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Suppose ✗ ≠ 0
or I

want to show there is no
infinite subsequence of ± converging to ×

It suffices to show : for some E > 0 ,

B(× , E) contains only finitely many X;

Idea : Choose s
,
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and E, S . -1 . BCX , {1 , BCI , g) ,
and BCQ Ez )

are all disjoint

we know that 7- We sit . for all will I > Ne ,
Xie BCI , Es )

7- Nz sit, for all will I > Na ,
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have is Max (Ns , Nz
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Reina : this can get weirder , e.g .

We showed the rationals were countable , C- [0,1]

Let XI ,
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,

✗ 3
,

✗ 4 ,
✗ 5 /

• i.

Every real number in [0,1
] is a
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Thm_ (Bulgar- Weierstrass
-1hm) Any bounded sequence of real numbers

has

a
Swbsequential limit
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Thin (Baby Bulganin-Weiesrtress
-1hm) If K

is a finite set of real numbers
,

then any
sequence ✗ 1 ,

Xz
,
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in K has a
sub sequential limit

PI Pigeonhole principle : there will
be some XEK sit
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for infinitely many i ,
which gives a

constant
subsequence converging

to ×

SUBS .

LIMITS & ACCUMULATION PTS .

Pep let
✗ e ,
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,
X } , .
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a sequence
in ✗

Let F- = {XI , Xz ,
. .
. } <✗

If × is
an

accumulation pt of
E

it is a subsequential limit
of ✗1 ,

✗ 2
,
× }

Bnlgano- Weierstrass
CCH version)

Every infinite
subset of EO ,

I] has an accumulation point

(not +me for R
- e.g .

I
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= {1,2, } , 4, .

.
. } c- IR has no accumulation

pts .
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PI Let's just build a subsequence Xie
, Xin ,
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Let Xi, be a point of Etx

iin B / × . ᵈ%;÷)
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Let Xi } be a point of Etx
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,
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COMPACTNESS

Def Let K be a subset of a metric space ✗
3¥

We say K is compact
if

,

for any
collection of ◦ pen sets of ✗

( { Us }s≤s) which covers K
lie. Kc U Us )

s E S

there is a
finite swbcollection V1

,
V2

,

.
. . .

Un which still covers K

Compeetsets
A finite set K is compact

for each ✗ Ek , let Ux be an open set
in the collection which contains ✗

Then {Ux} ✗Ek is my collection that covers k

⑧
☒ is non compact 2 is non compact

consider the collection

1-2,01 ,
C- 1

,
1) , ( 0 , 2) ,

( 1 , 3) ,

( 2,47
,
. . .

#É

The union of any finite
sub collection isb

and cannot cover all of

☒ or all of 2



Indeed
, any unbounded subset of IR is non compact

• (0 , 1) is non compact

PI consider
the collection % ,
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,
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,
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,
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,
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their union is ( 0 ,
1)

0
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BUT any
finite sub collection of these

misses

( )

( )
× for some

(very small ) × > 0

I 1

so
does not cover

CO , 1)

I \

Thm_ (Heine
-
Borel) [0,1] is compact

let's try to
cover

[0,1] with
open

intervals
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(1-4,1) (¥1 ,

1.01)

:
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C-0.001 ,
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Thm_ Let ✗1
,
Xz

,
. . .

be an infinite sequence
in a compact subset Kcx

Then Xs , Xz , .
. .

has a convergent subsequence where limit is in K

Rink We express the
def of compactness in

terms of open subsets of

✗ , but we
could have just used open subsets

of K

Uses : if U open in ✗ and ECX , then
UNE is open in

Eeg
. ✗ = R E=[0,1]

U=(-1 ,
1) UNE is open in E

EO ,
1) EO

,
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