SUMMARY OF MATH 341

May 6, 2022

1. SET THEORY

1.1. Definition $(A=B)$. Two sets A and B are equal if they have the same elements, i.e. for every $x \in A$ it is true that $x \in B$, and for every $x \in B$ it is true that $x \in A$.
1.2. Definition $(A \subset B)$. A set A is a subset of a set B if every $x \in A$ also is an element of B.
1.3. Definition $(A \cup B)$. The union of two sets A and B is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

1.4. Definition $(A \cap B)$. The intersection of two sets A and B is

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

1.5. Definition $(A \times B)$. The product of two sets A and B is the set of all pairs (a, b) where $a \in A$ and $b \in B$:

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

2. VECTOR SPACES

2.1. Vector space axioms. $(V, \mathbb{F},+, \cdot)$ defines a vector space if V is a set, \mathbb{F} is a number field, and if addition of elements of V and multiplication of numbers and vectors are defined so that they satisfy these axioms:

Commutativity: For all $x, y \in V$ one has $x+y=y+x$
Associativity: For all $x, y, z \in V$ one has $(x+y)+z=x+(y+z)$
Zero vector: There is a $0_{V} \in V$ such that for all $x \in V$ one has $x+0_{V}=x$
Additive inverse: For each $x \in V$ there is a $y \in V$ such that $x+y=0_{V}$
Multiplicative identity: For each $x \in V$ one has $1_{\mathbb{F}} x=x$
Associative and distributive properties: For all $a, b \in \mathbb{F}$, and all $x, y \in V$ one has $(a b) x=$ $a(b x), \quad a(x+y)=a x+a y, \quad(a+b) x=a x+b x$.
2.2. Definition (linear combination). A linear combination of vectors $v_{1}, v_{2}, \ldots, v_{n} \in$ V is any vector of the form $a_{1} v_{1}+\cdots+a_{n} v_{n}$, for any choice of numbers $a_{1}, \ldots, a_{n} \in \mathbb{F}$.
2.3. Definition (basis). n vectors $v_{1}, \ldots, v_{n} \in V$ are called a basis for V if for every $v \in V$ there exists a unique n-tuple of numbers $a_{1}, \ldots, a_{n} \in \mathbb{F}$ with $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$.
2.4. Definition (generate, span). An n-tuple of vectors $v_{1}, \ldots, v_{n} \in V$ generates V if every $v \in V$ is a linear combination of v_{1}, \ldots, v_{n}.
2.5. Definition (independence). An n-tuple of vectors $v_{1}, \ldots, v_{n} \in V$ is linearly independent if the only linear combination $c_{1} v_{1}+\cdots+c_{n} v_{n}$ with $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$ is the one where all coefficients are zero.

In symbols: $\forall c_{1}, \ldots, c_{n} \in \mathbb{F}: c_{1} v_{1}+\cdots+c_{n} v_{n}=0 \Longrightarrow c_{1}=\cdots=c_{n}=0$
2.6. Theorem. Vectors $v_{1}, \ldots, v_{n} \in V$ are linearly dependent if and only if one of the vectors v_{i} can be written as a linear combination of the others.

In other words, $v_{1}, \ldots, v_{n} \in V$ are linearly dependent if and only if there is an $i \in$ $\{1,2, \ldots, n\}$ and there are numbers $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in \mathbb{F}$ such that $v_{i}=a_{1} v_{1}+$ $\cdots+a_{i-1} v_{i-1}+a_{i+1} v_{i+1}+\cdots+a_{n} v_{n}$.
2.7. Basis Selection Theorem. If v_{1}, \ldots, v_{n} spans V then there is a subset $v_{i_{1}}, \ldots, v_{i_{p}}$ that is a basis for V.
2.8. Components of a vector with respect to a basis. Let $u_{1}, \ldots, u_{n} \in V$ be given vectors. Then u_{1}, \ldots, u_{n} is a basis for V if and only if u_{1}, \ldots, u_{n} is linearly independent and spans V.

See Appendix A. 1 for a proof.
The numbers x_{1}, \ldots, x_{n} are called the components, or coefficients, of the vector x with respect to the basis u_{1}, \ldots, u_{n}.

3. Linear Transformations

3.1. Definition - linear transformation. A map $T: V \rightarrow W$ from one vector space V to another W is called linear if for all $x, y \in V$ and all $a, b \in \mathbb{F}$ one has $T(a x+b y)=$ $a T(x)+b T(y)$.
3.2. Definition - the zero transformation. If V and W are vector spaces then the map $O: V \rightarrow W$ defined by $O(x)=0_{W}$ for all $x \in V$ is linear. O is called the zero transformation.
3.3. Definition - the identity transformation. If V is a vector space then the map $I: V \rightarrow V$ defined by $I(x)=x$ for all $x \in V$ is called the identity transformation.
3.4. Theorem. If $T, S: V \rightarrow W$ are linear and if $a \in \mathbb{F}$ then the maps $T+S: V \rightarrow W$ and $a T: V \rightarrow W$ are linear. The set $\mathscr{L}(V, W)$ of linear maps $T: V \rightarrow W$ is a vector space.
3.5. Theorem - the matrix of $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$. Let $a_{11}, \ldots, a_{m n} \in \mathbb{F}$ be given numbers. Then the map $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ defined by

$$
A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right)
$$

is linear.
Conversely, if $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is a linear map then there exist numbers $a_{11}, \ldots, a_{m n} \in \mathbb{F}$ such that $A x$ is given by (\star).

$$
\begin{aligned}
& \text { The matrix of } A \text { is } \\
& \left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
\end{aligned}
$$

The equation (\star) is written as a matrix product

$$
A x=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

3.6. Theorem - finding the matrix of $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$. If the linear map $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is given by (\star) then columns of the matrix of A are the vectors $A e_{1}, A e_{2}, \ldots, A e_{n}$, i.e.

$$
A e_{1}=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right), \quad A e_{2}=\left(\begin{array}{c}
a_{11} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right), \quad A e_{3}=\left(\begin{array}{c}
a_{11} \\
a_{23} \\
\vdots \\
a_{m 3}
\end{array}\right), \quad \ldots, \quad A e_{n}=\left(\begin{array}{c}
a_{11} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
$$

Sometimes the following notation is used to express this:

$$
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A e_{1} & A e_{2} & \cdots & A e_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

The matrices of the zero and identity transformations are

$$
O=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \quad I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

3.7. Definition - composition of linear transformations. If V, W, U are vector spaces and if $T: V \rightarrow W$ and $S: W \rightarrow U$ are linear transformations, then the composition of S and T is the map $S \circ T: V \rightarrow U, \quad$ with $S \circ T(x)=S(T(x))$
3.8. Theorem. The composition $S \circ T$ is linear.
3.9. Theorem - matrix of the composition. If $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ and $S: \mathbb{F}^{m} \rightarrow \mathbb{F}^{\ell}$ are linear, and if their matrices are given by

$$
T=\left(\begin{array}{ccc}
t_{11} & \ldots & t_{1 n} \\
\vdots & & \vdots \\
t_{m 1} & \ldots & t_{m n}
\end{array}\right) \quad S=\left(\begin{array}{ccc}
s_{11} & \ldots & s_{1 m} \\
\vdots & & \vdots \\
s_{\ell 1} & \ldots & s_{\ell m}
\end{array}\right)
$$

then the matrix of the composition $S \circ T$ is given by the matrix product

$$
S T=\left(\begin{array}{ccc}
s_{11} & \ldots & s_{1 m} \\
\vdots & & \vdots \\
s_{\ell 1} & \ldots & s_{\ell m}
\end{array}\right)\left(\begin{array}{ccc}
t_{11} & \ldots & t_{1 n} \\
\vdots & & \vdots \\
t_{m 1} & \ldots & t_{m n}
\end{array}\right)
$$

The $i j$ entry of $S T$ is computed by taking the "dot product" of the $i^{\text {th }}$ row of S with the $j^{\text {th }}$ column of T, e.g.:

$$
\begin{aligned}
& z=a k+b l+c m+d n .
\end{aligned}
$$

3.10. Definition - injective, surjective, bijective. A linear transformation T : $V \rightarrow W$ is

- injective (one-to-one, 1-1) if for all $x, y \in V$ it is true that $T(x)=T(y)$ implies $x=y$
- surjective (onto) if for every $w \in W$ there is a $v \in V$ with $T v=w$
- bijective (invertible) if T is both injective and surjective
3.11. Definition - the inverse. If the linear map $T: V \rightarrow W$ is bijective then its inverse $T^{-1}: W \rightarrow V$ is defined by

$$
\forall x \in W, y \in V: \quad T^{-1}(x)=y \Longleftrightarrow x=T(y) .
$$

3.12. Theorem. If $T: V \rightarrow W$ is bijective then the inverse $T^{-1}: W \rightarrow V$ is linear.
3.13. Theorem. If $T: V \rightarrow W$ is bijective, then $T^{-1} \circ T=I_{V}$ and $T \circ T^{-1}=I_{W}$.
3.14. Theorem. If $T: V \rightarrow W$ is a linear map, then consider the equation $T x=y$, where $y \in W$ is given and $x \in V$ is unknown.

