MATH 521 Lecture 16
Dimension
What is the dimension of a set of points?

1

Analyst's version of dimension: (roughly Minkouski dimension)
Let X be a bounded metric space
Define for each $\varepsilon>0$,
$C(X, \varepsilon)=$ smallest number of ε-balls that can cover X

$$
x=[0,1]
$$

$$
c(x, \varepsilon) \sim \frac{1}{2 \varepsilon}
$$

$$
\frac{1}{2 \varepsilon}+O\left(\frac{1}{2 \varepsilon}\right)
$$

$C(x, \varepsilon)$ when x is Hamming space
\Rightarrow error-correcting codes
$(0,0)$
$\downarrow_{\text {best way } 100.2\left(\frac{1}{2 \varepsilon}\right)^{2}}$
,
. . . .
lattice (points as centroid of ε-ball)

To sum up,

$$
\begin{aligned}
& C(x, \varepsilon) \sim C \cdot \varepsilon^{-1} \\
& C(x, \varepsilon) \sim C \cdot \varepsilon^{-2} \\
& C(x, \varepsilon)=3 \cdot \varepsilon^{-0}
\end{aligned}
$$

Focus on power
Cantor set
Recall Es

$$
E_{1}
$$

$$
E=\bigcap_{i=0}^{\infty} E_{i}
$$

$\frac{2}{3}$ The closet sets we've seen either

$$
\begin{array}{llll}
E_{2} & \cdots & - & -R_{1} L_{1} R \frac{7}{9} \\
E_{3} & \cdots & - & -R_{1} L_{1} R_{1} R \frac{7}{9}
\end{array}
$$ - share a closed interval of positive side, or - countable

Prop The Cantor set is uncountable, closed, and contains no positive length interval proved last time

Given a length $n+1$ sequence of $L, R(e, g, R, L, R, R$ plotted above) I got a boundary point in E_{n} (which is also in E)
Claim 1: If $R, L, R, R, L, R, L, L, \ldots$ is an infinite string of $L^{\prime} s$ and $R^{\prime} s$, the esequence $a_{n}=$ \{element of E determined by first $n+1$ terms\} is Canchy (Key point: $\left|a_{n+1}-a_{n}\right|<\frac{1}{3} n$) and thus has a limit, which is in E (because E closed)
Claim 2: the map from $L-R$ strings to E is injective
But the set of infinite $L-R$ strings
= set of infinite 0-1 strings which is uncountable
Why doesn4 E contain an interval?
Suppose $[a, b] \subset E$ So $\left[\frac{c}{3^{n}}, \frac{c+1}{3^{n}}\right] \subset E$
$0 \frac{1}{3^{n}} 1_{11}^{\frac{2}{3^{n}}}|1 \cdots 1|^{1=\frac{3^{n}}{3^{n}}} \quad$ But check: $\frac{c+\frac{1}{2}}{3^{n}}$ is never in E
(for $c \in \mathbb{Z} \geqslant 0$)

Choose n st. $\frac{1}{3^{n}}<\frac{b-a}{100}$
What is $C(E, \varepsilon)$?

$$
\begin{aligned}
& C\left(E, \frac{1}{2} \cdot 1.001\right)=1 \\
& C\left(E,\left(\frac{1}{2} \cdot 1.001\right) \cdot \frac{1}{3}\right)=2 \\
& C\left(E,\left(\frac{1}{2} \cdot 1.001\right) \cdot \frac{1}{9}\right)=4 \\
& \text { We find } C\left(E, C \cdot \frac{1}{3^{n}}\right)<2^{n} \quad\left(\frac{1}{3^{n}}\right)^{-\frac{\log 2}{\log 3}}=2^{n}
\end{aligned}
$$

$$
c(E, \varepsilon)<c \varepsilon^{-\frac{\log 2}{\log 3}}
$$

frachinel dimension

