Lecture 21 Virtual
Let $f:(a, b) \rightarrow \mathbb{R}$
We wite $f(x+)=9 \quad x \in(a, b)$ to mean:
$\lim _{n \rightarrow \infty} f\left(x_{n}\right)=9 \quad$ for every sequence $\begin{aligned} & x_{1}, x_{2}, x_{3}, \ldots \in \uparrow(x, b) \\ & \\ & \text { converging to } x\end{aligned} \quad$ dram for dram from
"limit as f goes to x from above"
$f(x-)=9$ means some thug but for
 sequences in (a, x)
Prop f is continuous at x if $f(x+)$ exists, $f(x-)$ exists, and

$$
f(x-)=f(x)=f(x+)
$$

Pf If f is continuous at x, then, for any sequence x_{1}, \ldots, x_{n} in (a, b) Converging to $x \quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$
In particular, this applies to the sequences used to define $f(x+)$ and $f(x-)$, so $f(x+)=f(x-)=x$

Now suppose
and let x_{1}, x_{2}, \ldots be a sequence in (a, b) converging to x I reed to show you that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$

$$
x_{1}, \underline{x}_{2}, \underline{x_{3}}, \underline{x_{4}}, \underline{x_{5}}, x_{6}, \underline{x_{7}}, \ldots
$$

blue: in (a, x)
red: in (x, b)
By $f(x+)=x$, the subservience of red elements $f\left(x_{i}\right)$ converges to x blue ... $f\left(x_{i}\right)$...
So $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots$ can be partitioned into three disjoint subsequences, each of which converges to $f(x)$

Lemma. If a sequence can be partitioned into a finite union of subsequences, each comuryis to L, then the sequences converges to L

$$
0,1,0, \frac{1}{2}, 0, \frac{1}{3}, 0, \ldots
$$

So $f\left(x_{1}\right), f\left(x_{2}\right), \cdots \rightarrow f(x)$
Tupes of discontinuities
removable $f(x-)=f(x+)$
but $f(x)$ not equal to these
jump $f(x-)$ and $f(x+1$
both exist but are not equal
essential Either $f(x-)$ or $f(x+)$ does 4 exist

$$
\sin c(x):=\frac{\sin (x)}{x} \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Choices:

$$
\begin{aligned}
& \text { dices: } \\
& \sin (x): \mathbb{R}-0 \rightarrow \mathbb{R} \quad \text { continuous } \\
& \sin c(0+)=s
\end{aligned}
$$

or: $\begin{aligned} \operatorname{sinc}(x): \mathbb{R} & \rightarrow \mathbb{R} \\ f(x) & = \begin{cases}\sin x \\ x & x \neq 0\end{cases} \\ x=0 & \text { continuous everqubrere }\end{aligned}$

$$
f(x)=\left\{\begin{array}{ll}
\frac{\sin x}{x} & x \neq 0 \\
1
\end{array} \quad \begin{array}{l}
x=0 \\
0: \text { removable discontinuity at } x=0
\end{array} \quad\right. \text { continuous everywhere }
$$

$$
f(x)=\frac{1}{x^{2}}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{} \text { fl+) DNE } \quad f(0-) D N E
\end{aligned}
$$

but note: if we consider instead functions from \mathbb{R} to $\underset{\sim}{\mathbb{R}}$ $\mathbb{R} \cup\{\infty,-\infty\}$

$$
f(0+)=f(0-)=\infty
$$

So we con make f continuous by setting $f(0)=\infty$

$$
f(x)=\frac{1}{x}
$$

In ${ }^{\text {I }}, f\left(0^{-}\right)=-\infty \quad f(0+)=\infty \quad$ jump discontinuously
Characteristic function $X_{\mathbb{Q}}(x)=\left\{\begin{array}{lll}1 & x & \text { rational } \\ 0 & x & \text { irrational }\end{array}\right.$

$$
\begin{aligned}
& X_{Q}(0+)=\text { DNE } \\
& X_{Q}(0-)=D N E
\end{aligned}
$$

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function,
let Discount $(f) \subset \mathbb{R}$ be the set $\{x \in \mathbb{R}: f$ is discontinuous at $x\}$

$$
\begin{aligned}
& \operatorname{Discont}\left(X_{\mathbb{Q}}\right)=\mathbb{R} \\
& \operatorname{Discont}\left(\begin{array}{c}
\sin n \\
\sin t \\
\operatorname{sinc}(0)=1
\end{array}\right)=\phi \\
& \text { piscont }\left(\underset{x_{\{0\}}}{-}\right)=\{0\}
\end{aligned}
$$

