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Functions

To start : let ✗ a metric space ,

ECX a
subset

f : E
→ Y and a an accumulation pt in ↳ (E)

BEY

1in f-G) = b
Def We say ✗→ a

if : for every neighborhood U of b

7- a neighborhood V of a s -t .

f-(x) c- U for all ✗ C- Vla

at

f- (V ) CV

in R

EQUIVALENTLY : for every E > 0
,
7- 8 sit

0<1 × - ales

zf O< dcx , a) < 8 then dlflx ) '
b) < E

1f(× ) - b / < {

why E ? e. g. ✗ = R we might take .

F- = C- • ,
0 ) f :R<◦ → IR

¥2 1×1%11×1=1×1,2

F- = C- a. 0)
: f f- (x ) is 1

E = (O ,

P ) :
"m flx) is 2

✗→ 0

F- = IR : ¥3 fcx ) DNE

Def X ,
Y are metric spaces f- : ✗→ Y a function

we say f is continuous at a point PEX if
,

for

every neighborhood of f- (p ) ,

7- a neighborhood U of P S - t . f-( U ) cv



Prof TFAE (the following are equivalent)

• f is continuous of P

•
1in f- (x) = f- (p)
✗→ p

what if p is not a
limit point of ✗ ?

Then claim : f is aÉy
continuous at p

I

•
0

☒
✗

→ Y

If If p
not a limit point ,

7- Some neighborhood U of p

sit . Uh ✗
= { p }

In particular , for every neighborhood ✓ of fcp) ,

take U=lp} : then f- (U) = { fcp ) } cv ✓

Deaf we say f : ✗→ Y is continuous if it
is continuous at every

point p
of ✗

Equivalent Def : fi ✗ → 4 is continuous if ,
for every open

set VCY
,

preimage f-
ʰ(V ) is open in ✗

↑

= { ✗ ≤X : f-G) EV }

Pt of equivalence :

Let ✗ be a point of f-1(V1

I need to show there's an open V7 ✗ s . -1 .

equivalently ,
f-( U ) CV

Ucf
-1 (v )

Preinage
of V = everything that gets mapped to V by S

µ-11¥
-

④ '
I know f- is continuous of ✗ :

thus , for every neighborhood V of f- (x ) ,

there is U s. -1 .

f- (U) CV ; exactly
what we need

Note : f-
' (G) = f-

'
(b)
'

so if f is continuous ✗ → Y and C is closed in Y
,

then f-
' (C) is closed in ✗



Basic facts :

• Constant functions are continuous

• The identity map hi
✗→ ✗ is continuous

• If f , s : ✗ → IR are continuous so are -1+9 , f-g , fg

(though not necessarily f/ g)

• Any polynomial P : R→ IR is continuous

• If f : ✗
→ Y and g : Y→Z

are continuous , so is go.fi ✗ → z

• If ECY ,

and g : Y→ 2- is continuous ,
then 9 / E : F-→ 7- is

t

continuous
restricted glE(e) = g (e)to

• A function
✗ → R

" (ft
,
fz

,
. . _

,
fn ) is continuous if and only if

fi is constant
for all I

Theerrlremevaluetheonemn
Recall ,

Continuous compact
metric space

↓

a
function on a finite set has a maximum

Thin (EVI)

Let K a compact metric space and f : k→R a continuous

function .

Then there exists ✗ c- K s .-1 . f- G) = Sup fcp )
PEK

Rink why do economists take real analysis ?

Suppose you
have S policies we have to make choices about

• $ prisons
• marginal tax rate

•

gas
tax

• $ schools

• $ roads

Our total
"

policy bundle
" is a point in Rs which is contained

in a space of feasible policy bands KC Rs ,
which

is compact

f. k→R is a utilityfmctien

f- (p ) =
"

How good is policy p
"

?

Let's also suppose f is continuous

EVF tells You: Ip c- K s .

-1
. flp) = sup fcp) ;

"

there is a

PEK best policy ' '



PI of EVT

For each a
ER

,
define

Ka = { ✗ c- K : FAI ≥ a }

= f-1( [a.
as ) )

[a , as)
is closed in IR so ka is closed in K by continuity

ka
Define ✗ = n

alla s -t .

Ka is nonempty

Note that these are nested :

Kbc ka if
b- a

Chain : ✗ is
nonempty

Pf of Claim: Suppose ✗ empty write Ua for kl ka

Ua is open

= U Va

K = ✗
' =L N ka]

'

as .+
.

ask- Vat k
ka nonempty

so
these Ua covers K ,

so
by compactness , some finite collection Uas

,
Vaz

,
. . .

,

Van

of open
sets ≠ K cover K

an -_ max a ;

But k= Uva,
= Van ≠ K

What we proved : if K compact, every sequence of
nested

closed nonempty subsets of K has nonempty intersection

let ✗ C- ✗ Claim : ✗ is a
maximum

argument
: f- (x) =

Snp f- (p )
PEK

Suppose not :
then 7- some ×

' s-t . fcx
' ) > flx /

But then Kfcxy is nonempty ,
because it contains fcx ' )

Kfcxy does4 contain ✗
,
because flx) < f- (x1 )

But ×
is in every nonempty Ka , contradiction


