MATH 521 Lecture 5 22 Sep 2022 R.T.
COMPLETE ORDERED FIELD(S)
Def Let F be a COF. The F has the Archinedean property:
for any x.y>O IneZoo s.t. nx>y
PE Suppose otherwise i.e. nx=y for all n=Zoo
E:x, 2x, 3x, 4x, ...=4
By LVBP, E has a supremum
$$\lambda$$
=sup E
We derive a contradiction: $\lambda - x < \lambda$
so $\lambda - x$ is not an upper bound for E
So there is some element of E which is > $\lambda - x$
i.e. for some m $Mx > a - x$
So $(m+1)x > \lambda x$ because λ is an UB for E
Then there is a write $Y \in F$ with $Y^n = x$ "ath notes exist"
Pf Let F a COF, n a politive integer, $x > 0$ in F
Then there is a write $Y \in F$ with $Y^n = x$ "ath notes exist"
Pf Let Tax = $f z : 2 > 0$, $z^n = x \lambda$
Tax is bounded above (by ?)
Is it the case that $x > 2$ for all $z < Tax?$
Not necessarily e_3 . $T_{2,4} = \{2: 2^2 = \frac{1}{4}\}$
Not necessarily e_3 . $T_{2,4} = \{2: 2^2 = \frac{1}{4}\}$
This includes $t = \frac{1}{3}$. So $\frac{1}{4}$ is not on upper bound for Te,4
lemma a is an upper bound for Tax iff a $^n > x$
If $x > 1$, claim $x^n > x$
Pf $x^n - x = x (x^{n-1} - 1) = x (k-1) (1 + x + x^n + \dots + x^{n-2})$
 $priving miniput power power power of the x = x + 1 + x^n + x^n + x^n + 1 + x^n + 1 + x^n + x^n$

$$(y')^{n-2}y' \text{ is positive, since y and y' are} \\S_0 y'-y=0 \\CONSTRUCTION OF R
4, 1.414, 1.4142, ...
A real number is a sequence of rational numbers
1, 2, 4, 8, 16, ...
A bounded sequence? 1, -1, 1, -1, 1, -1
We want to say a sequence is convergent without talking about what it converges to
Inight of Canchy: if the terms of a sequence are getting closer and closer to ????, they are getting closer
and closer to ????, they are getting closer
and closer to each other
Def A Cauchy sequence in R is a sequence $A_1, A_2, A_3, ...$
Such that
 $V_{E} > 0$, there exists $N \in \mathbb{Z} > 0$ such that,
for all $n, n > N$, $|an - an| \leq 2$
Picture
 V_{E}
Condry Sequence: 1, 1.4, 1.41, 1.414, ...
Not Condry Sequence: 1, 1.4, 1.41, 1.414, ...
 $V_{E} = 1, 1, 4, 1, 4, 4, ...$
 $Z = 2, 2, 2, 2, 2, 2, ...$
 $z' = 3, 2, 4, 2, 04, 2 001, 2 0001, ...$$$

$$\frac{1}{2^{\prime}-2} = 1, 10, 100, 1000, \dots$$
 Not a Conchy
Sequence