Can $\operatorname{Discont}(f)$ be any subset of \mathbb{R} ?
No (More in a bit)

If can be more complicated e.g.

$$
\begin{aligned}
f(x) & =\lfloor x\rfloor \\
\operatorname{Discont}(f) & =\mathbb{Z}
\end{aligned}
$$

We can have $\operatorname{Discont}(f)=$ Cantor sect!
Thm (frota) A set $S \subset \mathbb{R}$ can be Discount (f) for some $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if it is the union of countably many closed subsets (amy closed)
e.g. this says there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is discontinuous $a+$ all rationals continuous at all irrationals Discount $(f)=\mathbb{Q}$

For example: define f by
$f(x)=0$ if x irrational
$f\left(\frac{p}{q}\right)=\frac{1}{q}$ if $\frac{p}{q}$ is a function in lowest terms

$$
f(0.5)=\frac{1}{2}
$$

Suppose $x_{1}, x_{2}, x_{3}, \ldots \rightarrow x$ with x irrational
We need to show

$$
f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots \rightarrow f(x)=0
$$

irrational $x_{i} \quad f\left(x_{i}\right)=0$
rational $x_{i} \quad f\left(x_{i}\right)=\frac{1}{q_{i}} \quad x_{h}=\frac{p_{i}}{q_{i}}$
To show that $\frac{1}{q_{i}} \rightarrow 0$, it suffices to show that $q_{i} \rightarrow \infty$ in $\overline{\mathbb{R}}$ (Exercise)
That is, we have to show that, for any $E>0, \exists N_{E}$ s.t. $q_{i}>E$ for all $i>N_{E}$ For this, it suffices to show that, for any $\varepsilon>0$, and any $X_{i} \in \mathbb{Q}$ with ε of X, all rational \#s will
denominators <1000 denominators <1000

$$
q_{i}>N_{\varepsilon}
$$

When x is rational, let x_{1}, x_{2}, \ldots be

$$
\left[\begin{array}{ll}
\cdots & \cdots \\
\cdots & \sqrt{2}
\end{array}\right]
$$

a sequence of irrationals converging to x. Then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} 0=0 \text { but } f(x) \neq 0
$$

Monotone functions
Def A function $f:(a, b) \rightarrow \mathbb{R}$ is monotone nondecreasing if $f(y) \geqslant f(x)$ whenever $y \geqslant x$ and strictly increasing if $f(y)>f(x)$ whenever $y>x$

Prop If f is monotone nondecreasing, then monotone V strictly increasing x

$$
f(x-)=\sup _{y<x} f(y) \quad f(x+)=\inf _{y>x} f(y)
$$

Idea: if $y_{1}, y_{2}, y_{3}, \ldots$ converges to x from below, and this sequence is non decreasing, then

$$
\left.\lim _{n \rightarrow \infty} y_{n}=\sup _{n} y_{n} \quad \begin{array}{c}
\text { monotone convergence } \\
\text { the for sequences }
\end{array}\right)
$$

Note that $f(y) \leq f(x) \quad \forall y<x$

$$
\text { So } \begin{align*}
& \sup _{y x} f(y) \leqslant f(x) \\
= & f(x-) \leqslant f(x) \tag{*}
\end{align*}
$$

Similarly, $f(x) \leq f(x+)$
$f(x-)$ and $f(x+)$ exist, so no essential discontinuities
If $f(x-)=f(x+)$, then $f(x)=$ both, so f is continuous at x; no removable discontinuities
\Rightarrow all discontinuities are jump discontinuities
Note also: if $x_{1}<x_{2}$, then $f\left(x_{1}+\right) \leqslant f\left(x_{2}-\right)$
Because if x_{3} is in $\left(x_{1}, x_{2}\right), f\left(x_{1}+\right) \leq f\left(x_{3}\right) \leqslant f\left(x_{2}-\right)$
The If f monotone nondecreacing, $\operatorname{Discont}(f)$ is countable
If Let $x \in \operatorname{Discont}(f)$. Then $f(x-)<f(x+)$
Choose some rational number $q(x)$ with

$$
f(x-)<q(x)<f(x+)
$$

This defines a function q : Discont $(f) \rightarrow \mathbb{Q}$
Claim: q is infective
Why? $q(x)<f(x+) \leqslant f(y-)<q(y)$

$$
\Rightarrow q(x)<q(y)
$$

Tremarable discontinuities
In fact, the set of jump discontinuities of a (nat necessarily monotone) $f: \mathbb{R} \rightarrow \mathbb{R}$ is countable

