$\begin{array}{llll}\text { MATH } & 521 & L 1 & 22 / 09 / 08\end{array}$
Real number: Decimal expansion, Line segment (geometric)
good for arithmetic

$$
(\underset{i}{x},+)
$$

special nile 10

No special 10
arithmetic hard
$t$ i concat line
$x$ : area

Definition Real numbers are a complete ordered field
Notational Preliminaries
A set is a collection of objects, called elements eng. $\mathbb{Z}\{\ldots,-2,-1,0,1,2, \ldots\}$ set of integers
$\mathbb{Q}$ set of rational numbers
\{US States\} $\quad \mid$ \{US States $\} \mid=50$
$\mathbb{R}$ set of real numbers
We say $A$ is a subset of $B \quad(A \subset B)$ if every element of $A$ is an element of $B$ (some people would write $A \leq B$ ) Note that $A<A$
If $A \subset B$ but $B$ is not equal to $A$,
we say $A$ is a proper subset of $B$
Another way to write $A \subset B$ is $\forall x \in A, x \in B$
$\exists x \in A, x \in B$ Altematively, $A \cap B \neq \varnothing$
$\exists x \quad x \in A \cap B$
If $A, B$ are sets the Cartesian product $A \times B$
is the set of ordered pairs $(a, b) \quad \begin{aligned} & a \in M \\ & b \in B\end{aligned}$

$$
A \times A=\left\{\left(a_{1}, a_{2}\right)\right\} \quad a_{1}, a_{2} \in A
$$

often called $A^{2}$ might be different elements of $A \times A$

What is $A \times A^{2}$ ?
An element of $A \times A^{2}$ is ordered pair ( $a, p$ ) ie. the elements are of the form

$$
\left(a,\left(a^{\prime}, a^{\prime \prime}\right)\right)
$$

What about $A^{3}=\left\{\left(a, a^{\prime}, a^{\prime \prime}\right)\right\}$ ?

Functions
Def $A, B$ sets $A$ function $F$ from $A$ to $B$ is a subset

$$
f \subset A \times B \quad \text { s.t. }
$$

- If $(a, b) \in F$ and $\left(a, b^{\prime}\right) \in F$ then $b=b^{\prime}$

$$
\text { - } \forall a \exists b \quad(a, b) \in F
$$

when $(a, b) \in F$, we wite $F(a)=b$
We write $F: A \rightarrow B \quad A \xrightarrow{F} B$
(one-to-one)
Def we say $f: A \rightarrow B$ is infective if

$$
f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}
$$

is surjective if

$$
\forall b \in B, \quad \exists a \in A, \quad F(a)=b
$$

List of functions

$$
\begin{array}{lll}
f: \mathbb{Q} \rightarrow \mathbb{Q} & f(x)=x & \text { id } \mathbb{Q} \\
f: \mathbb{Q} \rightarrow \mathbb{Q} & f(x)=x^{2} & \\
f: \mathbb{Q} \gg \rightarrow \mathbb{Q} & f(x)=x^{2} & \\
f: \mathbb{Q} \rightarrow \mathbb{Q} & f(x)=2 \lambda & \\
& &
\end{array}
$$

$f: \mathbb{Q} \rightarrow\{0,1\} \quad f(x)= \begin{cases}1 & \text { if the denominator of } X \text { in lowest terms is even } \\ 0 & \ldots\end{cases}$
C: US States $\rightarrow$ Cities
S: cities $\rightarrow$ states
$C($ State $)=$ its capital
$S($ city $)=$ state it is in
$(\mathrm{S})$ is odd

$$
s
$$