- If T is injective then the equation $T x=y$ has at most one solution.
- If T is surjective then the equation $T x=y$ has at least one solution.
- If T is bijective then the equation $T x=y$ has exactly one solution.
3.15. Definition - powers. If $T: V \rightarrow V$ is linear, then T^{k}, the $k^{\text {th }}$ power of T is defined by $T^{k}=\overbrace{T \cdot T \cdot T \cdots T}^{k \text { factors }}$ if k is a positive integer. If T is invertible, then one also defines $T^{-k}=\left(T^{-1}\right)^{k}$.
3.16. Theorem - power law. $T^{k+l}=T^{k} T^{l}$ for all $k, l \in \mathbb{N}$ and all $T \in \mathscr{L}(V)$.

4. Linear Subspaces

4.1. Definition. Suppose V is a vector space. A subset $W \subset V$ is a linear subspace if it satisfies

- for all $x, y \in W$ one has $x+y \in W$
- for all $x \in W$ and $a \in \mathbb{F}$ one has $a x \in W$
- $0 \in W$
4.2. Theorem. If V is a vector space then any linear subspace $W \subset V$ is also a vector space.
4.3. Examples - smallest and largest subspaces. For any vector space V
- V is a subspace of V
- the set $\left\{0_{V}\right\}$ is a subspace of V
4.4. Definition of Null Space and Range. If $T: V \rightarrow W$ is a linear map then the null space of T is

$$
N(T)=\left\{x \in V \mid T x=0_{W}\right\}
$$

and the range of T is

$$
R(T)=\{T x \mid x \in V\} .
$$

The null space is sometimes also called the kernel of T and one writes $N(T)=\operatorname{ker}(T)$.
4.5. Theorem. If $T: V \rightarrow W$ is linear then $N(T)$ is a linear subspace of V and $R(T)$ is a linear subspace of W.
4.6. Definition. If V is a vector space and if $v_{1}, \ldots, v_{n} \in V$ are given then the span of v_{1}, \ldots, v_{n} is the set of all linear combinations of v_{1}, \ldots, v_{n}. In symbols:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\left\{a_{1} v_{1}+\cdots+a_{n} v_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{F}\right\}
$$

4.7. Theorem. $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a linear subspace of V.
4.8. Injectivity Theorem. A linear map $T: V \rightarrow W$ is injective iff $N(T)=\{0\}$.
4.9. Surjectivity Theorem. A linear map $T: V \rightarrow W$ is surjective iff $R(T)=W$.
"iff" is a common abbreviation for "if and only if"

5. Linear independence, Bases, and Dimension

5.1. Definition of independence. A set of vectors $\left\{u_{1}, \ldots, u_{n}\right\} \subset V$ is linearly independent if for any $a_{1}, \ldots, a_{n} \in \mathbb{F}$ one has $a_{1} u_{1}+\cdots+a_{n} u_{n}=0 \Longrightarrow a_{1}=a_{2}=\cdots=a_{n}=0$.
5.2. Definition of basis. A set of vectors $\left\{u_{1}, \ldots, u_{n}\right\} \subset V$ is a basis for V if

- $\left\{u_{1}, \ldots, u_{n}\right\}$ is linearly independent, and
- $\left\{u_{1}, \ldots, u_{n}\right\}$ spans V.
5.3. Extension Theorem for Independent Sets. If $u_{1}, \ldots, u_{n} \in V$ are linearly independent, and $v \in V$, then

$$
v \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right) \Longleftrightarrow u_{1}, \ldots, u_{n}, v \text { are dependent }
$$

The proof is in Appendix A.2.
5.4. The Basis Selection Theorem. If $u_{1}, \ldots, u_{n} \in V$ span the vector space V, then there exist $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ such that $\left\{u_{i_{1}}, \ldots, u_{i_{k}}\right\}$ is a basis for V.

A proof is in Appendix A.3.
5.5. The Dimension Theorem. If $v_{1}, \ldots, v_{m} \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$ and if v_{1}, \ldots, v_{m} are linearly independent then $m \leq n$.
Appendix A. 4 has the proof of this theorem.
5.6. First consequence of the Dimension Theorem. If $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ both are bases of a vector space V, then $m=n$.

Proof. This is true because $\left\{v_{1}, \ldots, v_{m}\right\} \subset \operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent, so the Dimension Theorem implies $m \leq n$.

On the other hand, $u_{1}, \ldots, u_{n} \in \operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$ and $\left\{u_{1}, \ldots, u_{n}\right\}$ is linearly independent, so the Dimension Theorem implies $n \leq m$.
Since $n \leq m$ and $m \leq n$ we conclude $n=m$.
5.7. Definition of dimension. If a vector space V has a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ with n elements, then n is the dimension of V.
If a vector space V has a basis with finitely many vectors then V is called finite dimensional.

The Dimension Theorem and its corollary imply that the dimension as defined above does not depend on which basis of V you consider.
5.8. Finite dimensional subspace theorem. If $L \subset V$ is a linear subspace and V is finite dimensional then $\operatorname{dim} L \leq \operatorname{dim} V$. If $\operatorname{dim} L=\operatorname{dim} V$ then $L=V$.
5.9. Extending a basis of a subspace to a basis of the whole space. If $L \subset V$ is a linear subspace and V is finite dimensional, and if $\left\{v_{1}, \ldots, v_{k}\right\} \subset L$ is a basis for L, then there exist vectors $v_{k+1}, \ldots, v_{n} \in V$ such that $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is a basis for V.
5.10. Definition of the Rank and Nullity of a linear transformation. Let T : $V \rightarrow W$ be a linear transformation.

The rank of $T: V \rightarrow W$ is the dimension of the range of T.
The nullity of $T: V \rightarrow W$ is the dimension of the null space of T.
5.11. Rank+Nullity Theorem. If $T: V \rightarrow W$ is linear, and if V is finite dimensional, then

$$
\operatorname{dim} N(T)+\operatorname{dim} R(T)=\operatorname{dim} V
$$

See Appendix A. 4 for the proof.
5.12. Bijectivity Theorem. If V is a finite dimensional vector space, and if $T: V \rightarrow$ V is a linear transformation then the following are equivalent:
(1) T is injective (one-to-one)
(2) $N(T)=\{0\}$
(3) $\operatorname{rank} T=\operatorname{dim} V$
(4) T is surjective (onto)

6. Determinants

6.1. Permutations. A permutation of $(1,2, \ldots, n)$ is a sequence of n integers $i_{1}, \ldots, i_{n} \in$ $\{1, \ldots, n\}$ such that $i_{k} \neq i_{l}$ for all $k \neq l$.

For example, all possible permutations of $(1,2,3)$ are

$$
(1,2,3), \quad(1,3,2), \quad(2,1,3), \quad(2,3,1), \quad(3,1,2), \quad(3,2,2) .
$$

There are n ! permutations of $(1,2, \ldots, n)$.
6.2. Sign of a permutation. By definition, the number of inversions of a permutation $\left(i_{1}, \ldots, i_{n}\right)$ is

$$
\delta\left(i_{1}, \ldots, i_{n}\right) \stackrel{\text { def }}{=} \#\left\{k<l \mid i_{k}>i_{l}\right\}
$$

A permutation ($i_{1}, i_{2}, \ldots, i_{n}$) is called even if $\delta\left(i_{1}, \ldots, i_{n}\right)$ is even.
A permutation ($i_{1}, i_{2}, \ldots, i_{n}$) is called odd if $\delta\left(i_{1}, \ldots, i_{n}\right)$ is odd.
The sign of the permutation $\left(i_{1}, \ldots, i_{n}\right)$ is defined to be

$$
\epsilon_{i_{1} i_{2} \cdots i_{n}}=(-1)^{\delta\left(i_{1}, i_{2}, \ldots, i_{n}\right)}= \begin{cases}+1 & \text { if } \delta\left(i_{1}, \ldots, i_{n}\right) \text { is even } \\ -1 & \text { if } \delta\left(i_{1}, \ldots, i_{n}\right) \text { is odd }\end{cases}
$$

The quantity $\epsilon_{i_{1} i_{2} \cdots i_{n}}$ is called the Levi-Civita symbol.

