Gram-Schmidt procedure. Let {v1,...,v,,} be a basis of
V. Define

U1
w1 =01 ujl=——
vl
w2
wg =vg —(v2,u1) U1 ug =
lwell
ws
wg =v3—(vs,udui —(vg,ug)uy ug=
lwsll
and in general,
wj=vj=(vj,u)ur— = juj-1)uj-1,
W
u;= /
llw;l
Then {u1,...,u,} is an orthonormal basis of V. More precisely, by induction on j one

shows that

e w;j L{vy,...,vj-1} and hence u; 1 {vy,...,v;-1}
e span{vy,...,vj} =span{uq,...,u;}

The above procedure that created the orthonormal basis {u1,...,u,} from the given
basis {v1,...,v,} is called Gram—Schmidt orthognoalization.

EXAMPLES

8.17. Example — in the plane. The vectors (}) € R? and ( ;) € R? are orthogonal.
Therefore they are independent, and, since there are two of them, they form a basis
of R2. Since, they are orthogonal, G), (_11) is an orthogonal basis for R?.

On the other hand IIG)II = II(_ll)II =v2#1s0 G), (_11) is not an orthonormal basis for
R2.

8.18. Example — in R"” and C". The standard basis {eq,...,e,} is orthonormal and
hence is an orthonormal basis for R and also for C”.

8.19. Example — in a function space. Take F =R.

We define V to be the set of continuous functions f : R — R that are 2n-periodic,
i.e. all continuous functions f : R — R that satisfy

VxeR: f(x+2m) = f(x).

Then V is a real vector space, and one defines an inner product on V by setting
(f.8) = J&" Fgt)dt.
The set of functions
cost,cos2t,cos3t,...
is orthogonal. To prove this, compute the integrals

2m n ifn=m
cosntcosmtdt = .
0 0 ifn#m

We can add more functions to this set and still have an orthogonal set: the set of
functions

B: 1,cost,sint,cos2t,sin 2¢,cos 3¢,sin 3¢, ...
is also an orthogonal set in V.



The theory of Fourier series says that § is a “basis” for V, in the sense that every
function f € V can be written as

f(t)=ag+aicost+bisint+agcos2t+bgsin2t +agcos3t+bgsin3t+---

for suitable ag,a1,b1, -+ € R. This statement does not quite fit in the linear algebra
from this course because the sum above contains infinitely many terms.

THE ADJOINT OF A MATRIX

8.20. Definition. Let F=R or C. If A :F"* — " has matrix
a1 "t Qin
A=| At
Q@n1 ** Qnn
then the adjoint of A is the complex conjugate of the transpose of A, i.e.

ail 0 anl
AT =AT =

Qin *** Qnn

In the real case there is no need to take the complex conjugate, and for real matrices
onehas A*=AT.

8.21. Definition.

o Areal n x n matrix is called symmetricif A=AT.
e A complex n x n matrix is called Hermitian if A =AT.

In both cases the matrix, and the corresponding linear operator A : F* — " are called
self-adjoint.

8.22. Theorem. Let F =R or C. For any x,y € F” and any matrix A one has

(x,Ay)=(A"x,y)

8.23. Example. The matrices

(; 3) and (—Oz (lJ)

are Hermitian.

8.24. Theorem. All eigenvalues of a Hermitian matrix are real
Proof. If Av = Av, then
AMvl? = (Av,v) = (v,A*v) = (v, Av) = (v, Av) = A (,v) = Allv |,

Since ||v]| # 0, this implies A = X, i.e. 11is real.



8.25. Theorem. If A :F" — " is Hermitian and if v,w are eigenvectors correspond-
ing to different eigenvalues A # y, then v L w.

Proof. Since A is self adjoint, all its eigenvalues are real, and thus A,y € R.
We have Av = Av and Aw = pw, and therefore
Av,w) = (Av,w) = (v,Aw) = (v,pw) =T, w) = (v, w)

because u € R. We find
A= {v,w)=0.
The eigenvalues A and p are different, so A — p # 0. Therefore (v,w) = 0.

8.26. The Spectral Theorem. Let F =R or F=C, and let A : " — F” be Hermitian.
Then F"* has an orthonormal basis consisting of eigenvectors of A.

For a proof see appendix A.11.



APPENDIX A. PROOFS

A.1. Proof of the Components from a Basis Theorem. Suppose u1,...,u, is a
basis. By definition, every vector is a linear combination of u1,...,u,, so u1,...,u,
spans V.

