What if every f were a limit of $f_{1}, f_{2}, f_{3}, \ldots$ step functions Then we could just define $\int f=\lim _{i \rightarrow \infty} \int f_{i}$

$$
\begin{aligned}
& f_{i} \rightarrow 0 \text { pointwise } \\
& \int_{0}^{1} f_{i}(x) d x=\frac{1}{2} \forall i
\end{aligned}
$$

Let f be a bounded function on $[a, b]$
A partition of $[a, b]$ is a "finite set of real \#s"

$$
\begin{aligned}
& a=x_{0} \leqslant x_{1} \leqslant \cdots \leqslant x_{n} \\
& \Delta x_{i}=x_{i+1}-x_{i}
\end{aligned}
$$

Two ways to approximate f by a step function

$$
M_{i}=\sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x) \quad \sum \begin{aligned}
& \text { exist because } \\
& f \text { is bounded }
\end{aligned}
$$

$$
\begin{aligned}
& m_{i}=\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x) \\
& U(p, f)=\sum m_{i} \Delta x_{i} \\
& L(P, f)=\sum m_{i} \Delta x_{i}
\end{aligned}
$$

Def Upper intergral of f on $[a, b]$ is $\inf _{P} U(P, f)$
lower intergral of f on $[a, b]$ is $\sup _{p} L(P, f)$

Poop lower integral \leq upper integral recall: S, T sets of reals
Pf $\sup _{p} L(P, f) \leq \inf _{p} \cup(P, f)$

$$
\begin{aligned}
& \text { sup } S \leq \inf T \\
& \Leftrightarrow \\
& \text { ever element } \\
& \text { of } S
\end{aligned}
$$

$$
\begin{gathered}
\nLeftarrow \\
L(P, f) \leq V(P, f)
\end{gathered}
$$

for every pair of pointuise P_{1}, P_{2}

Lemma If P^{*} is a partition of P, then $U\left(P^{*}, f\right) \leqslant U(P, f), L\left(P^{*}, f\right) \geqslant L(P, f)$
Fact If P_{1} and P_{2} are partitions, there is a partition Q
which is a common refinement of both $\quad \begin{aligned} & Q<P_{1} \\ & Q<P_{2}\end{aligned}$
 (Simply take the union of breakpoints $\left(P_{1}\right) \cup$ breakpoints $\left(P_{2}\right)$) a

$$
L(,) \leqslant L(,) \leqslant U(Q, f) \leqslant U(?,)
$$

Def when lower integral $=$ upper integral, we soy f is (Riemann) integrable on $[a, b$) and define $\int_{a}^{b} f(x) d x$ to be the common value

Andogy:
upper int limsup \leftarrow always lower int limint K exist \int

A nen-integrable function

$$
X_{\mathbb{Q}}:[a, b] \rightarrow \mathbb{R}
$$

$x(x)=1 \times$ rational
$0 \times$ irrational
$U\left(P, X_{\mathbb{Q}}\right)=b-a=$ upper integral
$L\left(P, X_{\mathbb{Q}}\right)=0=$ lower integral

On the other hand, consider

$$
\begin{gathered}
X_{\text {cantor set }}:[0,1] \rightarrow \mathbb{R} \\
P_{1}\left[\begin{array}{l}
1 \\
P_{2}+.001 \frac{2}{3}-.0011 \\
P_{2}
\end{array}[H \quad U\right. \\
P_{R}
\end{gathered}
$$

$$
U\left(P_{1}, f\right)=\frac{2}{3}+2 \cdot(.001)
$$

$$
\begin{aligned}
& U\left(P_{1}, f\right)=\frac{4}{9}+2 \cdot(.001)^{2}+4 \cdot(.001)^{2} \\
& U\left(P_{2}, f\right)=\frac{4}{2}
\end{aligned}
$$