6.3. Definition of the determinant.

$$
\operatorname{det} A=\sum_{i_{1}, \ldots, i_{n}} \epsilon_{i_{1} i_{2} \cdots i_{n}} a_{1 i_{1}} a_{2 i_{2}} \cdots a_{n i_{n}}
$$

6.4. Properties of the $\operatorname{sign} \epsilon_{i_{1} i_{2} \cdots i_{n}}$.

- $\epsilon_{i_{1} \cdots i_{k} \cdots i_{\ell} \cdots i_{n}}=-\epsilon_{i_{1} \cdots i_{\ell} \cdots i_{k} \cdots i_{n}}$
- if $i_{1}, \ldots, i_{k}<i_{k+1}, \ldots, i_{n}$ then $\epsilon_{i_{1} i_{2} \cdots i_{n}}=\epsilon_{i_{1} \cdots i_{k}} \epsilon_{i_{k+1} \cdots i_{n}}$
6.5. What is the sign of $a_{14} a_{22} a_{35} a_{43} a_{51}$ when you expand a 5×5 determinant?
$\left|\begin{array}{lllll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55}\end{array}\right|$

The question can be rephrased as: compute ϵ_{42531}
6.6. Special case -2×2 determinants.

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

6.7. Special case -3×3 determinants.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
$$

6.8. Determinant of upper triangular matrices. If all entries of a matrix below its diagonal are zero, then the determinant of the matrix is the product of its diagonal entries:

$$
\left|\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & a_{n n}
\end{array}\right|=a_{11} a_{22} \cdots a_{n n}
$$

6.9. Determinant of the identity matrix.

$$
\operatorname{det} I=1
$$

6.10. Determinant of block triangular matrices. If A is a $k \times k$ matrix, B a $k \times l$ matrix, and C an $l \times l$ matrix then

$$
\left|\begin{array}{cc}
A & B \\
0 & C
\end{array}\right|=(\operatorname{det} A)(\operatorname{det} C)
$$

6.11. Determinant of the transpose. $\operatorname{det} A^{\top}=\operatorname{det} A$
6.12. Swapping rows or columns changes the sign. If B is the matrix you get by swapping two rows, or by swapping two columns in the matrix A, then $\operatorname{det} A=-\operatorname{det} B$

6.13. The determinant as a function of its rows. If we have n row vectors $a_{1}, \ldots, a_{n} \in \mathbb{F}^{n}$, given by

$$
\begin{gathered}
a_{1}=\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right), \\
a_{2}=\left(\begin{array}{llll}
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right), \\
\vdots \\
\\
\\
a_{n}=\left(\begin{array}{llll}
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right),
\end{gathered}
$$

then we define

$$
\operatorname{det}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

One has for all $a, b, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}^{n}$ and $t \in \mathbb{F}$:

$$
\begin{aligned}
\operatorname{det}\left(a+b, a_{2}, a_{3}, \ldots, a_{n}\right) & =\operatorname{det}\left(a, a_{2}, a_{3}, \ldots, a_{n}\right)+\operatorname{det}\left(b, a_{2}, a_{3}, \ldots, a_{n}\right) \\
\operatorname{det}\left(t a, a_{2}, a_{3}, \ldots, a_{n}\right) & =t \operatorname{det}\left(a, a_{2}, a_{3}, \ldots, a_{n}\right) \\
\operatorname{det}\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots a_{n}\right) & =-\operatorname{det}\left(a_{1}, \ldots, a_{j}, \ldots, a_{i}, \ldots a_{n}\right) \\
\operatorname{det}\left(a_{1}, \ldots, a_{i}, \ldots, a_{i}, \ldots a_{n}\right) & =0 \\
\operatorname{det}\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots a_{n}\right) & =\operatorname{det}\left(a_{1}, \ldots, a_{i}+t a_{j}, \ldots, a_{j}, \ldots a_{n}\right)
\end{aligned}
$$

6.14. Cofactor expansion. The $i j$-minor of an $n \times n$ matrix A is the $(n-1) \times(n-1)$ matrix obtained by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column from A. Let us write $\tilde{A}_{i j}$ for the $i j$-minor of A.

The $i j$-cofactor of the matrix A is the number

$$
c_{i j}=(-1)^{i+j} \operatorname{det} \tilde{A}_{i j}
$$

6.15. Cofactor Expansion Theorem. If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix, then one has

$$
\operatorname{det} A=a_{i 1} c_{i 1}+a_{i 2} c_{i 2}+\cdots+a_{i n} c_{i n}
$$

for any $i \in\{1,2, \ldots, n\}$.
A consequence of the cofactor expansion theorem is that if $i \neq j$ then

$$
a_{j 1} c_{i 1}+a_{j 2} c_{i 2}+\cdots+a_{j n} c_{i n}=0
$$

6.16. Example. Expanding a 3×3 determinant along its middle row:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
-2 & 4 & 3
\end{array}\right| & =a_{21} c_{21}+a_{22} c_{22}+a_{23} c_{23} \\
& =-3 \cdot\left|\begin{array}{ll}
2 & 3 \\
4 & 3
\end{array}\right|+2 \cdot\left|\begin{array}{cc}
1 & 3 \\
-2 & 3
\end{array}\right|-1 \cdot\left|\begin{array}{cc}
1 & 2 \\
-2 & 4
\end{array}\right|=\cdots
\end{aligned}
$$

6.17. A formula to invert a matrix. For any $n \times n$ matrix A one has

$$
A C^{\top}=C^{\top} A=(\operatorname{det} A) I,
$$

where C is the cofactor matrix of A. If $\operatorname{det} A \neq 0$ then A is invertible, and the inverse matrix is given by

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{\top}
$$

Proof: see Appendix A.6.
6.18. Cramer's rule. For any $y \in \mathbb{F}^{n}$ the solution of $A x=y$ is given by

$$
x_{1}=\frac{\left|\begin{array}{llll}
y_{1} & a_{12} & \ldots & a_{1 n} \\
y_{2} & a_{22} & \ldots & a_{2 n} \\
y_{n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|}{\left|\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|, \quad x_{2}}=\frac{\left|\begin{array}{cccc}
a_{11} & y_{1} & \ldots & a_{1 n} \\
a_{21} & y_{2} & \ldots & a_{2 n} \\
a_{n 1} & y_{n} & \ldots & a_{n n}
\end{array}\right|}{\left|\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \ldots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|}, \ldots, \left.\quad x_{n}=\frac{\left\lvert\, \begin{array}{lll}
a_{11} & a_{12} & \ldots \\
a_{21} & a_{22} & \ldots \\
a_{2} \\
a_{2} & a_{2} \\
a_{n 1} & a_{n 2} & \ldots
\end{array} y_{n}\right.}{} \right\rvert\,
$$

A proof is in Appendix A.7.

6.19. Example - the inverse of a 2×2 matrix.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

6.20. Determinant of a matrix product. For any two $n \times n$ matrices A and B one has

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

See Appendix A. 8 for a proof.
6.21. Theorem. A is invertible $\Longleftrightarrow \operatorname{det} A \neq 0$

The proof is short: If A is invertible then the matrix $B=A^{-1}$ satisfies $A B=I$. This implies $\operatorname{det}(A B)=1$ and hence $(\operatorname{det} A)(\operatorname{det} B)=1$. Therefore $\operatorname{det} A \neq 0$.

Conversely, if $\operatorname{det} A \neq 0$ then A is invertible because we have a formula for its inverse, $A^{-1}=\frac{C^{\top}}{\operatorname{det} A}$.
6.22. The determinant independence test. If $a_{1}, \ldots, a_{n} \in \mathbb{F}^{n}$ then

$$
\left\{a_{1}, \ldots, a_{n}\right\} \text { is linearly independent } \Longleftrightarrow \operatorname{det}\left(a_{1}, \ldots, a_{n}\right) \neq 0
$$

The proof is in Appendix A.9.