Ifciui+---+cpup,=0,thenciu1+---+cpu,=0=0-u1+---+0-u, =0. Since u1,,u,
is a basis we the coefficients in the expansion are unique, i.e. ¢c1 =0, ..., ¢, =0.
Therefore the vectors are linearly independent.

Next, we show the converse: suppose u1,...,u, spans V and is linearly independent.

Then, for any vector x € V there exist numbers x1,...,x, € F such that
X=X1U1+---+xpUp.

The coefficients x1,...,x, are uniquely determined by the vectors x and uj,...,u,.

Namely, if xju1 +--+x,up = X1u1 + -+ + XU, then subtract x1u1, ..., x,u, from

both sides. We end up with (x} —x1)uy +---+ (x), — x,)u, = 0. Since uy,...,u, are

independent, this implies x1 =}, ..., x, = x},.

A.2. Proof of the Extension Theorem for Independent Sets. The theorem claims
“if and only if” so we have to prove two implications.
First we prove: v € span(uy,...,u,) = {ui,...,un,v} is linearly dependent.

Ifv e span(uy,...,u,) then there are ay,...,a, € F withv =ajui+---+a,u,. Therefore
—ajui—---—ayuy+v =0, so we have a nontrivial linear combination of {u1,...,u,,v}
that adds up to zero. Hence {u1,...,u,,v} is linearly dependent.

Next, we show: {u1,...,u,,v} is linearly dependent = v € span(u1,...,uy).

Suppose {u1,...,un,v} is linearly dependent. Then there exist a1,...,a,,b € F such
thataquq1+---+a,u,+bv =0, and such that at least one of the coefficients a1,...,a,,b
is nonzero.

If b = 0 then we have ajuj +---+a,u, =0. Since {u1,...,u,} is independent, this

implies a; =--- =a, =0, which is impossible because at least one of a1,...,a,,b does
not vanish.
Therefore b # 0. This implies that v = =% u; —--- - L u, € span(uy,...,un).

A.3. Proof of the Bases Selection Theorem. For any subset {i1,...,i3} <{1,...,n}

the vectors u;,,...,u;, either are independent or they are dependent.

Of all possible choices {i1,...,iz} = {1,...,n}for which the vectors u;,,...,u;, are in-
dependent, choose one with the largest possible 2. For any i € {1,...,n} with i #
i1,...,1 # i}, the vectors u;,,...,u;,,u; must be dependent. The Extension Theo-
rem 5.3 implies that u; € span(u;,...,u;,).

We have shown that every u; either is one of the u;,...,u;,, or else is a linear com-
bination of u;,,...,u;,.

Since every v € V is a linear combination of u1,...,u, it follows that v also is a linear
combination of u;,,...,u;,.

Hence u;,,...,u;, span V. Since they are also independent we have shown that
Uiy,...,U;, is a basis for V.



A.4. Proof of the dimension theorem. Statement of the theorem: If vq,...,v,, €
span(uy,...,uy,) and if vy,...,v,, are linearly independent then m < n.

We will show that if m > n and vy,...,v,, are linear combinations of u1,...,u,, then
{v1,...,um} is linearly dependent.

To do this we use mathematical induction on n.

We begin with the case n = 1. There is only one vector u1, and each v; and vg are
linear combinations of u1, i.e. multiples of u;. Thus for certain numbers ai,as € F
we have v; =ajui, vg=agui.Ifa; =0thenv;=0and {vy,ve}is dependent.

If a1 # 0 then we have —asvi+aivg +0-v3+---+0-v,, =0. Since a1 # 0 this is a
nontrivial linear combination of v1,...,v,, that adds up to zero. Hence {v1,...,v,,} is
dependent.

Next we consider the general case n > 1, and we assume that the case n—1 has already
been proven.

In this case each v; is a linear combination of the vectors u1,...,u,. So we have
V1 =ajiuy1t+---+aiplp

Vg =agiuit+---+tagulUp

Um =QpiUulrt+--+ampln
for certain numbers a11,...,am,, €F.

If all the coefficients a1,,a2n,...,am, = 0 then the v; are linear combinations of
Ui,...,Un—1. Since m > n we have m > n —1 and therefore the induction hypothe-
sis tells us that vy,...,v,, are linearly dependent.

We are left with the case in which one of the coefficients a1,,...,a,, does not vanish.
Assume that a1, # 0. Then we consider the vectors

_ Qa2n _ Amn
w9 =09——V1, ... W, =Uym— U1.
ain Q1n
The vectors wo,...,w,, are linear combinations of u1,...,u,-1. Since m-1>n-1

the induction hypothesis applies. We therefore know that we,...,w,, are linearly
dependent, i.e. there exist cg,...,cn, € F such that

cowg+ -+ cpwp, =0,
and such that at least one of ¢o,...,c;, does not vanish.

