MATH 521 Lecture 420 Sep 2022 R.T.
Last time:

$$
A=\left\{x \in \mathbb{Q}_{>0}: x^{2}<2\right\}
$$



We were proving that $A$ has no supnemum
We had just proven: $y$ is an upper bound for $A$ iff $y^{2} \geqslant 2$
Now, let $B=\left\{y \in \mathbb{Q}_{>0}: y^{2}>2\right\}$
Claim: if $y \in B$, then $y$ is nut an least upper bound for $A$ (though it is an upper bound for A)
To prove this, need to show that, given $y \in B$,
there is $x<4 \quad x^{2}>2$ (so $x$ is also an UB for $A$ )
This is mutatis mutandis the same last time
$S_{0}$ if $y$ is a least upper bund for $A$, then $y^{2} \geqslant 2$ (Thursday)

$$
\text { but not } y^{2}>2 \text { (just now) }
$$

$$
\Rightarrow y^{2}=2
$$

BUT: there is no solution in $\mathbb{Q}$ to $y^{2}=2$
Pf: Suppose $a, b$ are integers with

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{2} & =2 \\
a^{2} & =2 b^{2}
\end{aligned}
$$

$a^{2}$ is even, so $a$ is even, $a=2 c$

$$
(2 c)^{2}=2 b^{2}
$$

$4 c^{2}=2 b^{2}$
$2 c^{2}=b^{2} \quad b^{2}$ is even, so $b$ is even
So write $b=2 d$

$$
\begin{aligned}
2 c^{2} & =(2 d)^{2} \\
2 c^{2} & =4 d^{2} \\
c^{2} & =2 d^{2}
\end{aligned}
$$

Conclusion: A has no least upper bound

Def we say a nonempty set $S$ has the least upper bound 4 if every nonempty ECS which is bounded above has a least upper bound
Why do I specify nonempty?
$Q$ : Let $S=\{1,2,3,4,5\} \quad E=\phi$
Does $\oint_{\uparrow}$ have a least upper bound? greatest lower bound?
is it bounded
a love ( below)
An upper bound is $s$ st. $s \geqslant x$ for all $x \in \varnothing$
$s$ not an upper bound ff $\exists x \in \phi \quad s<x$

$$
\sup \phi=1 \quad \text { inf } \phi=5
$$

Than Suppose $S$ has LUBP. Then $S$ has GLBP I need to show it has a greatest lower bound
Let $A$ be the set $\{x \in S: x$ is a lower bound for $B\}$ $A$ is nonempty (because $B$ bounded below) $\forall a \in A, b \in B a \leq b$
$A$ is bounded above (because $B$ is nonempty)
So by LUBP, $A$ has a supremun $d=\sup A$
Claim: $\partial$ is the infimum for $B$
First of all, need to check $\partial$ is a lower bound suppose not. Then $\exists b \in B$ with $b<d$
But remember every $b \in B$ is an upper bound for $A \times \begin{aligned} & \text { because } \\ & 2=\sup A\end{aligned}$
Now to prove $d$ is the greatest lower bound for $B$
Suppose not:
Let $\beta$ be another lower bound for $B$
S. $\beta \in A$, so $\alpha \geqslant \beta$ because $\alpha$ is an $V B$ for $A$

So $\alpha \geqslant$ amy upper bound for $B \Rightarrow \alpha=\inf \beta$

Def we say $a_{n}$ ordered field is complete if it has the least upper bound property

RK $\mathbb{Q}$ is not complete
A finite ordered set has the LUBP

$$
\{1,2,3,4,5\}
$$

Thu There is a complete ordered field (We are going to call it $\mathbb{R}$ )
Why is the product of no numbers 1?

$$
\text { product }\left([J) \prod_{x \in \phi} x\right.
$$

SOT disjoint sets of \# $S$
"product of all numbers in SUT"

$$
=(\text { product of } s) \cdot(p o d u c t \text { of } T)
$$

$\{$ product of $S \cup \varnothing\}=\{$ product of $S\}$

$$
\begin{array}{ll}
\{1,2\} & 2 \\
\{4,5\} & 20 \\
\{1,2,4,5\} & 40
\end{array}
$$

$=\{$ product of $\delta\}$. \{product of $\phi\}$

$$
\frac{3!}{3}=2!\quad \frac{2!}{2}=1!\quad \frac{1!}{1}=0
$$

SLIGHT ALG DIGRESSION
Recall: A bijection between sets $S, T$ is
$f: S \rightarrow T$ which is injective and surjective
If $F, G$ are ordered fields, we can define an
isomorphism to be a function such that

- $f$ is a bijection
- $f(x)>f(y)$ iff $x>y$
- $f(x+y)=f(x)+f(y)$
. $f(x y)=f(x) f(y)$

We can think of $F$ and $G$ being
"the same field with the elements labelled differently.

What we will prove:
$\exists$ a complete ordered field $\mathbb{R}$
won 4 prove:
If $F$ is amy complete ordered field,

$$
\exists \square \quad f: F \rightarrow R
$$

