MATH 521 Lecture 18

SEQUENCES OF FUNCTIONS

Applied reason to care: machine learning, we are often trying to learn a function $f: \mathbb{R}^{100 \times 100} \rightarrow [0, 1]$ f(image) = probability of dogIn space of {0,1} 100×100 images The way you do this is by training: you have labelled data de (image, not along) fn is the function the machine learns after seeing n data points You will hope that, in some sense, that for converges to f as n > 00 More precisely, can ask if the fn are in some sense Canchy seen to be "settling down" to something The distance between fn and f is called the loss and we hope this is -> 0 as a gets large Which notion of distance? Loss, L2 loss, L1 loss L^{oo} logs is big if there is even a single example where $f_n(x) = 0$ but f(x) = 1L² loss is big if there are many modestly sized failures Last time: f1, f2, ... X→R We said fi, fz, ... converges pointulise to f $if, \forall x \in X, \lim_{x \to \infty} f_i(x) = f(x)$ Def We say fi, fi, ... converges uniformly to f if for all z > 0, $\exists N_{z}$, s,t, $\forall x \in X$, $\forall n > N_{z}$ $|f_{n}(x) - f(x)| < \varepsilon$ Rk Pointwise converges: $\forall x \in Y$, for all $\xi > 0$, $\exists N_{X,\xi}$ s.t. $\forall n > N_{X,\xi} |f_n(x) - f(x)| < \xi$ (different order!) different meaning

e.g.
$$X = [0, 1]$$

 $f_n(x) = x^n$ or if $x < 1$
The finan converge pointwise to fination of the field of $x = 1$
But fination does not converge uniformly to f
 $\frac{Pf}{Pf}$ of non-UC
If convergence were uniformly
I pick $z = 0.01$ You pick $N = 10^6$
Is N big enough to make
 $|f_n(x) - f(x)| < 0.01$ $\forall x \in X$
I choose $x = (0.01)^{\frac{1}{10^6+1}} \sim 0.99991^{-11}$
 $f(x) = 0$
 $|f_n(x) - f(x)| = |x^n| = [(0.01)^{\frac{1}{10^6+1}}]^{10^6+1} = 0.01$

Remarks on uniform convergence uniformly to f, it converges uniformly to f
(1) If
$$f_{1}, f_{2}, ..., converges uniformly to f, it converges uniformly to f
Pf Given UC, we know that $\forall z \ge 0$, $\exists N_{z} \quad s.t.$ for all $x \in X$,
 $\forall n \in N_{z}$, $|f_{n}(x) - f(x)| < z$
This shows e.g. that $\lim_{n \to \infty} f_{n}(0.7) = f(0.7)$
(2) If $f_{1}, f_{2}, ... \Rightarrow dre bounded functions in X, then $f_{1}, f_{2}, ... \Rightarrow f$
uniformly iff $\lim_{t \to \infty} f_{t} = f$ if the metric space of bounded
functions with sup norm
Pf Uniform convergence says,
 $\forall z \ge 0$, $\exists N_{z}$ s.t. $\forall n \ge N_{z}$, $\forall x \in X$, $|f_{n}(x) - f(x)| < z$
 $\Leftrightarrow \sup |f_{n}(x) - f(x)| < z$
 $\Leftrightarrow \sup |f_{n}(x) - f(x)| < z$
But: consider a case like
 $X = R \quad f_{n}(x) = x^{2} + \frac{1}{n}$
These converge uniformly to $f(x) = x^{2}$
But nore of the fn have a sup norm$$$

But
$$f_{n}(x) = (1 + \frac{1}{n}) x^{2}$$
 would not converge uniformly to x'
Uniform convergence of $f_{n} \Rightarrow f$ equivalent to $f_{n} - f = 0$ in
 $sup norm$
 $\textcircled{O} x = [0, c] < (1)$
 $f_{n}(x) = x^{n}$ does uniformly converge to 0
Given ≥ 0 . I need to find Ns st.
 $rac{1}{f_{n}(x)} = \frac{x^{n}}{1 + 1} = \frac{1}{1 + 1} = \frac{1}{2}$
It suffices to find N st. $|c| < \varepsilon$ for all $n > N$
take $N_{\overline{\varepsilon}} = \frac{(o_{3}\varepsilon)}{(o_{3}\varepsilon)} + 1000$
Convergence in the L^{1} sense $1 - \frac{4}{n} \le x \le \frac{1}{n}$
 $\sqrt{\varepsilon} = \mathbb{R}$
 $f_{n}(x) = \varepsilon$ does to intervise
 $f_{n} = \pi [c_{n} + \frac{1}{n}] = characteristic function
What is the pointwice limit? $f = \mathcal{X}_{\{0\}} + \frac{1}{2} = \frac$$

Def We say a function
$$f: [a, b] \rightarrow \mathbb{R}$$
 is "L²-null" if $\int_{a}^{b} |f(x)|^{2} dx = 0$
Def We say f and g are equivalent in L² if $f-g$ is L²-null
 $f \sim_{L^{2}} g$
Def The space of L² functions in $[a, b]$ is the set of convergence
classes for $\sim_{L^{2}}$

Remarks
(1) Why is
$$V_{L_1}$$
 an equivalence class?
You need frog & grh \Rightarrow frh
frog & grh are L^2 -null \Rightarrow frh

In fact, frg