Lecture 22

Let
$$s_1, s_2, \dots, a$$
 sequency of s_n
Define $\lim_{n \to \infty} \sup_{n \to \infty} S_n = \lim_{n \to \infty} \sup_{k \ge n} S_k$ (in \mathbb{R} , the extended reds)
 $\lim_{n \to \infty} \inf_{n \to \infty} S_k$ (in \mathbb{R} , the extended reds)
 $\lim_{n \to \infty} \inf_{n \to \infty} S_k$ (in $\sup_{k \ge n} S_n = \lim_{n \to \infty} S_n = \lim$

Prop lim sup and lim linf dways exist!
(in R; they exist in R iff sequence is bounded)
PE S' is nonincreasing S' is nondecreasing
So both converge, by the montone convergence theorem
(extended to R - every undecreasing or
nonincreasing sequence has a limit in R)

$$\downarrow$$
. I think of lim inf as an "eventual infimum"
"The smallest x such that the sequence is $\leq x$
infinitely many times"
Recall lim Sn = ∞ is not the same thing as "S, unbounded abuve"
But
lim sup Sn = $\infty \approx \leq S_n$ unbounded obuve
(inf) (- ∞)
(Indeed, if Sn is unbounded, so is every tail of Sn, So S'_n = ∞ for every n)
Prop lim sup Sn = $\infty \ll S_n$ unbounded obuve
(inf) (- ∞)
(Indeed, if Sn is unbounded, so is every tail of Sn, So S'_n = ∞ for every n)
Prop lim sup Sn = $\infty \ll S_n = \lim_{n \to \infty} S_n = \sum_{n \to \infty}$

Remark: for this definition to noke sure
we need to be summing something with an ordering
e.g. can't say "which is the sum of all rational numbers"
Remark:
$$n \ge m$$
 $S_n - S_n = \sum_{i=1}^{n} a_i - \sum_{i=1}^{m} a_i = \sum_{i=n+1}^{n} a_i$
Suppose S_n converges. Then, for every $\varepsilon \ge 0$, $\exists N \ s.t.$
 $|S_n - S_n| < \varepsilon$ for all $n, m > N$
In particular, for all $m > N$,
 $|S_n + 1 - S_n| < \varepsilon$
 $= |a_n + \epsilon|$
Conclude: if Ξa_i converges, $\lim_{i \to \infty} a_i = i \operatorname{sists} and = 0$
(but converse does not hold!)