Def (revisited) A function $f: A \rightarrow B$ is
injective if for every $b \in B$, there is at most one $a \in A$ with $f(a)=b$
subjective if for every $b \in B$, there is at least one $a \in A$ with $f(a)=b$
Thus, f is injective and surjective if for every $b \in B$, there is exactly one $a \in A$ with

$$
f(c)=b
$$

"A machine you run in revere"
We call such a f bijective
and ne denote the unique a with $f(a)=b$ by

$$
f^{\prime}(b)
$$

Indeed, when f is a bijection, $A \rightarrow B$
we can define a new function $f^{-1}: B \rightarrow A$

$$
\begin{aligned}
& \text { by } \left.f^{-1}(b)=\begin{array}{r}
\text { the migue } a \in A \\
\text { such that } f(a) \\
\text { e.g. } f: Q
\end{array}\right) \mathbb{Q} \quad x \mapsto 2 x
\end{aligned}
$$

If $x \in \mathbb{Q}$, what is $f^{-1}(x) ? \quad f^{-1}(x)=\frac{1}{2} x$
$N C P \frac{1}{2 x}$, which is $[f(x)]^{-1}$

$$
\text { egg. } 2: A \times A^{2} \rightarrow A^{2} \times A \quad\left(a,\left(a^{\prime}, a^{\prime \prime}\right)\right) \underset{1}{\mapsto}\left(\left(a^{\prime}, a^{\prime \prime}\right), a^{\prime \prime}\right)
$$

FUNCTIONAL COMPOSITION
Given $\quad A \xrightarrow{f} \beta \xrightarrow{g} C$
I can apply f, then g to get a function $g f: A \rightarrow C$ or $g \circ f$ $a \ngtr g(f(a))$ (/circe)

FACTS \& EXAMPLES
Not all pairs of fans can be composed. Target of f must match source of g.

$$
\begin{gathered}
f, g: \mathbb{Q} \rightarrow \mathbb{Q} \quad f(x)=x^{2} \quad g(x)=2 x \\
g f(x)=g(f(x))=g\left(x^{2}\right)=2 x^{2} \\
f g(x)=f(g(x))=f(2 x)=4 x^{2}
\end{gathered}
$$

! Function composition is non-commutative
Compare: a $n \times n$ matrix A "is" a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ $A B$ is a composition of these two compositions
Suppose $\quad f: A \rightarrow B$ is a bijection

$$
\begin{array}{ll}
f: A \rightarrow B & \text { is a bijection } \\
A \underset{f^{-1}}{\stackrel{ }{\rightleftarrows}} B & f^{-1} f: A \rightarrow A \\
& f^{-1} f\left(a_{0}\right)=f^{-1}\left(f\left(a_{0}\right)\right)
\end{array}
$$

the unique a such that $f(a)=f\left(a_{0}\right)=a_{0}$
i.e. $\quad f^{-1} f=i d_{A}$

$$
\begin{aligned}
& \text { i.e. } f^{-1} f=10 A \\
& \left.f f^{-1}\left(b_{0}\right)=f\binom{\text { the unique }}{\text { s.t. }} f(a)=b_{0}\right)=b_{0} \\
& f f^{-1}=i d_{B}
\end{aligned}
$$

Given $f: A \rightarrow B$, we say $g: B \rightarrow A$ is inverse to f

$$
\text { if } f g=i d_{B}, \quad g f=i d_{A}
$$

and in this case we write $g=f^{-1}$
Non- egg.
C: stated \rightarrow cities \quad S: cities \rightarrow states
C (state $)=$ capital $\quad S($ city $)=$ state it is in
CS: cities \rightarrow cities $S C:$ states \rightarrow states
$C S($ city $)=$ capital of state $\quad S C=$ idsteters the city is in

ORDERED SETS
S is a set
What does it mean to put a set in order?

For us, it means a way of saying, given $x, y \in S$, which one is langer

Given sets A, B
a relation from A to B is a subset $R \subset A \times B$
An ordering is a certain kind of relation, which we denote $<$
Def A_{n} ordering on S is a relation on $S \times S$ such that

- (companebilitity) $\forall x, y \in S$ exactly one of the following is true:

$$
x<4, y<x, x=4
$$

- (transitivity) $S=\{$ fog, chicken, con \} ~
con > chicken chicken > frog cow frog If $x<y$ and $y<z$, then $x<z$

Notation: An ordered set is a per $(S,<)$ into $<$ is an ordering on s
$x>y$ mans $y<x$
$x \leq y$ means $y<x$ or $y=x$
FACT: In an ordered set S, if $x \leqslant y$ and $y \leqslant x$, then $x=y$
Proof: Given x, y with $x \leqslant y$ and $y \leqslant x$
either $x=y$ or $x<y$
Case 1: $x=y$ DONE
Case 2: $x<y$ Since $y \leqslant x$, either $y=x$ or $y<x$
Case 2.1: $y=x$ DONE
Case 2.2: $x<y \& y<x$ med by axiom 1
EXAMPLES

- frog < chicken < COW
, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{\geq 0}, \mathbb{R}$
Any subset of an ordered set
- $\mathbb{Z} \geq 0 \cup\{\omega\}$ with the ordering $<_{\omega}$ defined as follows:

$$
\{0,1,2,3, \ldots\} \cup\{\omega\} \quad 0,1,2,3, \ldots, \omega-\omega, \ldots,-1,0,1, \ldots, \omega
$$

- If $m, n \in \mathbb{Z}_{>0} \quad m<w^{n}$ iff $m<n$ $w>_{a} n$ for all $n \in \mathbb{Z}_{>0}$

Check axiom 1
given x, y prove exactly one of $x<y, y<x, y=x$ true
Case 1: $x, y \in \mathbb{Z}>0$, follows from facts about integers
Case 2: $x=w, y \in \mathbb{Z}_{>0} \quad y<x$
Case 3: $x \in \mathbb{Z}>0 \quad y=w \quad x<y$
Case 4: $x, y \in \omega$

$$
x=y
$$

UPPER BOUNDS
Let S be an ordered set ECS
we say E is bounded above in S if $\exists s \in S$

$$
\text { st. } \forall e \in E, s \geqslant e
$$

We say s is an upper bound for E

$$
S=\operatorname{frg}<\text { chickenccow }
$$

$E=\{$ frog, cow $\}$, cow is an upper bound

$$
\begin{aligned}
& E=\{\not \log , \quad E=\{1,2,4,7\} \quad 1,000,000 ; 14 ; 10 ; 7 \\
& S=\mathbb{Z}>0
\end{aligned}
$$

$S=\mathbb{Z}>0 \quad E=\mathbb{Z}>0 \quad$ Not bounded above
$S=\mathbb{Z}_{>0} \cup \omega \quad E=\mathbb{Z}_{>0} \quad W$ is an upper bound
$S=\mathbb{Q} \quad \mathbb{E}=\{x \in \mathbb{Q}, x<0\} \quad S$ is an $U B, \frac{1}{2}$ is an $U B$.
O is $a_{n} V B$
Del We say s is a least upper bound fir E if - S is an upper bond for E If t is an upper bond for E, then $t \geqslant s$

