MATH 521 Lecture 18
SEQUENCES OF FUNCTIONS
Applied reason to care:
In machine leaning, we are often trying to lean a function

$$
f: \mathbb{R}^{100 \times 100} \rightarrow[0,1] \quad \text { f(image) }=\text { probability of dog }
$$

space of $\quad\{0,1\}$
100×100 images
The way you do this is by training:
you have labelled data $\begin{aligned} & d_{1} \\ & d_{2} \\ & d_{3}\end{aligned} \quad$ (image, $\begin{aligned} & \text { nog } \log \text {) })\end{aligned}$
f_{n} is the function the machine leams after seeing n data points You will hope that, in some sense, that f_{n} converges to f as $n \rightarrow \infty$ More precisely, can ask if the f_{n} are in some sense Cauchy seen to be "settling down" to something
The distance between f_{n} and f is called the loss and we hope this is $\rightarrow 0$ as n gets large which notion of distance? L^{∞} loss, L^{2} loss, L^{1} loss L^{∞} loss is big if there is even a single example where $f_{n}(x)=0$ but $f(x)=1$
L^{2} loss is big if there are many modestly sized failures
Last time: $f_{1}, f_{2}, \ldots \quad x \rightarrow \mathbb{R}$
We said f_{1}, f_{2}, \ldots converges pointwise to f if, $\forall x \in X, \lim _{i \rightarrow \infty} f_{i}(x)=f(x)$
Def We say f_{1}, f_{2}, \ldots converges uniformly to f if for all $\varepsilon>0, \exists N_{\varepsilon}$, s.t. $\forall x \in X, \quad \forall n>N_{\varepsilon} \quad\left|f_{n}(x)-f(x)\right|<\varepsilon$

RE Point wise converges:

$$
\begin{aligned}
& \text { Dint wise converges: } \\
& \forall x \in Y \text {, for all } \varepsilon>0, \exists N_{x, \varepsilon} \text { s.t. } \forall n>N_{x, \varepsilon} \quad\left|f_{n}(x)-f(x)\right|<\varepsilon \\
& \text { (different o }
\end{aligned}
$$

(different order!) different meaning
eng. $X=[0,1]$

$$
f_{n}(x)=x^{n}
$$

The f_{n} converge pointwise to f, where $f(x)=1$ if $x=1$
But f_{n} does not converge uniformly to f
pf of run-UC
If convergence were uniform,
Ipick $\varepsilon=0.01$ Yon pick $N=10^{6}$
Is N big enough to make

$$
\begin{aligned}
& \text { N big enough } \\
& \left|f_{n}(x)-f(x)\right|<0.01 \quad \forall x \in X \\
& \frac{1}{b+1} \ell \quad \forall n=
\end{aligned}
$$

I choose $x=(0.01)^{\frac{1}{10^{6+1}} \ell} \sim 0.999999 \cdots$

$$
\begin{aligned}
& n(x)=0 \\
& \left|f_{n}(x)-f(x)\right|=\left|x^{n}\right|=\left[\left(0.010^{6}+1\right.\right. \\
& \left.\frac{1}{10^{6}+1}\right]^{10^{6}+1}=0.01
\end{aligned}
$$

(1) If f_{1}, f_{2}, \ldots converges uniformly to f, it converges uniformly to f Pf Given $U C$, we know that $\forall \varepsilon>0, \exists N_{\varepsilon}$ sit. for all $x \in X$,

$$
\forall n \in N \varepsilon, \quad\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

This shows e.g. that $\lim _{n \rightarrow \infty} f_{n}(0.7)=f(0.7)$
(2) If f_{1}, f_{2}, \ldots are bounded functions in X, then $f_{1}, f_{2}, \ldots \rightarrow f$ uniformly iff $\lim _{i \rightarrow \infty} f_{i}=f$ if the metric space of bounded functions with sup norm
Pf Uniform convergence says,

$$
\begin{aligned}
& \text { for convergence says, } \begin{aligned}
\forall \varepsilon>0, \exists N_{\varepsilon} \text { sit. } \forall n>N_{\varepsilon} & , \frac{\forall x \in X,\left|f_{n}(x)-f(x)\right|<\varepsilon}{} \\
& \Leftrightarrow \sup _{\substack{ \\
x \in X}}\left|f_{n}(x)-f(x)\right|<\varepsilon \\
& \Leftrightarrow\left\|f_{n}-f\right\|_{\text {sup }}<\varepsilon
\end{aligned}
\end{aligned}
$$

