Lecture 18 2022/11/10
Last time: We defined continuity of a function $f: X \rightarrow Y \quad X, Y$ metric spaces andysts definition: $\lim _{x \rightarrow p} f(x)=f(p)$
topologists definition: If V is an open subset of Y, then $f^{-1}(v)$ is an open subset of X

$$
=\overline{\{x \in X: f(x)} \in V\}
$$

Q : Let X be the space of bounded functions $[0,1] \rightarrow \mathbb{R}$
Define $F: X \rightarrow \mathbb{R}$ by $F(f)=\|f\|_{\text {sup }}$
Is F continuous? eeg. in Calls of variations:

$$
x=\text { functions }[0,1] \rightarrow \mathbb{R}
$$

$f(0)=1 \quad f(1)=1 \quad$ "boundry conditions"

$$
\operatorname{arclergth}(f)=1 \quad 2 \quad P(f)
$$

$P: X \rightarrow \mathbb{R}$ gravitational potential $\quad \int_{0}^{1} f^{m g}(x) d x=$
Q: What is $\inf _{x} P$?
(${ }^{0}$ (2) NO
CONNECTEDNESS
III, YES
Tao definitions:
Andysts definition: A metric space X is connected if there is no subjective continuous function $f: X \rightarrow\{0,1\} \sim$ note $\{0\}$ is open $=B\left(0, \frac{1}{2}\right) \quad x_{2}=\frac{4}{2}$
Topdogists definition: X is connected if there are no tho nonempty open subsets of $X U_{0}, U_{1}$ st.

$$
\begin{aligned}
& U_{0} \cap U_{1}=\phi \\
& U_{0} \cup U_{1}=X
\end{aligned}
$$

In this case, $V_{1}=V_{0}^{c}$ is closed, whence

Why are these equivalent?
If you have continuous, surjective $f: x \rightarrow\{0,1\}$ define

$$
\begin{array}{ll}
\text { you have continuous, } & \text { surjective } \\
U_{0}=f^{-1}(\{0\}) & U_{1}=f^{-1}(\{1\}) \\
\text { (f subjective), }
\end{array}
$$

U_{i} are nonempty (f subjective), open (f continuous)

Note:
$\frac{1}{0} 23^{3} \quad X=[0,1] \cup[2,3]$ is disconnected
$U_{0}=[0,1]$ is open in X
Sit. is the open ball $B_{x}\left(\frac{1}{2}, \frac{1}{2}+0.0001\right)$

$$
U_{1}=[2,3]
$$

$Q:$ Is the Cantor set connected?
No: take $V_{0}=e \in E: 0 \leq e \leq \frac{1}{3}$

$$
\begin{aligned}
V_{0}= & e \in E \\
& -0.0001<e<\frac{1}{3}+0.0001 \\
V_{1}= & \cdots \quad \frac{2}{3} \leqslant e \leq 1
\end{aligned}
$$

V_{0} is also disconnected
In fact, E is totally disconnected: the only connected subsets of E are single points
Yet E has no isolated points!
Q is also not connected

$$
\begin{aligned}
& \text { is also not connected } \\
& U_{0}=\{x \in \mathbb{Q}, x<\sqrt{2}\}
\end{aligned} \quad U_{1}=\{x \in \mathbb{Q}, x>\sqrt{2}\} \text { covers } \mathbb{Q} \text { disjointly }
$$

SEQUENCES OF FUNCTIONS
Q: What do we mean when we say a sequence $f_{1}, f_{2}, f_{3}, \ldots$ converges to

$$
f>
$$

Q_{2} : Which properties of the f_{2} are preserved by f ?
One might try the following notion:
Let f_{1}, f_{2}, \ldots be functions $X \rightarrow Y$
Define a function f by

$$
\begin{aligned}
& \text { a function } \lim _{n \rightarrow \infty} f_{n}(x) \text { when this limit exists }
\end{aligned}
$$

If the limit exists for all $x \in X$, we say $f_{i} \rightarrow f$ pointwise egg. $x=y=\mathbb{R}$
f_{1}

"burp function"
supported on $[0,2]$
pointwise limit: $f(7)=\lim _{n \rightarrow \infty} f_{n}(7)=0 \quad$ Conclude: $f(n) \rightarrow 0$
$0,0,0, \ldots$, sonetting, $0,0,0, \ldots$

Note that $f_{i} \rightarrow 0$ is definitely not true in the sense of sup norm

That would mean,
for even $\varepsilon>0, \exists N$ sit. for all $n>N,\left\|f_{n}-0\right\| \|_{\text {sup }}<\varepsilon$
11
II $f_{n} \| \sup$
Q: Is the point use limit of continuous functions continuous? Suppose f_{1}, f_{2}, \ldots converges to f pointwise
f_{n} is continuous for all n
We wort to show $\lim _{x \rightarrow p} f(x)=f(p)$

$$
\text { show } \lim _{x \rightarrow p} f(x)=\lim _{x \rightarrow p} \lim _{n \rightarrow \infty} f_{n}(x) \neq \lim _{n \rightarrow \infty} \lim _{x \rightarrow p} f_{n}(x)=\lim _{n \rightarrow \infty} f_{n}(p)=f(p)=f(p)
$$ pointrise convergence

not sole to switch
S can 4 necessarily switch order of limits?

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{m}{m+n}=0 \\
& \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{m}{m+n}=1
\end{aligned}
$$

Why sequences of functions?
Taylor series:

$$
e^{x}=\underbrace{1+x}_{\text {or series: }}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

e^{x} is a limit of a sequence of polynomials Fourier series could handle functions without Taylor series $\rightarrow M A T H 522$

