Lecture 18 2022/11/10

Last time: We defined continuity of a function
$$f: X \rightarrow Y = X, Y$$
 metric spaces
andycts definition: $\lim_{X \rightarrow Y} f(x) = f(p)$
topologies definition: If V is an open subset of Y,
than $f^{-1}(U)$ is an open subset of X
 $= \{x \in X: f(x) \in V\}$
R: Let X be the space of bounded functions $[0, 1] \rightarrow \mathbb{R}$
Define F: $X \rightarrow \mathbb{R}$ by $F(f) = II fII sup
Define F: $X \rightarrow \mathbb{R}$ by $F(f) = II fII sup
 $f(x) = 1 \quad f(x) = 1 \quad 2 \quad p(f)$
 $p: X \rightarrow \mathbb{R}$ gravitations $f(x) = 1 \quad 2 \quad p(f)$
 $p: X \rightarrow \mathbb{R}$ gravitations parends $\int_{0}^{1} \frac{1}{10} \int_{0}^{10} \frac{1}{$$$

Note:

$$V = [0, 1] \cup [2, 3] \text{ is deconvected}$$

$$V_{i} = [0, 1] \cup [2, 3] \text{ is deconvected}$$

$$V_{i} = [0, 1] \text{ is open in } X$$

$$S.t. \text{ is the open ball } B_{X}(\frac{1}{2}, \frac{1}{2} + 0.0001)$$

$$V_{L} = [2, 3]$$

$$Q : \text{ Is the Contrest Connected } \text{ is only convected subsets}$$

$$V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } V_{0} = e \in E: 0 \le e \le \frac{1}{2}$$

$$V_{0} : \text{ take } \text{ take only connected subsets}$$

$$V_{0} : E \text{ take no isolved points}$$

$$V_{0} : E \text{ take not converted}$$

$$V_{0} : E \text{ subs not converted}$$

$$V_{0} : What do we mean when we \text{ say a sequence fit, fit, fit, ... Converges to }$$

$$P_{1} : W_{0} \text{ for the fillowing notion :}$$

$$V_{0} : W_{0} \text{ the fullowing notion :}$$

$$V_{0} : V_{0} : V_{0}$$

Note that
$$f_{1} \rightarrow 0$$
 is definitely not true
in the sense of sup norm
That would mean,
for every $z = 0$, $\exists N$ s.t. for all $n > N$, $||f_{n} - 0||_{sup} < z$
II full sup
II full sup
Q: Is the point whe limit of continuous functions continuous?
Suppose f_{k}, f_{k+1} ... converges to f pointwise
 f_{n} is continuous for all n
We want to show $\lim_{x \to y} f_{n}(x) = f(p)$
 $\lim_{x \to p} \lim_{x \to p} \lim_{n \to \infty} f_{n}(x) \neq \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} \int_{n}^{2} f(p) = f(p)$
 $\lim_{x \to p} \lim_{x \to p} \lim_{n \to \infty} \int_{n}^{2} \int_{n}^{2$