By substituting the definition of the w; in this linear combination, we find

a2n Amn

cz(vz——v1)+---+cm(vm— U1)=O
A1n A1n
This implies
as a
| g+ + e |vr Feovg -+ CpUp =0.
Q1n Q1n

Thus vy,...,U,, is linearly dependent.



A.5. Proof of the Rank+Nullity Theorem. Choose a basis {vy,...,v,} of the null
space N(T'). Then choose vectors v,+1,...,0, € V so that {vy,...,v;,0r41,...,Up} i @
basis for V. We will show that {Tv,+1,...,Tv,} is a basis for R(T'). The rank+nullity
formula then follows because we will have shown that dimV =n, dimN(T') = r, and

dimR(T)=n-r.

Tvyi1,...,Tv, spans R(T):

if y € R(T) then there is an x € V with y = Tx. We can write x = x1v1 + -+ + X, Up,.

Since Tvy =---=Tv, =0 we have
y=Tx=T(x1v1+ - +x,0,)
=xp 41TV 1+ +x, Ty
=Xp41Wrsl1+ T XpWh
€ span(Wy+1,...,Wy).

Tvr+1,...,Tv, is linearly independent:
Suppose ¢r41Wri1+ -+ cpwy, =0 for certain ¢p41,...,¢, €F. Then

T(Cr+1vr+1 teeet cnvn) =0,

which implies ¢, 110,41+ +cpv, € N(T). It follows that there are numbers c1,...

such that

Cr+1Up41+ -+ CpUp =C101+ -+ CrUp.

Since {v1,...,v,}1s a basis for V we conclude thatc1 =--- = ¢, =0. Hence Tv,,1,...

is linearly independent.

’Cr‘

> Tvn

A.6. Proof of the matrix inverse formula (Theorem 6.17). Let A = (a;;) and
C = (c;;) where c;; = (=1)i+J detA,-j. Consider B = AC. By definition of matrix

multiplication you have

Bij=ajicji+ +ainCjn

The expression on the right is what we get if we replace the j™ row of the matrix A

with (aj1 -+ @), i.e. with the i*® row of A.

If i # j then rows i and j in the resulting determinant are equal, so the determinant

vanishes: B;; =0 for all i # j.

If i = j then replacing row j with row i does nothing, and we just get detA: you get

B;; =detA for all i.

The result is

detA 0 0 0
0 detA 0 0
ACT — 0 0 detA --- 0 =(detA)I

0 0 0 detA



A.7. Proof of Cramer’s rule. Compute C'y:

€11 €21 - Cal) () Yici1+---+YnCnl
Cly=| : NIk :
Cin C2n *** Cnn) \Un YiCint "+ YnCnn

Our formula for the inverse of A implies that the solution x = A~ly is given by

yici1t-+YnCn1

X =
detA
Y1€in t "t YnCnn

Thus the i*® component x; of the solution is given by

i = Yiciit -+ YnCni
' detA

The numerator in this fraction is the determinant that we get by replacing the it
column in det A with the column vector y.

A.8. Proof that det AB =det A -detB. The short version of the proof uses block ma-
trix notation and goes like this:

add the first n columns B times

det(A)det(B) = ‘ :q 0 ‘ (

I B to the second n columns
~ ’ A AB‘
-I 0
-I A
=D o 4B
=(-1)"det(-I)det(AB)
= det(AB)

If we avoid block matrix notation then we get the following more detailed version of
the computation. By definition,

a1 a2 - a0 0 0
as1 age - ag, O o - 0
'A O‘_ anl QAn2 Ann O O O
-1 B -1 0 - 0 by big - binl
0o -1 0 bo1 b - bop
0 0 -1 bu1 bnz -+ bun

Add the first column b1; times to column (n + 1), the second column b1g times to
column (n + 2), etc, clearing out the top row in the b section. The result is:



a1 @12 -+ a1 autbin anbie - a1bn
a1 a2 -+ ag, agibi1 agibie -+ agbin
'A 0‘ @pl Qnz * Gpn @nib1r apibiz 0 anibin
I B |_1 o .. o 0 0 - 0
0 0 -1 bn1 bno bnn
Next clear out the second row in the b-section. We get
a1 a1z - a1p eibiitaiebr - a11bintaigba
a1 age - agp ag1biitagebar - as1biy +ageba
'A 0' Gnl Gp2 -+ Qnp @pibii+apzbar - @n1b1n +an2bor
-I Bl |1 o .. o0 0 0
0 -1 0 0 0
0 T | b1 Bun