7. Eigenvalues, Spectral Theory

7.1. Definition. Let V be a vector space and $A: V \rightarrow V$ a linear transformation. If $v \in V$ and $\lambda \in \mathbb{F}$ satisfy

$$
A v=\lambda v, \quad v \neq 0
$$

then v is called an eigenvector of A and λ is called an eigenvalue of A.
The set

$$
\operatorname{Spec}(A) \stackrel{\text { def }}{=}\{\lambda \mid \lambda \text { is an eigenvalue of } A\}
$$

is called the spectrum of A.
7.2. Theorem. If $A: V \rightarrow V$ is a linear transformation then

- $v \in V$ is an eigenvector of A with eigenvalue $\lambda \Longleftrightarrow v \neq 0$ and $v \in N(\lambda I-A)$
- $\lambda \in \mathbb{F}$ is an eigenvalue of A if and only if $N(\lambda I-A) \neq\{0\}$
- $\lambda \in \mathbb{F}$ is an eigenvalue of A if and only if $\operatorname{det}(\lambda I-A)=0$

This theorem gives a method of finding all eigenvalues and vectors, namely:

- Compute the characteristic polynomial $\operatorname{det}(\lambda I-A)$
- Solve $\operatorname{det}(\lambda I-A)=0$ for λ. Let $\lambda_{1}, \ldots, \lambda_{k}$ be all the solutions you find
- For each $i=1, \ldots, k$ find all the vectors in $N\left(\lambda_{i} I-A\right)$, i.e. solve $\lambda_{i} v-A v=0$ for v.
7.3. Finding eigenvalues/vectors for $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$. The characteristic polynomial of $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is, by definition,

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc}
\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\
& & \ddots & \\
-a_{11} & -a_{12} & \cdots & \lambda-a_{n n}
\end{array}\right|
$$

After expanding, this turns out to be a polynomial in λ of degree n

$$
\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}
$$

Here

$$
-c_{1}=a_{11}+a_{22}+\cdots+a_{n n}
$$

is called the trace of the matrix A, and

$$
(-1)^{n} c_{n}=\operatorname{det} A
$$

is its determinant.
7.4. Independence of Eigenvectors Theorem. If $v_{1}, \ldots, v_{m} \in V$ are eigenvectors of $A: V \rightarrow V$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, and if the eigenvalues are distinct (i.e. $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$) then $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.
7.5. The use of eigenvalues and vectors. If a vector $v \in V$ is known as a linear combination of eigenvectors of A then it is easy to compute $A v, A^{2} v$, etc. If

$$
v=a_{1} v_{1}+\cdots+a_{k} v_{k}
$$

where $A v_{i}=\lambda_{i} v_{i}$, then

$$
\begin{gathered}
A v=\lambda_{1} a_{1} v_{1}+\cdots+\lambda_{k} a_{k} v_{k} \\
A^{2} v=\lambda_{1}^{2} a_{1} v_{1}+\cdots+\lambda_{k}^{2} a_{k} v_{k} \\
\vdots \\
A^{\ell} v=\lambda_{1}^{\ell} a_{1} v_{1}+\cdots+\lambda_{k}^{\ell} a_{k} v_{k}
\end{gathered}
$$

for any $\ell \in \mathbb{N}$. If none of the eigenvalues λ_{i} vanishes then one solution of $A w=v$ is given by

$$
w=\frac{a_{1}}{\lambda_{1}} v_{1}+\cdots+\frac{a_{k}}{\lambda_{k}} v_{k}
$$

For this to be useful we need to find as many eigenvectors as we can.

7.6. Solving a system of linear differential equations.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
& \frac{d x_{2}}{d t}=a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\
& \quad \vdots \\
& \frac{d x_{n}}{d t}=a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

If v_{1}, \ldots, v_{n} are a basis of eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then a solution is a vector function of the form

$$
\begin{gathered}
x(t)=c_{1}(t) v_{1}+\cdots+c_{n}(t) v_{n} \\
x^{\prime}(t)=c_{1}^{\prime}(t) v_{1}+\cdots+c_{n}^{\prime}(t) v_{n} \text { and } A x(t)=c_{1}(t) \lambda_{1} v_{1}+\cdots+c_{n}(t) \lambda_{n} v_{n}
\end{gathered}
$$

The diffeq $x^{\prime}=A x$ is then equivalent with

$$
c_{1}^{\prime}(t)=\lambda_{1} c_{1}(t), \quad \ldots \quad c_{n}^{\prime}(t)=\lambda_{n} c_{n}(t)
$$

whose solutions are $c_{1}(t)=e^{\lambda_{1} t} c_{1}(0), \ldots, c_{n}(t)=e^{\lambda_{n} t} c_{n}(0)$.
The solution $x(t)$ is therefore

$$
x(t)=e^{\lambda_{1} t} c_{1}(0) v_{1}+\cdots+e^{\lambda_{n} t} c_{n}(0) v_{n}
$$

Diagonalization

Since the characteristic polynomial $\operatorname{det}(\lambda I-A)$ is a polynomial of degree n, it has at most n zeroes. If it has n distinct zeroes, $\lambda_{1}, \ldots, \lambda_{n}$ then we choose an eigenvector v_{i} for each eigenvalue λ_{i}. The vectors v_{1}, \ldots, v_{n} are linearly independent in \mathbb{F}^{n} and therefore they form a basis for \mathbb{F}^{n}.

Diagonalization Theorem (version 1). If a linear transformation $A: V \rightarrow V$ has a basis $v_{1}, \ldots, v_{n} \in V$ of eigenvectors, with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the matrix of A with respect to this basis is

$$
[A]_{v_{1}, \ldots, v_{n}}=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
0 & 0 & \lambda_{3} & \ldots & 0 \\
& & & \ddots & \\
0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

This follows directly from the fact that $A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, n$.

Diagonalization Theorem (version 2). If an $n \times n$ matrix A has a basis $v_{1}, \ldots, v_{n} \in$ \mathbb{F}^{n} of eigenvectors, with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then we have

$$
S^{-1} A S=D
$$

where

$$
S=\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right]
$$

is the matrix whose columns are the eigenvectors, and D is the diagonal matrix

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
0 & 0 & \lambda_{3} & \ldots & 0 \\
& & & \ddots & \\
0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

7.7. Definition - Similarity of linear transformations. Two linear transformations $A: V \rightarrow V$ and $B: W \rightarrow W$ are called similar if there is an invertible linear transformation $S: V \rightarrow W$ such that

$$
S A=B S, \text { or } A=S^{-1} B S, \text { or } S A S^{-1}=B
$$

The three conditions are equivalent.

8. Inner product spaces, Symmetric Matrices, and their Eigenvalues

In the theory of inner product spaces we assume that the number field \mathbb{F} is either the real numbers or the complex numbers:

$$
\mathbb{F}=\mathbb{R} \text { or } \mathbb{F}=\mathbb{C}
$$

The theories for real and complex inner products are very similar.
8.1. Definition. An real inner product on a real vector space V is a real valued function on $V \times V$, usually written as (x, y) or $\langle x, y\rangle$ that satisfies the following properties

- $\langle x, y\rangle=\langle y, x\rangle$
- $\langle a x, y\rangle=a\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
- $\langle x, x\rangle>0$ if $x \neq 0$
for all $x, y, z \in V$ and $a \in \mathbb{R}$.
8.2. Definition. A complex inner product on a complex vector space V is a complex valued function on $V \times V$, usually written as (x, y) or $\langle x, y\rangle$ that satisfies the following properties
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$ where \bar{z} is the complex conjugate of $z \in \mathbb{C}$
- $\langle a x, y\rangle=a\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
- $\langle x, x\rangle>0$ if $x \neq 0$
for all $x, y, z \in V$ and $a \in \mathbb{C}$.
8.3. Example - \mathbb{R}^{n} and the dot product. On \mathbb{R}^{n} we have the dot-product from vector calculus, i.e.

$$
\langle x, y\rangle=x \cdot y \stackrel{\text { def }}{=} x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

for any two vectors $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$.
A variation on this example is the weighted dot product given by

$$
\langle x, y\rangle_{w} \stackrel{\text { def }}{=} w_{1} x_{1} y_{1}+\cdots+w_{n} x_{n} y_{n}
$$

for all $x, y \in \mathbb{R}^{n}$, and where $w_{1}, \ldots, w_{n}>0$ are given constants, called the weights in the inner product.
8.4. Example - \mathbb{C}^{n} and the complex dot product. For any two vectors $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$, $y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{C}^{n}$ the complex dot product of x and y is defined by:

$$
\langle x, y\rangle=x \cdot y \stackrel{\text { def }}{=} x_{1} \overline{y_{1}}+\cdots+x_{n} \overline{y_{n}}
$$

8.5. Example - Inner product on a Function Space. Let V be the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Then

$$
\langle f, g\rangle \stackrel{\text { def }}{=} \int_{0}^{1} f(t) g(t) d t
$$

defines an inner product on V.
This kind of inner product plays a large role in Quantum Mechanics and in the theory of Fourier series.
8.6. Inner Product when you have a Basis. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a complex vector space, and if $x, y \in V$ satisfy

$$
x=x_{1} v_{1}+\cdots+x_{n} v_{n}, \quad y=y_{1} v_{1}+\cdots+y_{n} v_{n}
$$

then

$$
\langle x, y\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} g_{i j} x_{i} \overline{y_{j}} \quad \text { where } \quad g_{i j} \stackrel{\text { def }}{=}\left\langle v_{i}, v_{j}\right\rangle .
$$

Norms, Distances, Angles, and Inequalities
8.7. Definition. Let V be a real or complex inner product space with inner product $\langle x, y\rangle$. Then the norm (or length) of a vector $x \in V$ is

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Note that $\langle x, x\rangle$ is never negative, so the square root is always defined.
8.8. Theorem - properties of the length.

