Lecture 21 Virtual

Let
$$f:(A, b) \rightarrow \mathbb{R}$$

We write $f(x+) = q$ $x \in (a, b)$ to mean:
lim $f(x_n) = q$ for every sequence $x_1, x_2, x_3, \dots \in (x, b)$
and
"limit as f goes to x from above"
 $f(x-) = q$ means some thing but for a x
sequences in (A, x)
Pool f is antinuous at x iff $f(x_1)$ exists, $f(x-)$ exists, and
 $f(x-) = f(x) = f(x+1)$
Pf If f is continuous at x , then, for easy sequence x_1, \dots, x_n in (a, b)
coversing to x lime $f(x_n) = f(x)$
In particular, this applies to the converse used to define $f(x+1)$
and $f(x-1)$, so $f(x+1) = f(x-1) = x$
Now suppose
 a_nd let $x_{1,1}, x_{2,1}, \dots$ be a sequence in (a, b) converging to x
I need to show you that $a_{1,2} = f(x)$
 $k_1, k_2, \frac{N_2}{N_2}, \frac{N_2}{N_2}, \frac{N_2}{N_2}, \frac{N_2}{N_2}, \dots$
blue in (a, N)
 $red: in (x, b)
By $f(x+1) = x$, the subsequence of red elements $f(X_1)$ converges to x
 $f(x-1) = x_1, \dots$ blue \cdots $f(x_1) \cdots$
So $f(x_1), f(x_2), f(x_3), \dots$ can be partitized into three disjoint
subsequences, each of which converges to $f(x)$$

Lemma. If a sequence can be partitioned into a finite union of
subconjunces, each converyed to L, then the sequences
converges to L

$$0, 1, 0, \frac{4}{2}, 0, \frac{4}{3}, 0, ...$$

So $f(x_1), f(x_2) : - \rightarrow f(x)$
Types of discontinuities
temporable $f(x-) = f(x+)$
but $f(x)$ not equal to these
itemp $f(x-)$ and $f(x+)$
but $exist$ but one not equal
oscential Either $f(x-)$ or $f(x+)$ doesn't exist
 $sinc(x) := \frac{sin(x)}{x}$ $\lim_{x\to 0} \frac{sinx-1}{x} = 1$
Choices:
 $gin(x) : R \to R$ continuous
 $0: sinc(x) : R \to R$ sinc($0+$) = 1
 $f(x) = \frac{f(x)}{x}$ $x \neq 0$ continuous averywhere
 $f(x) = \frac{f(x)}{x}$ $x \neq 0$
 $0: removable discontinuity of $x=0$
 $f(x) = \frac{f_1}{x}$
 $f(0+)$ DNE $f(0-)$ DNE
but note: if we consider instead function from R to R
 $R \cup \{po, -oc\}$
 $f(0+) = f(0-) = \infty$
So we can make f continuous by setting $f(0) = \infty$$

$$f(x) = \frac{1}{x}$$
In R, $f(0-) = -\infty$ $f(0+) = \infty$ jump discontinuously
Characteristic function $\mathcal{R}_{\mathbb{R}}(x) = \begin{cases} 1 & x \text{ rational} \\ x \text{ irrational} \end{cases}$

$$\mathcal{R}_{\mathbb{Q}}(0+) = DNE$$

$$\mathcal{R}_{\mathbb{Q}}(0-) = DNE$$
If $f:\mathbb{R} \Rightarrow \mathbb{R}$ is a function,
let Discont $(f) \in \mathbb{R}$ be the set
 $\{x \in \mathbb{R} : f \text{ is discontinuous of } x\}$
Discont $(\mathcal{R}_{0}) = \mathbb{R}$
Discont $(f) = 0$
Row (More in a bit)
If can be non complicated eq.
 $f(x) = Lx$
Discont $(f) = Z$
We can have Discont $(f) = Contor set!$
Then (Frota) A set $S \subset \mathbb{R}$ can be Discont (f) for some $f:\mathbb{R} \to \mathbb{R}$
if and only if it is the union of countbly many
closed subsets (any closed)
e.g. this says there is a function $f:\mathbb{R} \to \mathbb{R}$
 $continuous et all intrationals$
Discont $(f) = \mathbb{Q}$

For example: define f by

$$f(x) = 0 \quad \text{if } x \quad \text{irrational}$$

$$f(\frac{1}{7}) = \frac{1}{7} \quad \text{if } \frac{1}{7} \quad \text{is a function in lensest terms}$$

$$f(0.5) = \frac{1}{3}$$
Suppose $X_L, X_L, X_L, X_L, \dots \rightarrow X$ with $x \quad \text{irrational}$
We need to show

$$f(x_L), \quad f(x_L), \quad f(x_S), \dots \rightarrow f(x) = 0$$

$$\text{irrational } X_L \quad f(x_L) = \frac{1}{74} \quad x_L = \frac{p_L}{74}$$
To show that $\frac{1}{74} \rightarrow 0$, it suffices to show that

$$q_L \rightarrow \infty \quad \text{in } \mathbb{R} \quad (\text{Exercise})$$
That is, we have to show that,

$$for \quad \text{ong } E > 0, \quad \exists N_E \quad \text{s.t. } \quad q_L \neq E \text{ for all } z = N_E$$
For this, it suffices to show that,

$$f_{LT} = N_L$$
When $x \text{ is rational, let } X_L, X_L, \dots \text{ be} \qquad \left[\begin{array}{c} \dots \rightarrow f(z) \\ \dots \rightarrow f(z) \end{array} \right]$

$$a \quad \text{sequence of irrediscels conversing to x . Then

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0 \quad \text{but } f(x_1) = 0$$

$$M \text{ ordinal } f(z_n) \Rightarrow \mathbb{R} \quad \text{is monotone nondecreasing if } f(y) = f(y)$$

$$when ever y \ge x \text{ and } \frac{\text{stretty increasing}}{2 \times x} \quad \text{if } f(y) = f(y) \quad \text{therewer } y \ge x$$$$

lin
$$y_n = \sup_{n \neq 0} y_n$$
 (moreover convegence)
Note that $f(y) = f(x) \quad \forall y < x$
So $\sup_{y < x} f(y) = f(x)$
 $= f(x-) \in f(x)$
Similarly, $f(x) = f(x+)$ (*)
 $f(x-)$ and $f(x+) = f(x+)$ (*)
 $f(x-) = f(x+)$, then $f(x) = both$, so f is continuous at x ;
no removable discontinuities
 $if \quad f(x-) = f(x+)$, then $f(x) = both$, so f is continuous at x ;
no removable discontinuities
 $in \quad o$ removable discontinuities
Note object: if $X_{1} < X_{1}$, then $f(x_{1}+) \leq f(X_{2}-)$
 $in \quad because if X_{3} is in (X_{1}, X_{2}) , $f(x_{1}+) \leq f(x_{3}) \leq f(x_{2}-)$
 $in \quad If f monotone nondecreasing, Discont (f) is constable
 PE Let $x \in Discont (f)$. Then $f(x-) < f(x+)$
 $f(x-) < g(x) < f(x+)$
 $f(x+) < g(x) < f(x+)$
 $f(x+) = f(x+)$
 $f(x+) = f(x+)$
 $f(x) < g(x) < f(x+) = f(y-) < g(y)$
 $in \quad f(x) < g(y) < f(x+) = f(y-) < g(y)$
 $in \quad fact, the set of jump discontinuities of a (n+ necessarily monotone) f: R $\rightarrow R$ is constable$$$