Repeating this for the remaining rows in the b-section of the determinant, we end
up with

a1 a1z - 01p eubut-+abyr 0 aubi o +ainbas

a1 age - agp a21bii+--+agnbpr 0 a21bip +o-+agnban
‘A ()‘ @pl Qn2 ** Gpn @pibiit+c+appbpy 0 @p1binte+annbnn
-1 B -1 0 - 0 0 0

0 -1 0 0 0

0 0o .- -1 0 0

i.e. we have
A Ol |[A AB
-I B|" |-I 0]

A.9. Proof of Theorem 6.22, the determinant-independence test. Consider
the matrix A whose columns are a1,...,a,. Then for any c1,...,c, € F we have

C1
cia1+--+cpap=A

Cn

detA #0 = {a1,...,a,} independent. If det A # 0 then A is invertible. This implies
that N(A) = {0}. Suppose that there are c1,...,c, € F with c1a1 +---+cpa, =0. Then



C1
c= ( : ) satisfies Ac =0, so ¢ € N(A). Therefore ¢ =0, i.e. ¢1=---=c¢, =0. This

Cn
implies that {a1,...,a,} is independent.

{ai,...,a,} independent implies det A # 0. Any c € N(A) satisfies cia1+---+cpa, =0.
Since {a1,...,a,} is independent this implies ¢; =---=¢, =0, i.e. ¢ =0. We conclude
that N(A) = {0}. It follows that A is injective, and hence also that A is bijective
(because of the Bijectivity Theorem). Bijective means the same as invertible, so A is
invertible, and thus det A # 0.

A.10. Proof of the independence of eigenvectors. The proof goes by induction
on m.

A.10.1. The case m = 1: There is only one vector v;. Since v; is an eigenvector we
have vy #0. Therefore v; is independent.

A.10.2. The induction step: Assume we have already proved the theorem for m — 1.
Let vy,...,v,, be eigenvectors with different eigenvalues, and assume
c1U1 +coUo + -+ CpUm =0.
Then we will show that ¢c; =---=¢,, =0.
Multiply the equation with A to get
A(civi+cova+---CmUm) =0

= c1Avy+coAvg+---cpyAvy, =0

= c1A1v1 + coAv2 + - CpAmUm =0
We can also multiply civ1 + cove + -+ ¢pUm = 0 with A, to get

C1AmU1+Cco2Amua+ - CrnAmUm =0
Subtract the last two equations:
c1tA—Apvi++em—1m—1—Am)Vm-1=0.

The vectors vs,...,v,-1 are eigenvectors for A with distinct eigenvalues. The induc-
tion hypothesis implies that they are independent, and therefore we find

c1A1—-21,)=0, calo—A1,)=0, ... cm-1Am-1—An)=0.
The eigenvalues are distinct, so A1 — A, #0, ..., A1 —Am # 0. It follows that
c1='=cp-1=0.
We still have to show that ¢, =0. Since ¢1 =---=c¢;,—1 =0 we have

c1U1+  +CmUm =CmUm =0.

The vector v,, is an eigenvector so v,, # 0. Therefore ¢,,v,, =0 implies ¢,, =0.



A.11. Proof of the spectral theorem.

Lemma. Let v be an eigenvector of a self-adjoint operator A : V — V and consider
theset L ={x €V |x Lv}. Then

e L is a linear subspace of V
e if dimV <ocothen dimL =dimV -1
e L isinvariant under A, i.e. for all x € L one has Axe L

Proof of the Lemma: an exercise.
To prove the Spectral theorem we use induction on n =dimV.

A is self-adjoint so all its eigenvalues are real. Let v be an eigenvector with eigen-
value LeR: Av=Av and v #0.

We may assume |v] = 1.

Define L ={x € V | x L v}. The Lemma implies that L is invariant under A. Then
A :L — L is also self-adjoint and, since dimL < dimV, there is an orthonormal basis
{v1,...,un—1} of L consisting of eigenvectors of A.

Since v L {v1,...,v,-1} the set {v1,...,v,-1,0} is an orthonormal, and therefore lin-
early independent set of vectors in V. Moreover, the set {v1,...,v,-1,0} contains
exactly dimV vectors, so that {v1,...,v,-1,v} is a basis of V..
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