- $\|x\|>0$ for all $x \in V$ with $x \neq 0$
- $\|a x\|=|a|\|x\|$ for all $x \in V$ and $a \in \mathbb{F}$
- $|\langle x, y\rangle| \leq\|x\|\|y\|$ (the Cauchy-Schwarz inequality)
- $\|x+y\| \leq\|x\|+\|y\|$
(the triangle inequality)
8.9. Definition. The distance between two vectors $x, y \in V$ is $d(x, y) \stackrel{\text { def }}{=}\|x-y\|$.
8.10. Definition. Two vectors $x, y \in V$ are said to be orthogonal if $\langle x, y\rangle=0$.

Notation: $x \perp y$ means x, y are orthogonal.
In particular, the zero vector is orthogonal to every other vector, because $\langle x, 0\rangle=0$ for all $x \in V$.

More generally, if V is a real inner product space, then the angle between two nonzero vectors $x, y \in V$ is defined to be

$$
\angle(x, y) \stackrel{\text { def }}{=} \arccos \frac{\langle x, y\rangle}{\|x\|\|y\|}
$$

The Cauchy-Schwarz inequality implies $-1 \leq \frac{\langle x, y\rangle}{\|x\|\|y\|} \leq 1$ so the inverse cosine is always defined.
8.11. Example in \mathbb{R}^{4}. Find the lengths and the angle between the vectors $u=\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{c}-1 \\ 2 \\ 1 \\ 3\end{array}\right)$ with respect to to the standard inner product on \mathbb{R}^{4}. Also find the distance between u and v.

Solution: We have

$$
\begin{aligned}
\|u\| & =\sqrt{1^{2}+0^{2}+2^{2}+3^{2}}=\sqrt{14} \\
\|v\| & =\sqrt{(-1)^{2}+2^{2}+1^{2}+3^{2}}=\sqrt{15} \\
\langle u, v\rangle & =1 \cdot(-1)+0 \cdot 2+2 \cdot 1+3 \cdot 3=10 .
\end{aligned}
$$

Therefore

$$
\angle(u, v)=\arccos \frac{10}{\sqrt{14} \sqrt{15}}=\arccos \frac{10}{\sqrt{210}} \approx 46.3647 \ldots \circ
$$

Finally, the distance between u and v is

$$
\|u-v\|=\sqrt{(1-(-1))^{2}+(0-2)^{2}+(2-1)^{2}+(3-3)^{2}}=\sqrt{10} .
$$

8.12. Example in a function space. Find the lengths and angle between the functions $f(t)=1$ and $f(t)=t^{2}$ in the real function space $V=C([0,1])$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.

Solution: By definition we have

$$
\begin{aligned}
\|f\| & =\sqrt{\int_{0}^{1} 1^{2} d t}=\sqrt{1}=1 \\
\|g\| & =\sqrt{\int_{0}^{1}\left(t^{2}\right)^{2} d t}=\sqrt{\int_{0}^{1} t^{4} d t}=\sqrt{\frac{1}{5}}=\frac{1}{5} \sqrt{5} \\
\langle f, g\rangle & =\int_{0}^{1} 1 \cdot t^{2} d t=\frac{1}{3} \\
\cos \angle(f, g) & =\frac{1 / 3}{1 \cdot \frac{1}{5} \sqrt{5}}=\frac{1}{3} \sqrt{5} \Longrightarrow \angle(f, g)=\arccos \frac{\sqrt{5}}{3} \approx 41.81 \ldots \circ
\end{aligned}
$$

ORTHOGONAL SETS OF VECTORS

Let V be a real or complex inner product space
8.13. Definition. A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ is orthogonal if

- $v_{i} \neq 0$ for all i
- $v_{i} \perp v_{j}$ for all $i \neq j$

An orthogonal set $\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ is called orthonormal if $\left\|v_{i}\right\|=1$ for $i=1, \ldots, k$.
8.14. Theorem. If $\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ is orthogonal, then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.

If, in addition, $n=\operatorname{dim} V$, then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V. In this case $\left\{v_{1}, \ldots, v_{n}\right\}$ is called an orthogonal basis.
For vectors expressed in terms of an orthogonal basis one has the following formulas for the inner product and norm: if $x=x_{1} v_{1}+\cdots+x_{n} v_{n}, y=y_{1} v_{1}+\cdots+y_{n} v_{n}$, then

$$
\langle x, y\rangle=w_{1} x_{1} y_{1}+\cdots+w_{n} x_{n} y_{n}, \quad\|x\|^{2}=w_{1} x_{1}^{2}+\cdots+w_{n} x_{n}^{2}
$$

where the weights w_{i} are given by $w_{i}=\left\|v_{i}\right\|^{2}$.
If the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal, then $w_{i}=\left\|v_{i}\right\|^{2}=1$ for all i, and thus

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}, \quad\|x\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}
$$

8.15. Theorem. Every finite dimensional inner product space has an orthonormal basis.
8.16. Proof using the Gram-Schmidt procedure. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of V. Define

$$
\begin{array}{ll}
w_{1}=v_{1} & u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \\
w_{2}=v_{2}-\left\langle v_{2}, u_{1}\right\rangle u_{1} & u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|} \\
w_{3}=v_{3}-\left\langle v_{3}, u_{1}\right\rangle u_{1}-\left\langle v_{3}, u_{2}\right\rangle u_{2} & u_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}
\end{array}
$$

and in general,

$$
\begin{aligned}
w_{j} & =v_{j}-\left\langle v_{j}, u_{1}\right\rangle u_{1}-\cdots-\left\langle v_{j}, u_{j-1}\right\rangle u_{j-1} \\
u_{j} & =\frac{w_{j}}{\left\|w_{j}\right\|}
\end{aligned}
$$

Then $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of V. More precisely, by induction on j one shows that

- $w_{j} \perp\left\{v_{1}, \ldots, v_{j-1}\right\}$ and hence $u_{j} \perp\left\{v_{1}, \ldots, v_{j-1}\right\}$
- $\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}=\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}$

The above procedure that created the orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ from the given basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is called Gram-Schmidt orthognoalization.

ExAMPLES

8.17. Example - in the plane. The vectors $\binom{1}{1} \in \mathbb{R}^{2}$ and $\binom{1}{-1} \in \mathbb{R}^{2}$ are orthogonal. Therefore they are independent, and, since there are two of them, they form a basis of \mathbb{R}^{2}. Since, they are orthogonal, $\binom{1}{1},\binom{1}{-1}$ is an orthogonal basis for \mathbb{R}^{2}.
On the other hand $\left\|\binom{1}{1}\right\|=\left\|\binom{1}{-1}\right\|=\sqrt{2} \neq 1$ so $\binom{1}{1},\binom{1}{-1}$ is not an orthonormal basis for \mathbb{R}^{2}.
8.18. Example - in \mathbb{R}^{n} and \mathbb{C}^{n}. The standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is orthonormal and hence is an orthonormal basis for \mathbb{R}^{n} and also for \mathbb{C}^{n}.
8.19. Example - in a function space. Take $\mathbb{F}=\mathbb{R}$.