But: consider a case like

$$
X=\mathbb{R} \quad f_{n}(x)=x^{2}+\frac{1}{n}
$$

These converge uniformly to $f(x)=x^{2}$
 But nome of the f_{n} have a sup norm

But $f_{n}(x)=\left(1+\frac{1}{n}\right) x^{2}$ would not converge uniformly to x^{2} Uniform convergence of $f_{n} \rightarrow f$ equivalent to $f_{n}-f=0$ in sup norm
(3) $x=[0, c] \quad c<1$
$f_{n}(x)=x^{n}$ does uniformly converge to 0
Given $\varepsilon>0$, I need to find N_{ε} s.t.

$$
\forall x \quad\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

It suffices to find N s.t. $\left|c^{n}\right|<\varepsilon$ for all $n>N$

$$
\text { take } N_{\varepsilon}=\frac{\log \varepsilon}{\log c}+1000
$$

Convergence in the L^{2} sense

$$
\begin{aligned}
& \text { rgence in the } L^{2} \text { sense } \\
& x=\mathbb{R} \quad f_{n}(x)=\begin{array}{l}
1-\frac{1}{n} \leqslant x \leqslant \frac{1}{n} \\
0 \text { otherwise }
\end{array} .
\end{aligned}
$$

$f_{n}=\chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]} \leftarrow$ characteristic function

What is the printuise limit? $f=X_{\{0\}} \quad f(x)=\begin{aligned} & 1\end{aligned} \quad \begin{aligned} & x=0 \\ & 0\end{aligned}$ This convergence is not uniform: $f_{n}-f=\begin{aligned} & 1-\frac{1}{n} \leq x<0 \text { or } 0<x \leqslant \frac{1}{n} \\ & 0 \text { otherwise }\end{aligned}$

$$
\left\|f_{n}-f\right\|_{\text {sup }}=1 \text { for all } n
$$

Now lets ask: is it the case that for all $\varepsilon>0, \exists N_{\varepsilon}$ s.t. for all $n>N_{\varepsilon}$

$$
\left\|f_{n}-f\right\|_{2}<\varepsilon ?
$$

indeed, just take

$$
N=10000 \cdot \Sigma^{-2}
$$

$$
\left(\int_{-\infty}^{\infty}\left[f_{n}(x)-f(x)\right]^{2} d x\right)^{1 / 2}
$$

$$
=\left(\frac{2}{n}\right)^{1 / 2}=\frac{\sqrt{2}}{\sqrt{n}}
$$

Your enemy argues: f_{1}, f_{2}, \ldots converges in L^{2} to 0

$$
\left\|f_{n}-0\right\|_{2}=\left\|f_{n}\right\|_{2}=\sqrt{\frac{2}{n}} \text { which goes to } 0 \text { as } n \rightarrow \infty
$$

What is the distance between the two purported limits $X_{\{0\}}$ and 0 ?

$$
\begin{aligned}
& \text { is the distance between the } \\
& \left\|X_{\{0\}}-0\right\|_{2}=\left\|X_{\{0\}}\right\|_{2}=\left[\int_{-\infty}^{\infty} x_{\{0\}}^{2}(x) d x\right]^{1 / 2}=0
\end{aligned}
$$

Def We say a function $f:[a, b] \rightarrow \mathbb{R}$ is " L^{2}-null" if $\int_{a}^{b}|f(x)|^{2} d x=0$
Def We say f and g are equivalent in L^{2} if $f-g$ is L^{2}-null $f \sim_{L_{2}} g$
Def The space of l^{2} functions in $[a, b]$ is the set of convergence classes for $\sim L_{2}$

Remarks
(1) Why is $\sim_{L_{2}}$ an equivalence class?

You need $f \sim g \& g \sim h \Rightarrow f \sim h$

$$
f \sim g \& g \sim h \text { are } L^{2}-n u l l \Rightarrow f \sim h
$$

really, we prove
if F, G are L^{2}-null, so is $F+G$
Indeed, the L^{2}-null functions are a subspace, and L^{2} space is the quotient of functions $/ L^{2}$-null space

In fact, fig

