Lecture 24 Suns of Series of Functions f1, f2, f3, ... a sequence of functions $1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots = e^{x}$ $\sum_{i=1}^{\infty} f_i = \lim_{h \to \infty} S_n \qquad \text{wherl+} \\ \text{whenever notion} \\ \text{of convergence we} \\ \text{we}$ $S_n = \sum_{i=1}^{n} f_n$ have in mind $e_{g_{n}}f_{n}:(-1, J) \rightarrow \mathbb{R}$ $f_n(x) = x^n$ $1 + x + x^{2} + x^{3} + x^{4} + \cdots$ By what we dearly did, How big can Sn be? $S_n(x) = \frac{1-x^n}{1-x}$ Converges to $\frac{1}{1-x}$ pointwise $S_{n}(x) = 1 + x + x^{2} + \dots + x^{n}$ BUT this is not uniform BUT: If we restrict donoin to each summand has 1 1 [-(1-8),1-8] 8=0, at most 1, so $|S_n(x)| \leq 1+1+\dots+1$ nonvergence is uniform = n + 1

This follows from
THM (Weierstroks M-test)
Let
$$M_1, M_1, ... a$$
 sequence of non-negative reals
s.t. $\stackrel{\infty}{\xrightarrow{\sim}} M_1$ converges
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_2, f_3, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_2, f_3, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_2, f_3, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_3, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_1, f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$
 $f_2, ... a$ sequence of functions $X \Rightarrow \mathbb{R}$

Why does this apply to the geometric series?
I need Mi
S.t.
$$|f_{1}(x)| \leq M_{1}$$
 $\forall x \in [-(2-8), 1-8]$
 $|x^{i}| \leq M_{1}$ $\forall x \in [-(1-5), 1-8]$
 $M_{1} = (1-5)^{i}$
If I tried to do this with $x = (-1, 1)$
Visita Fourier Series
metal bar
 $T(x, t) = temperature of the bar at position x and time t
Given $T(x, 0)$, what is $T(x, 2)$?
The onswer is given by the heat equation which expresses
 $\frac{3^{2}}{3t^{2}}T(x, t)$ in terms of $T(x, t)$
For some special chrices of $T(x, 0)$
this equation is not hard to solve
 $T(x, 0) = c \Rightarrow T(x, t) = c$
 $T(x, 0) = sin(A) T(x, t) = e^{-t} sin(x)$
 $T(x, 0) = sin(x) T(x, t) = e^{-t} sin(x)$
 $T(x, 0) = sin(x) T(x, t) = e^{-t} t_{in}(x)$
 $T(x, 0) = sin(x) T(x, t) = e^{-t} t_{in}(x)$
 $T(x, 0) = sin(x) + 2 sin(2x) + 4 cin(5x) + \cdots$
Not obtime that this converges even pointwise
 $T(x, t) = e^{-t} sin(x) + \frac{1}{3} e^{-9t} sin(5x) + \frac{1}{3} sin(5x) + \cdots$
 $T(x, t) = e^{-t} sin(x) + \frac{1}{3} e^{-9t} sin(5x) + \frac{1}{3} sin(5x) + \cdots$
 $T(x, t) = e^{-t} sin(x) + \frac{1}{3} e^{-9t} sin(5x) + \frac{1}{3} sin(5x) + \cdots$$

$$\frac{\text{Differentiation}}{\{i: \chi \rightarrow R \quad \chi \in R \\ i \in \mathbb{R} \quad \forall i \in \mathbb{R} \quad \{i: \chi \in R \quad \chi \in R \\ i \in \mathbb{R} \quad \forall i \in \mathbb{R} \quad \{i: \xi \in R \quad i \in \mathbb{R} \quad i \in \mathbb{R}$$

Pf Define g:
$$(a,b) \rightarrow R$$
 When $t < x$, $f(t) \le f(x) \ge x$ so $g(t) \ge 0$
 $g(t) = \frac{f(t) - f(x)}{t - x}$ When $t > x$, $f(t) \le f(x) \ge x$ so $g(t) \le D$
Differentiability tells us that
 $\lim_{t \to x} g(t) = \operatorname{exists}$, for every sequence $z_1, z_2, \dots \rightarrow x$
In particular, every sequence converging to x from below has
 $g(t_2), g(t_2), \dots$ are non-negative, so
 $\lim_{t \to x} g(x^-) = f'(x) \ge 0$
 $g(x^+) = f'(x) \le 0$
Without assumption of differentiability,
this direct work,
 $f \land g(x) = f(b), \text{ then}:$
 $f \text{ has an extremum in } (a,b)$
 Pf [a,b] is compet
 x be maximum, y minimum $f(x) = \max_{t \in [a,b]} f(t)$
 $f(y) = \min_{t \in [a,b]} f(t)$
If $x = y$ is in $(a,b), V$
Tf not, $f(x) = f(x), s \in f$ is constant V

MEAN VALUE THM

$$f: [a, b] \rightarrow \mathbb{R}$$
 continuous, differentiable on (a, b)
 $\underline{Thm} \exists x^* \in (a, b) \quad s, t, \quad f'(x^*) = \frac{f(b) - f(a)}{b - a}$
 $h(x) = (\underline{f(b) - f(a)}) \times - (b - a) f(x)$
 t

)