We define V to be the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are 2π-periodic, i.e. all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
\forall x \in \mathbb{R}: f(x+2 \pi)=f(x)
$$

Then V is a real vector space, and one defines an inner product on V by setting $\langle f, g\rangle=\int_{0}^{2 \pi} f(t) g(t) d t$.
The set of functions

$$
\cos t, \cos 2 t, \cos 3 t, \ldots
$$

is orthogonal. To prove this, compute the integrals

$$
\int_{0}^{2 \pi} \cos n t \cos m t d t= \begin{cases}\pi & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

We can add more functions to this set and still have an orthogonal set: the set of functions

$$
\beta: \quad 1, \cos t, \sin t, \cos 2 t, \sin 2 t, \cos 3 t, \sin 3 t, \ldots
$$

is also an orthogonal set in V.

The theory of Fourier series says that β is a "basis" for V, in the sense that every function $f \in V$ can be written as

$$
f(t)=a_{0}+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+\cdots
$$

for suitable $a_{0}, a_{1}, b_{1}, \cdots \in \mathbb{R}$. This statement does not quite fit in the linear algebra from this course because the sum above contains infinitely many terms.

The Adjoint of a matrix

8.20. Definition. Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. If $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ has matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

then the adjoint of A is the complex conjugate of the transpose of A, i.e.

$$
A^{*}=\overline{A^{\top}}=\left(\begin{array}{ccc}
\overline{a_{11}} & \cdots & \overline{a_{n 1}} \\
\vdots & & \vdots \\
\overline{a_{1 n}} & \cdots & \overline{a_{n n}}
\end{array}\right) .
$$

In the real case there is no need to take the complex conjugate, and for real matrices one has $A^{*}=A^{\top}$.

8.21. Definition.

- A real $n \times n$ matrix is called symmetric if $A=A^{\top}$.
- A complex $n \times n$ matrix is called Hermitian if $A=\overline{A^{\top}}$.

In both cases the matrix, and the corresponding linear operator $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ are called self-adjoint.
8.22. Theorem. Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. For any $x, y \in \mathbb{F}^{n}$ and any matrix A one has

$$
\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle
$$

8.23. Example. The matrices

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
$$

are Hermitian.
8.24. Theorem. All eigenvalues of a Hermitian matrix are real

Proof. If $A v=\lambda v$, then

$$
\lambda\|v\|^{2}=\langle A v, v\rangle=\left\langle v, A^{*} v\right\rangle=\langle v, A v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle=\bar{\lambda}\|v\|^{2} .
$$

Since $\|v\| \neq 0$, this implies $\lambda=\bar{\lambda}$, i.e. λ is real.
8.25. Theorem. If $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is Hermitian and if v, w are eigenvectors corresponding to different eigenvalues $\lambda \neq \mu$, then $v \perp w$.
Proof. Since A is self adjoint, all its eigenvalues are real, and thus $\lambda, \mu \in \mathbb{R}$.
We have $A v=\lambda v$ and $A w=\mu w$, and therefore

$$
\lambda\langle v, w\rangle=\langle A v, w\rangle=\langle v, A w\rangle=\langle v, \mu w\rangle=\bar{\mu}\langle v, w\rangle=\mu\langle v, w\rangle
$$

because $\mu \in \mathbb{R}$. We find

$$
(\lambda-\mu)\langle v, w\rangle=0
$$

The eigenvalues λ and μ are different, so $\lambda-\mu \neq 0$. Therefore $\langle v, w\rangle=0$.
8.26. The Spectral Theorem. Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, and let $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be Hermitian.

Then \mathbb{F}^{n} has an orthonormal basis consisting of eigenvectors of A.
For a proof see appendix A.11.

Appendix A. Proofs

A.1. Proof of the Components from a Basis Theorem. Suppose u_{1}, \ldots, u_{n} is a basis. By definition, every vector is a linear combination of u_{1}, \ldots, u_{n}, so u_{1}, \ldots, u_{n} spans V.

If $c_{1} u_{1}+\cdots+c_{n} u_{n}=0$, then $c_{1} u_{1}+\cdots+c_{n} u_{n}=0=0 \cdot u_{1}+\cdots+0 \cdot u_{n}=0$. Since $u_{1}, ; u_{n}$ is a basis we the coefficients in the expansion are unique, i.e. $c_{1}=0, \ldots, c_{n}=0$. Therefore the vectors are linearly independent.

Next, we show the converse: suppose u_{1}, \ldots, u_{n} spans V and is linearly independent. Then, for any vector $x \in V$ there exist numbers $x_{1}, \ldots, x_{n} \in \mathbb{F}$ such that

$$
x=x_{1} u_{1}+\cdots+x_{n} u_{n}
$$

The coefficients x_{1}, \ldots, x_{n} are uniquely determined by the vectors x and u_{1}, \ldots, u_{n}. Namely, if $x_{1}^{\prime} u_{1}+\cdots+x_{n}^{\prime} u_{n}=x_{1} u_{1}+\cdots+x_{n} u_{n}$ then subtract $x_{1} u_{1}, \ldots, x_{n} u_{n}$ from both sides. We end up with $\left(x_{1}^{\prime}-x_{1}\right) u_{1}+\cdots+\left(x_{n}^{\prime}-x_{n}\right) u_{n}=0$. Since u_{1}, \ldots, u_{n} are independent, this implies $x_{1}=x_{1}^{\prime}, \ldots, x_{n}=x_{n}^{\prime}$.
A.2. Proof of the Extension Theorem for Independent Sets. The theorem claims "if and only if" so we have to prove two implications.

First we prove: $v \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right) \Longrightarrow\left\{u_{1}, \ldots, u_{n}, v\right\}$ is linearly dependent.
If $v \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$ then there are $a_{1}, \ldots, a_{n} \in \mathbb{F}$ with $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$. Therefore $-a_{1} u_{1}-\cdots-a_{n} u_{n}+v=0$, so we have a nontrivial linear combination of $\left\{u_{1}, \ldots, u_{n}, v\right\}$ that adds up to zero. Hence $\left\{u_{1}, \ldots, u_{n}, v\right\}$ is linearly dependent.
Next, we show: $\left\{u_{1}, \ldots, u_{n}, v\right\}$ is linearly dependent $\Longrightarrow v \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$.
Suppose $\left\{u_{1}, \ldots, u_{n}, v\right\}$ is linearly dependent. Then there exist $a_{1}, \ldots, a_{n}, b \in \mathbb{F}$ such that $a_{1} u_{1}+\cdots+a_{n} u_{n}+b v=0$, and such that at least one of the coefficients a_{1}, \ldots, a_{n}, b is nonzero.

If $b=0$ then we have $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$. Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is independent, this implies $a_{1}=\cdots=a_{n}=0$, which is impossible because at least one of a_{1}, \ldots, a_{n}, b does not vanish.

Therefore $b \neq 0$. This implies that $v=-\frac{a_{1}}{b} u_{1}-\cdots-\frac{a_{n}}{b} u_{n} \in \operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$.
A.3. Proof of the Bases Selection Theorem. For any subset $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ the vectors $u_{i_{1}}, \ldots, u_{i_{k}}$ either are independent or they are dependent.

Of all possible choices $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ for which the vectors $u_{i_{1}}, \ldots, u_{i_{k}}$ are independent, choose one with the largest possible k. For any $i \in\{1, \ldots, n\}$ with $i \neq$ $i_{1}, \ldots, i \neq i_{k}$ the vectors $u_{i_{1}}, \ldots, u_{i_{k}}, u_{i}$ must be dependent. The Extension Theorem 5.3 implies that $u_{i} \in \operatorname{span}\left(u_{i_{1}}, \ldots, u_{i_{k}}\right)$.
We have shown that every u_{i} either is one of the $u_{i_{1}}, \ldots, u_{i_{k}}$, or else is a linear combination of $u_{i_{1}}, \ldots, u_{i_{k}}$.
Since every $v \in V$ is a linear combination of u_{1}, \ldots, u_{n} it follows that v also is a linear combination of $u_{i_{1}}, \ldots, u_{i_{k}}$.
Hence $u_{i_{1}}, \ldots, u_{i_{k}}$ span V. Since they are also independent we have shown that $u_{i_{1}}, \ldots, u_{i_{k}}$ is a basis for V.
A.4. Proof of the dimension theorem. Statement of the theorem: If $v_{1}, \ldots, v_{m} \in$ $\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$ and if v_{1}, \ldots, v_{m} are linearly independent then $m \leq n$.

We will show that if $m>n$ and v_{1}, \ldots, v_{m} are linear combinations of u_{1}, \ldots, u_{n}, then $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly dependent.

To do this we use mathematical induction on n.
We begin with the case $n=1$. There is only one vector u_{1}, and each v_{1} and v_{2} are linear combinations of u_{1}, i.e. multiples of u_{1}. Thus for certain numbers $a_{1}, a_{2} \in \mathbb{F}$ we have $v_{1}=a_{1} u_{1}, \quad v_{2}=a_{2} u_{1}$. If $a_{1}=0$ then $v_{1}=0$ and $\left\{v_{1}, v_{2}\right\}$ is dependent.

