MATH 521 lecture 13 R.T.
(1) $\frac{1}{2},(1), \frac{1}{3},(1), \frac{1}{4},(1), \frac{1}{5}, \ldots$
indecisively wants to converge to both 0 and 1
Def We say $x$ is a subsequential limit of $x_{1}, x_{2}, x_{3}, \ldots$
if $\exists a$ sequence $x_{i 1}, x_{i 2}, x_{i 3}, \ldots \quad i_{1}<i_{2}<i_{3}$
with $\lim _{j \rightarrow \infty} X_{i j}=x$
In the example above, we have subsequential limits of 0 and 1 given by $0, \square$
But also: $1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \ldots$
Prop If $\lim _{i \rightarrow \infty} x_{i}=x$, then $x$ is the only sequential limit
In fact, $O \triangle \bigcirc \square \ldots$ has 0 and 1 as its only subsequential limits
Pf of this claim:
Suppose $x \neq 0$ or 1
wont to show there is no infinite subsequence of $x$ Converging to $x$ It suffices to show: for some $\varepsilon>0$,
$B(x, \varepsilon)$ contains only finitely many $x_{i}$
Idea: Choose $\varepsilon, \varepsilon_{1}$, and $\varepsilon_{2}$ s.t. $B(x, \varepsilon), B\left(1, \varepsilon_{1}\right)$, and $B\left(0, \varepsilon_{2}\right)$ are all disjoint
We know that $\exists N_{1}$ sit. for all will $i>N_{1}, x_{i} \in B\left(1, \varepsilon_{1}\right)$ $\exists N_{2}$ sit. for all $x_{2}$ will $i>N_{2}, x_{i} \in B\left(1, \varepsilon_{2}\right)$

Thus, if $x_{i} \in B(x, \varepsilon)$, we have $i<\max \left(N_{1}, N_{2}\right)$

Remark: this can get weirder, eng.
We showed the rationals were countable, $\in[0,1]$
Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots$
Every real number in $[0,1]$ is a subsequential limit
$1,2,3,4,5,6,7, \ldots$ has no subsequertial limit at all
Thm (Bulgano-Weierstress thm) Any bounded sequence of real numbers has a subsequential limit


Thy (Baby Bulgamo-Weirstress the ) If $K$ is a finite set of real numbers, then amy sequence $X_{1}, X_{2}, \ldots$ in $K$ has a subsequential limit
Pf Pigeonhole principle: there will be some $x \in K$ sit. $x_{i}=x$ for infinitely many $i$, which gives a constant subsequence converging to $x$

SUBS. LIMITS \& ACCUMULATION PTS.
Prop Let $X_{1}, X_{2}, x_{3}, \ldots$ a sequence in $X$ Let $E=\left\{x_{1}, x_{2}, \ldots\right\} \subset X$
If $x$ is an accumulation pt of $E$
it is a subsequential limit of $x_{1}, x_{2}, x_{3}$
Bulgano-Weierstress (CH version)
Every infinite subset of $[0,1]$ has an accumulation point C not time for $\mathbb{R}$-e.g. $\mathbb{Z}_{>0}=\{1,2,3,4, \ldots\} \in \mathbb{R}$ has no accumulation pts.)

Pf Let's just build a subsequence $X_{i 1}, X_{i 2}, \ldots \rightarrow X$

$$
x_{i 1}=x_{1}
$$

Let $X_{i 2}$ be a point of $E \neq x \quad X_{1}$.

$$
\operatorname{in} B\left(x, \frac{d\left(x, x_{1}\right)}{100}\right)
$$

Let $X_{i 3}$ be a point of $E \neq x$ in $B+\frac{d\left(x, x_{i n}\right)}{100}$

$$
B\left(x, \min _{j \leqslant i_{2}} \frac{d\left(x, x_{j}\right)}{100}\right) \Rightarrow i_{3}>i_{2}
$$

COMPACTNESS
Def Let $K$ be a subset of a metric space $X$
We say $K$ is compact if, for any collection of open sets of $X$ $\left(\left\{U_{s}\right\}_{s \in S}\right)$ which covers $K$ (ie. $K \subset \bigcup_{s \in S} U_{s}$ )
there is a finite subcollection $U_{1}, U_{2}, \ldots, U_{N}$ which still covers $K$
Compere t Sets
A finite set $K$ is compact
For each $x \in K$, let $U_{x}$ be an open set in the collection which contains $x$ Then $\left\{U_{x}\right\} x \in K$ is my collection that covers $k$
$\mathbb{R}$ is noncompact $\mathbb{Z}$ is non compact
Consider the collection

$$
\begin{aligned}
& \text { insider the collection } \\
& (-2,0),(-1,1),(0,2),(1,3),(2,4), \ldots
\end{aligned}
$$

The union of amy finite subcollection is bounded and cannot cover all of $\mathbb{R}$ or all of $\mathbb{Z}$

Indeed, any unbounded subset of $\mathbb{R}$ is noncompact

- $(0,1)$ is non compact

Pf Consider the collection $\left(\frac{1}{2}, 1\right),\left(\frac{1}{4}, 1\right),\left(\frac{1}{8}, 1\right),\left(\frac{1}{16}, 1\right), \ldots$
01 their union is $(0,1)$
() BUT amy finite subcollection of these misses $x$ for some (very small) $x>0$
( 1 so does not cover $(0,1)$

Thy (theine-Borel) $[0,1]$ is compact
Let's try to cover $[0,1]$ with open intervals

$$
\begin{array}{lll}
\left(\frac{1}{2}, 1\right) & \left(\frac{1}{2}, 1.01\right) & \left(\frac{1}{2^{2}}, 1.01\right) \\
\left(\frac{1}{4}, 1\right) & \left(\frac{1}{4}, 1.01\right) &
\end{array}
$$

$$
(-.0001,1.01)
$$

The Let $x_{1}, x_{2}, \ldots$ be an infinite sequence in a compact subset $K \subset X$ Then $X_{1}, x_{2}, \ldots$ has a convergent subsequence where limit is in $k$
Rok We express the def of compactness in terms of open subsets of $X$, but we could have just used open subsets of $K$
Uses: if $U$ open in $X$ and $E \subset X$, then $U \cap F$ is open in $E$
e.g. $X=\mathbb{R} \quad E=[0,1] \quad U=(-1,1) \quad U \cap E$ is open in $E$

$$
[0,1) \quad[0,1]
$$

