
MATH 521 Lecture 16

Dimension

what is
the dimension of a set of points ?
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Analyst 's version of
dimension :'(

roughly Minkowski dimension)

let ✗ be a bounded
metric space

Define for each
E > Q
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⇒ error-correcting codes lattice (points as centroid of E-ball )

To sum up ,
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Focus on power
as
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Prof The Cantor set is
uncountable

,
closed

,
and contains no positive length
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proved last
timeinterval

Given a length n -11 sequence
of L ,

R (e. g , R ,
L

,

R ,
R plotted above )

I got a boundary
point in En

( which is also in E)
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is an infinite string

of L's and R 's
,

the esequence an = { element
of F- determined by first n -11 terms }

is Cauchy (key point ; / ants - an / < ÷ n )

and thus has a
limit , which is in E ( because E dosed )

claims : the map from L - R strings to E is injective

But the set of infinite L - R strings

= set of infinite 0-1 strings which is uncountable

why does n4 F- contain
an interval ?
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Choose
ns.t. ÷ < k÷

What is C(E.a)
?
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