If $a_{1} \neq 0$ then we have $-a_{2} v_{1}+a_{1} v_{2}+0 \cdot v_{3}+\cdots+0 \cdot v_{m}=0$. Since $a_{1} \neq 0$ this is a nontrivial linear combination of v_{1}, \ldots, v_{m} that adds up to zero. Hence $\left\{v_{1}, \ldots, v_{m}\right\}$ is dependent.

Next we consider the general case $n>1$, and we assume that the case $n-1$ has already been proven.

In this case each v_{i} is a linear combination of the vectors u_{1}, \ldots, u_{n}. So we have

$$
\begin{aligned}
v_{1} & =a_{11} u_{1}+\cdots+a_{1 n} u_{n} \\
v_{2} & =a_{21} u_{1}+\cdots+a_{2 n} u_{n} \\
& \vdots \\
& \\
v_{m} & =a_{m 1} u_{1}+\cdots+a_{m n} u_{n}
\end{aligned}
$$

for certain numbers $a_{11}, \ldots, a_{m n} \in \mathbb{F}$.
If all the coefficients $a_{1 n}, a_{2 n}, \ldots, a_{m n}=0$ then the v_{i} are linear combinations of u_{1}, \ldots, u_{n-1}. Since $m>n$ we have $m>n-1$ and therefore the induction hypothesis tells us that v_{1}, \ldots, v_{m} are linearly dependent.

We are left with the case in which one of the coefficients $a_{1 n}, \ldots, a_{m n}$ does not vanish. Assume that $a_{1 n} \neq 0$. Then we consider the vectors

$$
w_{2}=v_{2}-\frac{a_{2 n}}{a_{1 n}} v_{1}, \quad \ldots \quad w_{m}=v_{m}-\frac{a_{m n}}{a_{1 n}} v_{1}
$$

The vectors w_{2}, \ldots, w_{m} are linear combinations of u_{1}, \ldots, u_{n-1}. Since $m-1>n-1$ the induction hypothesis applies. We therefore know that w_{2}, \ldots, w_{m} are linearly dependent, i.e. there exist $c_{2}, \ldots, c_{m} \in \mathbb{F}$ such that

$$
c_{2} w_{2}+\cdots+c_{m} w_{m}=0
$$

and such that at least one of c_{2}, \ldots, c_{m} does not vanish.
By substituting the definition of the w_{i} in this linear combination, we find

$$
c_{2}\left(v_{2}-\frac{a_{2 n}}{a_{1 n}} v_{1}\right)+\cdots+c_{m}\left(v_{m}-\frac{a_{m n}}{a_{1 n}} v_{1}\right)=0
$$

This implies

$$
-\left(\frac{a_{2 n}}{a_{1 n}} c_{2}+\cdots+\frac{a_{m n}}{a_{1 n}} c_{m}\right) v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}=0
$$

Thus v_{1}, \ldots, v_{m} is linearly dependent.
A.5. Proof of the Rank+Nullity Theorem. Choose a basis $\left\{v_{1}, \ldots, v_{r}\right\}$ of the null space $N(T)$. Then choose vectors $v_{r+1}, \ldots, v_{n} \in V$ so that $\left\{v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}\right\}$ is a basis for V. We will show that $\left\{T v_{r+1}, \ldots, T v_{n}\right\}$ is a basis for $R(T)$. The rank+nullity formula then follows because we will have shown that $\operatorname{dim} V=n, \operatorname{dim} N(T)=r$, and $\operatorname{dim} R(T)=n-r$.
$T v_{r+1}, \ldots, T v_{n}$ spans $R(T)$:
if $y \in R(T)$ then there is an $x \in V$ with $y=T x$. We can write $x=x_{1} v_{1}+\cdots+x_{n} v_{n}$. Since $T v_{1}=\cdots=T v_{r}=0$ we have

$$
\begin{aligned}
y=T x & =T\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right) \\
& =x_{r+1} T v_{r+1}+\cdots+x_{n} T v_{n} \\
& =x_{r+1} w_{r+1}+\cdots+x_{n} w_{n} \\
& \in \operatorname{span}\left(w_{r+1}, \ldots, w_{n}\right) .
\end{aligned}
$$

$T v_{r+1}, \ldots, T v_{n}$ is linearly independent:
Suppose $c_{r+1} w_{r+1}+\cdots+c_{n} w_{n}=0$ for certain $c_{r+1}, \ldots, c_{n} \in \mathbb{F}$. Then

$$
T\left(c_{r+1} v_{r+1}+\cdots+c_{n} v_{n}\right)=0
$$

which implies $c_{r+1} v_{r+1}+\cdots+c_{n} v_{n} \in N(T)$. It follows that there are numbers c_{1}, \ldots, c_{r} such that

$$
c_{r+1} v_{r+1}+\cdots+c_{n} v_{n}=c_{1} v_{1}+\cdots+c_{r} v_{r} .
$$

Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V we conclude that $c_{1}=\cdots=c_{n}=0$. Hence $T v_{r+1}, \ldots, T v_{n}$ is linearly independent.
A.6. Proof of the matrix inverse formula (Theorem 6.17). Let $A=\left(a_{i j}\right)$ and $C=\left(c_{i j}\right)$ where $c_{i j}=(-1)^{i+j} \operatorname{det} \tilde{A}_{i j}$. Consider $B=A C^{\top}$. By definition of matrix multiplication you have

$$
B_{i j}=a_{i 1} c_{j 1}+\cdots+a_{i n} c_{j n}
$$

The expression on the right is what we get if we replace the $j^{\text {th }}$ row of the matrix A with ($a_{i 1} \cdots a_{i n}$), i.e. with the $i^{\text {th }}$ row of A.

If $i \neq j$ then rows i and j in the resulting determinant are equal, so the determinant vanishes: $B_{i j}=0$ for all $i \neq j$.

If $i=j$ then replacing row j with row i does nothing, and we just get $\operatorname{det} A$: you get $B_{i i}=\operatorname{det} A$ for all i.

The result is

$$
A C^{\top}=\left(\begin{array}{ccccc}
\operatorname{det} A & 0 & 0 & \cdots & 0 \\
0 & \operatorname{det} A & 0 & \cdots & 0 \\
0 & 0 & \operatorname{det} A & \cdots & 0 \\
& & & \ddots & \\
0 & 0 & 0 & & \operatorname{det} A
\end{array}\right)=(\operatorname{det} A) I
$$

A.7. Proof of Cramer's rule. Compute $C^{\top} y$:

$$
C^{\top} y=\left(\begin{array}{cccc}
c_{11} & c_{21} & \cdots & c_{n 1} \\
\vdots & & & \vdots \\
c_{1 n} & c_{2 n} & \cdots & c_{n n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} c_{11}+\cdots+y_{n} c_{n 1} \\
\vdots \\
y_{1} c_{1 n}+\cdots+y_{n} c_{n n}
\end{array}\right)
$$

Our formula for the inverse of A implies that the solution $x=A^{-1} y$ is given by

$$
x=\frac{1}{\operatorname{det} A}\left(\begin{array}{c}
y_{1} c_{11}+\cdots+y_{n} c_{n 1} \\
\vdots \\
y_{1} c_{1 n}+\cdots+y_{n} c_{n n}
\end{array}\right)
$$

Thus the $i^{\text {th }}$ component x_{1} of the solution is given by

$$
x_{i}=\frac{y_{1} c_{1 i}+\cdots+y_{n} c_{n i}}{\operatorname{det} A}
$$

The numerator in this fraction is the determinant that we get by replacing the $i^{\text {th }}$ column in $\operatorname{det} A$ with the column vector y.
A.8. Proof that $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$. The short version of the proof uses block matrix notation and goes like this:

$$
\begin{aligned}
\operatorname{det}(A) \operatorname{det}(B) & =\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right| \quad\binom{\text { add the first } n \text { columns } B \text { times }}{\text { to the second } n \text { columns }} \\
& =\left|\begin{array}{cc}
A & A B \\
-I & 0
\end{array}\right| \\
& =(-1)^{n}\left|\begin{array}{cc}
-I & A \\
0 & A B
\end{array}\right| \\
& =(-1)^{n} \operatorname{det}(-I) \operatorname{det}(A B) \\
& =\operatorname{det}(A B)
\end{aligned}
$$

