COMPLETE ORDERED FIELD
FIELDS \& ORDERED FIELDS
Roughly speaking a field is a set where we can do arithmetic
eeg. \mathbb{Q}
egg. Bolton field, $\mathbb{F}_{2}, \mathbb{Z} / 2 \mathbb{Z}$

$$
\left(1,-, x, \frac{\dot{\varphi}}{\bar{\dagger}}\right.
$$

$0+1=1 \quad \begin{aligned} & 1+1=0\end{aligned} \quad "$ modular arithmetic $\bmod 2 "$
$0-1=1$

$$
\begin{aligned}
& 0 \cdot 1=1 \\
& 1 \cdot 1=1
\end{aligned}
$$

Nor-e.g.: \mathbb{Z} because you cannot compute $\frac{1}{2}$
To be slightly more precise, we require the existence of 0,1 and that the operations obey "reasonable" mules

$$
\begin{aligned}
0+x & =x \\
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x(y+z) & =x y+x z \\
x y & =y x
\end{aligned}
$$

ORDERED FIELD
If S is an ordered set, and S is a field, it is not necessarily the care that S is an ordered field registered Wisconsin voter
Def An ortened field is a field F with an ordering < such that

- For $x, y, z \in f$ with $y<z, \quad x+y<x+z$

$$
\text { If } x, y \in F \quad x>0, y>0, \quad x y>0
$$

e.9. \mathbb{Q} is an ordered field

Non-e.g. there is no ordering on T_{2} that makes it an ordered field
$\{0,1\}$ Suppose $1<0$
then $1+1<1+0$

$$
0<1
$$

FACT: In an ordered freed, $x^{2} \geqslant 0 \quad \forall x \in F$
Care 1: $x>0, x: x>0, x^{2}>0$ done
Case 2: $x=0, x^{2}=0$ done
Case 3: $x<0$
So $[(-1)]^{2}>0$
$x-x<0-x$

$$
0<(-1) \times
$$

$$
\begin{aligned}
(-1)^{2} x^{2} & >0 \\
x^{2} & >0
\end{aligned}
$$

Last time we introduced the notion: ECS
$x \in S$ is a least upper bound if
. S is an upper bound for E

- If t is an upper bound for $E, t \geqslant s$

In this case, we call s sup E, or the supremum of E (in S)
FACT A bound ordend set $E \subset S$ has at most one supremum
PF Suppose S, S^{\prime} are suprema of E
We need to prove $s=s^{\prime}$
s^{\prime} is a supumum $\Rightarrow s^{\prime}$ is on upper bound for E
Since s is a suprmum, $s^{\prime} \geqslant s, ~ \Rightarrow s=s^{\prime} v$
Similarly, (mutatis mutandis) $s \geqslant s^{\prime} \quad s=s^{\prime}$

Similarly, greatest lower bound for E is called infimum inf E eq. $E \subset \mathbb{Q}=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$

$$
\left\{\frac{1}{n}\right\}_{n} \in \mathbb{Z}_{>0}
$$

Does E have a sup? a_{n} inf? What ane they?
Unfortunately, not every bounded E has a supremum
Example Let $A \subset \mathbb{Q}>0$ be the set $\left\{x \in \mathbb{Q}>0: x^{2}<2\right\}$
FACT A has no supremum
Pf The first step is to describe what the upper bounds for A are
Lemma The upper bonds for A are these numbers $y \in \mathbb{D}$ s.t. $y^{2}>z$
Warmup: If $y^{2}>2$, then y is an upper bound for A
Pf: If $x \in A$,
we need to show $y>x$
what we know is that $y^{2}>x^{2}$
So $y^{2}-x^{2}>0$
(divide both sides by $y+x$) which is positive
What we need to show is that their are no other upper bounds
for A
ie. We reed to show that if $y^{2}<2$
then Y is not an upper bound for A
say $y=1.4, \quad y^{2}=1.96$
In other words, we naut to find x st.

$$
x \in A \quad\left(\text { ie. } x^{2}<2\right) \text { and } x>y
$$

positive
Let's consider $x^{2}-y^{2}=(x+y)(x-y)$
we wont to find x sit. $x-y>0$ (which me know is positive) and $x^{2}<2$, i.e. $x^{2}-y^{2}<2-y^{2}$

Intuition we just want to make $x-y$ really really small
We may assume that $x, y<100$
Thus $x^{2}-y^{2}<(x+y)(x-y)<200(x-y)$
I want: $x^{2}-y^{2}<2-y^{2}$
I win if: $200(x-y)<2-y^{2}$
equivalently

$$
\begin{array}{ll}
x-y<\frac{2-y^{2}}{200} & x<\frac{2-y^{2}}{200}+y \\
z=x-y & 0<z<\frac{2-y^{2}}{200} \\
z=\frac{1}{2}\left(\frac{2-y^{2}}{200}\right) \\
x=\left(\frac{2-y^{2}}{200}\right)+y
\end{array}
$$

