COMPLETE DRDERED FIELD FIELDS & ORDERED FIELDS Roughly speaking a field is a set where we can do arithmetic (I,-,x,÷) ₹ e.g. R except 0 0+1=1 1+1=0 "modular arithmetic mod 2" 0-1=10.1=1e.g. Bulson field, Fr, Z/2Z 1.1=1 Non-e.g. i Z because you cannot compute 1/2 To be slightly none precise, we require the existence of 0,1 and that the operations obey "reasonable" mles D+x = x $X^+Y = Y^+X$ (x+y)+z = x+(y+z) $x(y+z) = xy + \frac{1}{2}$ xy = yxORDERED FIELD If S is an ordered set, and S is a field, it is not necessarily the case that S is an ordered field negistered Wisconin wter Def An ordered field is a field F with an ordering < such -that . For X, Y, ZEF with Y<Z, X+Y < X+Z . If r, y & F x > 0, Y=0, XY>0

eq. Q is an ordered field
Non-eq. there is no orderig on
$$ff_2$$
 that makes it an ordered field
 $\{0, 1\}$ Suppose 1=0
 $+hen 1+1 < 1+0$
 $0 < 1$
FACT: In an ordered field, $X^2 \ge 0$ $\forall x \in F$
Case 1: $x > 0$, $x^2 \ge 0$ done
Case 2: $x = 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x^2 = 0$ done
Case 3: $x < 0$, $x < (-1) = x^2 > 0$
Loss time we introduced the notion: $E < S$
 $x \in S$ is a least upper bound for E
 $\cdot If$ t is an upper bound for E , $t \ge S$
In this case, we call s cop E , or the supremum of E (in S)
FACT A bound ordered set $E < S$ has at most one supremum
PF Suppose S, S' are suprema of E
We need to prove $S = S'$
 S' is a supremum $\Rightarrow S'$ is an upper bound for E
 $Since S$ is a supremum $\Rightarrow S'$ is an upper bound for E
 $Since S$ is a supremum $\Rightarrow S'$ is an upper bound for E
 $Since S$ is a supremum $\Rightarrow S'$ is an upper bound for E
 $Since S$ is a supremum $\Rightarrow S' = S$ \Rightarrow $S = S' \lor$
 $Sinilarly, (nontatis mutondis) $S \ge S'$$

Similarly, greatest lover bound for E is called infimum inf E eg. ECR= 1, =, =, =, =, =, ... Sin Sie Zro Does E have a sup? an inf? What are they? 1 0 Untertunately, not every bounded E has a supremum Example Let A < Q > be the set { X ∈ Q > .: X' < 2 } FACT A has no supremum Pf The first step is to describe what the upper bounds for A are Lemma The upper bounds for A are these numbers yED s.t. y2>2 Warnup: If y' = 2, then y is an upper bound for A $-\frac{1}{x}$ $pf: If x \in A$, we need to show y>x what we know is that $y^2 > \chi^2$ $S_{v} = \chi^2 = \chi^2 > 0$ So $y' - \chi' > 0$ (divide both cides by y(x)) ($y-\chi$) ($y+\chi$) >0 $\Rightarrow y-\chi > 0$ which is positive What we need to show is that three are no other upper bounds for A i.e. we need to show that if y² <2 then I is not an upper bound for A say y=1.4, $y^2=1.96$ In other words, we want to find X st. $X \in A$ (i.e. $x^2 < 2$) and x > Y

positive
Let's consider
$$\chi^2 - \gamma^2 = (x + y)(x - y)$$

we not to find x s.t. $x - y = 0$ (which we know is positive)
and $\chi^2 < 2$, i.e. $\chi^2 - \gamma^2 < 2 - \gamma^2$
Intuition we just nont to make $x - y$ really really small
We may assume that $x, y < 100$
Thus $\chi^2 - \gamma^2 < (x + y)(x - y) < 200(x - y)$
I want: $\chi^2 - \gamma^2 < (x + y)(x - y) < 200(x - y)$
I want: $\chi^2 - \gamma^2 < 2 - \gamma^2$
 $z = x - \gamma$ $D < z < \frac{2 - \gamma^2}{200} + \gamma$
 $z = x - \gamma$ $D < z < \frac{2 - \gamma^2}{200}$
 $\chi = (\frac{2 - \gamma^2}{200}) + \gamma$