If we avoid block matrix notation then we get the following more detailed version of the computation. By definition,

$$
\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right|=\left|\begin{array}{cccccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 n} & 0 & 0 & \cdots & 0 \\
& & \vdots & & & \ddots & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & 0 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1 n} \\
0 & -1 & & 0 & b_{21} & b_{22} & \cdots & b_{2 n} \\
& & \vdots & \vdots & \vdots & & \vdots & \\
0 & 0 & \cdots & -1 & b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right| .
$$

Add the first column b_{11} times to column $(n+1)$, the second column b_{12} times to column $(n+2)$, etc, clearing out the top row in the b section. The result is:

$$
\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right|=\left|\begin{array}{cccccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & a_{21} b_{11} & a_{21} b_{12} & \cdots & a_{21} b_{1 n} \\
& & \vdots & & & \ddots & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & a_{n 1} b_{11} & a_{n 1} b_{12} & \cdots & a_{n 1} b_{1 n} \\
-1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & -1 & & 0 & b_{21} & b_{22} & \cdots & b_{2 n} \\
& & \vdots & \vdots & \vdots & & \vdots & \\
0 & 0 & \cdots & -1 & b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right|
$$

Next clear out the second row in the b-section. We get

$$
\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right|=\left|\begin{array}{ccccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{11} b_{11}+a_{12} b_{21} & \cdots & a_{11} b_{1 n}+a_{12} b_{21} \\
a_{21} & a_{22} & \cdots & a_{2 n} & a_{21} b_{11}+a_{22} b_{21} & \cdots & a_{21} b_{1 n}+a_{22} b_{21} \\
& & \vdots & & & \ddots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & a_{n 1} b_{11}+a_{n 2} b_{21} & \cdots & a_{n 1} b_{1 n}+a_{n 2} b_{21} \\
-1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & -1 & & 0 & 0 & \cdots & 0 \\
& & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & -1 & b_{n 1} & \cdots & b_{n n}
\end{array}\right|
$$

Repeating this for the remaining rows in the b-section of the determinant, we end up with

$$
\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right|=\left|\begin{array}{ccccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & a_{11} b_{11}+\cdots+a_{1 n} b_{n 1} & \cdots & a_{11} b_{1 n}+\cdots+a_{1 n} b_{n n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & a_{21} b_{11}+\cdots+a_{2 n} b_{n 1} & \cdots & a_{21} b_{1 n}+\cdots+a_{2 n} b_{n n} \\
& & \vdots & & & \ddots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & a_{n 1} b_{11}+\cdots+a_{n n} b_{n 1} & \cdots & a_{n 1} b_{1 n}+\cdots+a_{n n} b_{n n} \\
-1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & -1 & & 0 & 0 & \cdots & 0 \\
& & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & -1 & 0 & \cdots & 0
\end{array}\right|
$$

i.e. we have

$$
\left|\begin{array}{cc}
A & 0 \\
-I & B
\end{array}\right|=\left|\begin{array}{cc}
A & A B \\
-I & 0
\end{array}\right| .
$$

A.9. Proof of Theorem 6.22, the determinant-independence test. Consider the matrix A whose columns are a_{1}, \ldots, a_{n}. Then for any $c_{1}, \ldots, c_{n} \in \mathbb{F}$ we have

$$
c_{1} a_{1}+\cdots+c_{n} a_{n}=A\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

$\operatorname{det} A \neq 0 \Longrightarrow\left\{a_{1}, \ldots, a_{n}\right\}$ independent. If $\operatorname{det} A \neq 0$ then A is invertible. This implies that $N(A)=\{0\}$. Suppose that there are $c_{1}, \ldots, c_{n} \in \mathbb{F}$ with $c_{1} a_{1}+\cdots+c_{n} a_{n}=0$. Then
$c=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$ satisfies $A c=0$, so $c \in N(A)$. Therefore $c=0$, i.e. $c_{1}=\cdots=c_{n}=0$. This implies that $\left\{a_{1}, \ldots, a_{n}\right\}$ is independent.
$\left\{a_{1}, \ldots, a_{n}\right\}$ independent implies $\operatorname{det} A \neq 0$. Any $c \in N(A)$ satisfies $c_{1} a_{1}+\cdots+c_{n} a_{n}=0$. Since $\left\{a_{1}, \ldots, a_{n}\right\}$ is independent this implies $c_{1}=\cdots=c_{n}=0$, i.e. $c=0$. We conclude that $N(A)=\{0\}$. It follows that A is injective, and hence also that A is bijective (because of the Bijectivity Theorem). Bijective means the same as invertible, so A is invertible, and thus $\operatorname{det} A \neq 0$.
A.10. Proof of the independence of eigenvectors. The proof goes by induction on m.
A.10.1. The case $m=1$: There is only one vector v_{1}. Since v_{1} is an eigenvector we have $v_{1} \neq 0$. Therefore v_{1} is independent.
A.10.2. The induction step: Assume we have already proved the theorem for $m-1$.

Let v_{1}, \ldots, v_{m} be eigenvectors with different eigenvalues, and assume

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{m} v_{m}=0
$$

Then we will show that $c_{1}=\cdots=c_{m}=0$.
Multiply the equation with A to get

$$
\begin{aligned}
& A\left(c_{1} v_{1}+c_{2} v_{2}+\cdots c_{m} v_{m}\right)=0 \\
\Rightarrow & c_{1} A v_{1}+c_{2} A v_{2}+\cdots c_{m} A v_{m}=0 \\
\Rightarrow & c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\cdots c_{m} \lambda_{m} v_{m}=0
\end{aligned}
$$

We can also multiply $c_{1} v_{1}+c_{2} v_{2}+\cdots c_{m} v_{m}=0$ with λ_{m} to get

$$
c_{1} \lambda_{m} v_{1}+c_{2} \lambda_{m} v_{2}+\cdots c_{m} \lambda_{m} v_{m}=0
$$

Subtract the last two equations:

$$
c_{1}\left(\lambda_{1}-\lambda_{m}\right) v_{1}+\cdots+c_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right) v_{m-1}=0
$$

The vectors v_{1}, \ldots, v_{m-1} are eigenvectors for A with distinct eigenvalues. The induction hypothesis implies that they are independent, and therefore we find

$$
c_{1}\left(\lambda_{1}-\lambda_{m}\right)=0, \quad c_{2}\left(\lambda_{2}-\lambda_{m}\right)=0, \quad \ldots \quad c_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right)=0
$$

The eigenvalues are distinct, so $\lambda_{1}-\lambda_{m} \neq 0, \ldots, \lambda_{m-1}-\lambda_{m} \neq 0$. It follows that $c_{1}=\cdots=c_{m-1}=0$.

We still have to show that $c_{m}=0$. Since $c_{1}=\cdots=c_{m-1}=0$ we have

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=c_{m} v_{m}=0
$$

The vector v_{m} is an eigenvector so $v_{m} \neq 0$. Therefore $c_{m} v_{m}=0$ implies $c_{m}=0$.

A.11. Proof of the spectral theorem.

Lemma. Let v be an eigenvector of a self-adjoint operator $A: V \rightarrow V$ and consider the set $L=\{x \in V \mid x \perp v\}$. Then

- L is a linear subspace of V
- if $\operatorname{dim} V<\infty$ then $\operatorname{dim} L=\operatorname{dim} V-1$
- L is invariant under A, i.e. for all $x \in L$ one has $A x \in L$

Proof of the Lemma: an exercise.
To prove the Spectral theorem we use induction on $n=\operatorname{dim} V$.
A is self-adjoint so all its eigenvalues are real. Let v be an eigenvector with eigenvalue $\lambda \in \mathbb{R}: A v=\lambda v$ and $v \neq 0$.

We may assume $\|v\|=1$.
Define $L=\{x \in V \mid x \perp v\}$. The Lemma implies that L is invariant under A. Then $A: L \rightarrow L$ is also self-adjoint and, since $\operatorname{dim} L<\operatorname{dim} V$, there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n-1}\right\}$ of L consisting of eigenvectors of A.
Since $v \perp\left\{v_{1}, \ldots, v_{n-1}\right\}$ the set $\left\{v_{1}, \ldots, v_{n-1}, v\right\}$ is an orthonormal, and therefore linearly independent set of vectors in V. Moreover, the set $\left\{v_{1}, \ldots, v_{n-1}, v\right\}$ contains exactly $\operatorname{dim} V$ vectors, so that $\left\{v_{1}, \ldots, v_{n-1}, v\right\}$ is a basis of V.

