MATH 521 Lecture 16 Dinension

What is the dimension of a set of points?

Analyst's version of dimension: (roughly Minkovski dimension)

Let X be a bounded metric space

Define for each 270,

For each
$$\xi = 0$$
,
 $((\chi, \xi) = Smallest number of $\xi - balls$ that can cover $\chi$$

(0,0)

$$x = [0, 1]$$
 $(x, \xi) \sim \frac{1}{2\xi}$

$$\frac{1}{25} + 0\left(\frac{1}{25}\right)$$

$$C(X,E)$$
 when X is Hamming space \Rightarrow error-correcting codes

$$C(x,\xi) \wedge C \cdot \xi^{-1}$$

$$C(x,\xi) \wedge C \cdot \xi^{-2}$$

$$C(x,\xi) = 3 \cdot \xi^{-1}$$

$$C(x,\xi)=3\cdot\xi$$

$$C(x,\xi) \sim C \cdot \xi^{-1}$$

$$C(x,\xi) = 3 \cdot \xi^{-1}$$

Eo R_1L R_2 The closet sets we've seen either R_1LR R_2 • shore a closed interval of positive side, or R_2LR R_3 • countable Cantor Set

$$(1,1) \times = [0,1] \times [0,1]$$

$$C(x, z) \sim C \cdot z^{-2}$$

$$V_{best way} = 100 \cdot 2 \left(\frac{1}{2z}\right)^{2}$$

lattice (points as centroid of E-ball)

```
Prop The Cantor set is uncountable, closed, and contains no positive length
 Given a length n+1 sequence of L, R (e,g, R, L, R, R plotted above)
      interval
      I got a boundary point in En (which is also in E)
 Claim 1: If R, L, R, R, R, L, R, L, L, ... is an infinite string of L's and R's,
                 the esequence an= february of E determined by first n+1 terms?
                       is couchy (key point; |a_{n+1}-a_n| < \frac{1}{3} n)
                 and thus has a limit, which is in E (become E closed)
 Claim 2: the map from L-R strings to E is injective
               But the set of infinite L-R strings
                      = set of infinite 0-1 strigs which is uncountable
      Suppose [a, b] \subset E so \left[\frac{c}{3^n}, \frac{c+1}{3^n}\right] \subset E

O \left[\frac{c}{3^n}, \frac{c+1}{3^n}\right] \subset E

But check: \frac{c+\frac{1}{2}}{3^n} is never in E
  Why doesn't E contain an interval?
         Choose n s.t. 1 < b-a
  Must is C(E'E);
           C(E, \frac{1}{2} \cdot 1.001) = 1
            C(E, (=1.001)·=) = 2
            C(E, (\frac{1}{2}, 1.001), \frac{1}{3}) = 4
                                                     \left(\frac{1}{3^{n}}\right)^{-\frac{169^{2}}{\log^{3}}} = 2^{n}
   We find C(E, c.\frac{4}{2^n}) < 2^n
                (E, E) < c = log 3
                                                   fraktinel dimension
```