$$
U\left(P_{k}, f\right)=\left(\frac{2}{3}\right)^{k}+\operatorname{sinall}
$$

$$
U\left(P_{k}, f\right)=\inf _{k} U(P, f) \quad U\left(P_{k}, f\right)=0
$$

$$
P\left[1\left|\frac{1}{\uparrow}\right| \begin{array}{lll}
1 & 1
\end{array}\right]
$$

$$
\text { so } \inf _{p} U(P, f)=0
$$

inf $x_{\text {cantors }}$ on this interval

$$
\int_{0}^{1} x_{\text {cartor set }}(x) d x=0
$$

Thu If f is continuous, then f is integrable
Thm If f is monotone, then f is integrable Facts If $c \in[a, b]$ and f integrable on $[a, b)$ then

$$
\begin{aligned}
& c \in[a, b] \text { and } f \text { integrable } \\
& \int_{a}^{b} f(x) d x-\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x
\end{aligned}
$$

If f is integrable, $\mid f($ is integrable, and

$$
\begin{aligned}
& f \text { is integrable, If is in e } \\
& \int_{a}^{b}|f(x)| d x \geqslant\left|\int_{a}^{b} f(x) d x\right| \text { " } \Delta \text { inequality" }
\end{aligned}
$$

INDEFINITE INTEGRALS
Let f integrable on $[a, b]$ Then we con define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{0}^{x} f(t) d t
$$

The F is continuous
Pf I need to show that $y \rightarrow x \Rightarrow F(y) \rightarrow F(x)$

$$
\begin{aligned}
& \text { I need to show that } \\
& \begin{aligned}
|F(y)-F(x)| & =\left|\int_{a}^{y} f(t) d t-\int_{a}^{x} f(t) d t\right| \\
& \leq\left|\int_{x}^{y} f(t) d t\right| \\
& \leq \int_{x}^{y}\left(\operatorname{sun}_{t}|f(t)|\right) d t=s|y-x|
\end{aligned}
\end{aligned}
$$

(In fact, F is Lipschitz)
FTó C ?
If f is continuous at $x_{0} \in[a, b]$ and integrable then F is differentiable at x_{0}, and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$
We need to show $\lim _{y \rightarrow x_{0}}\left(\frac{F(y)-F\left(x_{0}\right)}{y-x_{0}}-f\left(x_{0}\right)\right)=0$
(*)
ie., given ε, I con choose δ s.t. $|y-x|<\delta \Rightarrow(*)<\varepsilon$

$$
\begin{aligned}
& F(y)-F\left(x_{0}\right)=\int_{x_{0}}^{y} f(t) d t \\
& \left|\frac{1}{y-x_{0}} \int_{x_{0}}^{y} f(t) d t-\frac{1}{y-x_{0}} \int_{x_{0}}^{y} f\left(x_{0}\right) d t\right|=\left|\frac{1}{y-x_{0}} \int_{x_{0}}^{y}\left(f(t)-f\left(x_{0}\right)\right) d t\right| \\
& \text { we may choose } \delta \text { sit. }
\end{aligned}
$$

Because f is continuous at x_{0}, we may choose δ sit.

$$
\begin{aligned}
& \left|y-x_{0}\right|<\delta \Rightarrow\left|f(y)-f\left(x_{0}\right)\right|<\varepsilon \\
& D 0 \text { so }
\end{aligned}
$$

So y lies in $(x-\delta, x+\delta)$ by triangle inequality,

$$
\left.{ }_{x_{0}-\delta} \quad \stackrel{t}{x_{0}}{ }^{4}\right)_{x_{0}+\delta}
$$

$$
\begin{aligned}
& \leq \frac{1}{4-x_{0}} \int_{x_{0}}^{y}\left|f(t)-f\left(x_{0}\right)\right| d t \\
& \leqslant \frac{1}{y-x_{0}} \int_{x_{0}}^{y} \varepsilon d t<\varepsilon \quad V
\end{aligned}
$$

