MATH 521 Lecture 14 RT.
Thm An infinite subset $S$ of a compact set $K \subset X$ has an accumulation point in $K$

Pf Suppose not. $\mathbb{R}$

Then every $k \in K$ is not an accumulation point

(11111111) for $S$
Thus there is some neighborhood $U_{k}$ of $k$ such that $\stackrel{s}{k} \cdot$

$$
\begin{aligned}
& k \in U_{k} \\
& \cdot U_{k} \cap S=\{k\} \text { or } \phi
\end{aligned}
$$

EQUIV If $S<k, k$ compact, $L_{k}(S)=\varnothing$,
then $S$ is finite
$\bigcup_{k \in K} U_{k} \supset K$, i.e.. the $\left\{U_{R}\right\}_{k} \in K$ is a cover of $K$
BY COMPACTNESS, there is some finite subcollection
$U_{R_{1}}, V_{R_{2}}, \ldots, U_{R_{n}}$ which covers $K$, whence also $S$
But each $U_{k_{i}}$ contains at most one point of $S, k$; or none $S \subset\left\{k, \ldots, k_{N}\right\}$ and in particular $S$ is finite
Cor If $x_{1}, x_{2}, x_{3}, \ldots$ is a sequence of points in $K$ compact then $x_{1}, x_{2}, \ldots$ has a subsequential limit in $k$
e.g. if $K=[a, b]$ this says a bounded sequence of reals has a subsequential limit
Sidebar: In fact, compact sets are annoys closed so actually all accumulation points/sublequential limits are in $K$
Pf $S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
Last time we showed that an accumulation point of $S$ is a subsequential limit of $x_{1}, x_{2}, \ldots$
If $S$ is infinite, it has an accumulation point in $K$ by $T h_{m}$ and we are done

If $S$ is finite, there is some $s \in S$ which occurs infinitely many times in $x_{1}, x_{2}, \ldots$
$\Rightarrow$ there is a sequence $s, s, s, s, \ldots$
$\Rightarrow s$ is a subsequential limit
More Compactness Facts
Prop A closed subset of a compact $K$ is compact
Sidebar: Recall $[0,1$ ) is open in $[0,1]$ but not open in $\mathbb{R}$ openness is relative
However, if $X$ is a metric space, $Y \subset X$, and $K \subset X$, then $K$ is compact in $Y$ it $K$ is compact in $X$ compactness is intrinsic
Recall: we say $K \subset X$ is compact if whenever we have a collection of open sets covering $K$, some finite subcollection of that collection also covers $K$
$\mathbb{R}$ is not compact
A finite set is compact


$$
v_{1}, v_{2}, v_{3}, v_{4}
$$

$[0,1]$ is compact
$K=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots, 0\right\}$ is compact
$1111 N_{0}^{\varepsilon}$ Let $\{U\}$ be a collection of open sets covering $k$ Then at least one of the open sets in my collection contains 0 , call it $U_{0}$
$V_{0}$ contains 0 and it contains $B_{K}(0, \varepsilon)$ for some $\varepsilon>0$
In particular, it contains all $x \in K$ with $|x|<\varepsilon$
This is all but finitely many points of $K$ !
The rest can be covered by one set each.
A collection $U_{1}, U_{2}, U_{3}, \ldots$ is a covering of $K /$ covers $K$ means $k<\bigcup_{i} U_{i}$

Prop A closed subset $Y$ of a compact $K \subset X$ is compact
Pf Suppose we have a covering $\left\{U_{S}\right\}_{s \in S}$ of $Y$
$V_{1}, U_{2}, U_{3}, \ldots$ open sets of $K$
$U_{1}, V_{2}, U_{3}, \ldots, K_{\uparrow} \backslash Y$ is a covering of $k$
open in $K$
because $y$ is
closed
So there is a finite list of these
$U_{i 1}, V_{i 2}, \ldots, U_{i N}, \begin{gathered}\text { maybe } \\ \text { ( } K \backslash Y \text { ) which still covers } K \text {, }\end{gathered}$ whence also Y

Then $U_{i 1}, \ldots, V_{i n}$ also cover $Y$, because $K \backslash Y$ is disjoint from $Y$
Def $X$ a metric space, $E \subset X$
we say $E$ is bounded if there is some open ball $B(x, r)$ containing $E$
Prop If $K \subset X$ is compact, then $K$ is bounded "form where"
Pf Choose $x \in X \quad\{B(x, r)\}_{r \in \mathbb{R}_{>0}}$ covers $X$, whence also $K$ Since $K$ is compact,
some finite list of than covers $K$

$$
K \subset B\left(x, r_{1}\right) \cup B\left(x, r_{2}\right) \cup \cdots \cup B\left(x, r_{N}\right)=B\left(x, \max \left(r_{i}\right)\right)
$$

$\Rightarrow K$ is bounded
Thin (Heine-Borel) $A$ closed \& bounded subset of $\mathbb{R}^{n}$ is compact e.g. $[0,1] \subset \mathbb{R}$

Def $A_{n} n$-cell in $\mathbb{R}^{n}$ is a set $\left\{a_{1} \leqslant x_{1} \leqslant b_{1}, \ldots, a_{n} \leqslant x_{n} \leqslant b_{n}\right\}$

$$
\begin{aligned}
& =\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \\
& =b_{0} x
\end{aligned}
$$

We will prove that a box is comprect

