MATH 521 Lecture 12 R.T. Recall PEX, a neighborhood of p is an open set U > p metlic spoce Def Let E be a subset of metric space X We say XEX is an accumulation point (or a limit point) of E in X (xelx(E)) of X if, for every neighborhood U=x, UNE contains a point not equal to x Equivalently: for every $B(x, \varepsilon) \in =0$ $e.g. \chi \simeq \mathbb{R}$ E 4 is an accumulation point $-\frac{(4+4)}{3}$ (4) 5 is an accumulation point 3459 q is not accumulation to 1 9 is not an accumulation point (isolated point) $L_{R}(E) = [3, 5]$ Prop If X=R" with Euclidean metric, and ECX, then any point in int (E) is an accumulation point for E Let PEint(E) Then for some r>0, B(p, r) CE Let U>p a neighborhood pEU=int(U) thus, for some r'>0, $B(p,r') \subset U = B(p, \min(r, r')) \subset U \cap E$ Since $X = \mathbb{R}^n$, $B(p, \varepsilon)$ contains points other than p for all $\varepsilon > 0$, 50 we are done In Homming Space, $B(111, \frac{1}{2}) = \{111\}$ X1 X2 .X1 .X5 $L_{R}(Q) = R$ $\begin{array}{ccc} \chi = R & \underbrace{(m)}_{E} & \underbrace$ و،م، ک Ð, Det Let X2, X2, ... be a sequence of points in a metric space X We say lim X' = X if, for every neighborhood V of X, JNU such that, for all i>Nu, XieU

Equivalently: For every
$$z > 0$$
, $\exists N_x$ s.t. for all $i > N_x$,
 $X_i \in B(x, z)$ i.e. $d(x, X_i) < \xi$
Thus Let $E < X$. Then x is in $L_x(E)$ iff there exists a sequence
 $x_{L_i}, x_{2, \cdots}$ in $E \setminus x$ with $\lim_{k \to \infty} X_i = X$
 $\frac{1}{k \to \infty}$
Pf Let x be an accumulation point
For each i, $B(x, 2^{-i}) \cap E$
contains a point not equal to χ_i
pick and call it X_n
Clain: $\lim_{k \to \infty} X_i = X$
For any $z > 0$, take $N = (-\log_2 \xi) + 100$
For onl $i > N_x$.
 $Y_i \in B(x, 2^{-i}) \subset B(x, 2^{-N_x}) = B(x, 2^{-10x} \xi)$
 $\int_{\infty} indeed d(x, x_i) < \xi$
Def We say E is desced in X if $L_x(E) \subset E$
(Why not = E? Because of isolated points)
 $e.g.$ X = R open closed
 $\frac{1}{K - 1}$ $\frac{1}{K}$ X V
 $x \le 0$ or $x \ge 1$ $(x \ge 0)$
 R V V clopen
 $\frac{1}{K}$ V V clopen
 $\frac{1}{K}$ V V clopen
 $\frac{1}{K}$ X X
 Q X X

Let's prove these two are equivalent Dre way: Suppose \overline{E} is open. Let $p \in \overline{E} = int(\overline{E})$ so $\exists B(p, z) \subset \overline{E} \quad z = 0$ U Thus U is a neighborhood of p and $Un\overline{E} = \overline{p}'$ Conclude p is not in $L_x(\overline{E})$

To sum up:
If p is not in E, then p is not in
$$L_X(E)$$

if p is in $L_X(E)$, then p is in E
 $D_X(E) \in E$
Dther may:
Suppose $L_X(E) \in E$ We want to show E is open
Let $p \in E$. We need to show there exists some $U \ni p$ with $U \in E$
Since $p \notin E$. We need to show there exists some $U \ni p$ with $U \in E$
Since $p \notin E$. We need to show there exists some $U \ni p$ with $U \in E$
Since $p \notin E$. $P \notin L_X(E)$; so there is some neighborhood $U \ni p$ s.t.
 $U \cap E$ contains no points not equal to p
 $\Rightarrow U \cap E = \emptyset$ (since $p \in E$)
 $\Rightarrow U \cap E = \emptyset$ (since $p \in E$)
 $\Rightarrow U \cap E = \emptyset$ (since $p \in E$)
 $P \in F$ The close of E in X is close $(E) = E \cup L_E(X)$
Note: $clos(E) = E$ iff E is closed
Two equal definitions:
 $clos(E) = intersection of all closed subsets of X containing E$
led The intersection of any collections of closed sets is closed,
the union of any finite collection of closed sets is closed
 e_{3} . Consider the union of $E(0, r]$ over all r in $(0, 1)$ is $E(0, 1)$
 $U \cap V_{1}^{1}$
 $V \cap V_{1}^{1}$