MATH 521 Lecture 522 Sep 2022 R.T.
COMPLETE ORDERED FIELD (S)
Let F be a COF. The F has the Archimedean property. for any $x, y>0 \quad \exists n \in \mathbb{Z}>0$ s.t. $n x>y$

Pf Suppose otherwise i.e. $n x \leqslant y$ for all $n \in \mathbb{Z}_{>0}$

$$
E: x, 2 x, 3 x, 4 x, \ldots \leq y
$$

By LUBP, E has a supremum $\alpha=\sup E$
We derive a contradiction: $2-x<2$
so $\alpha-x$ is not an upper bound for E
So there is some element of E which is $>\alpha-x$
i.e. for some m $m x>a-x$

So $(m+1) \times>2 x$ because 2 is an UB for E
Prop Let F a COF, n a positive integer, $x>0$ in F
Then there is a unique $y \in F$ with $y^{n}=x$ "nth roots exist"
Pf Let $T_{n, x}=\left\{z: z \geq 0, z^{n} \leq x\right\}$
$T_{n, x}$ is nonempty $\left(0 \in T_{n, x}\right)$
Tan is bounded above (by ?)
Is it the case that $x \geqslant z$ for all $z<T_{n, x}$?
Not necessarily e.g. $T_{z, \frac{1}{4}}=\left\{z: z^{2} \leq \frac{1}{4}\right\}$
This includes $t=\frac{1}{3}$ So $\frac{1}{4}$ is not an upper bound for $T_{z, \frac{1}{4}}$
Lemma a is an upper bound for $T_{n, x}$ ff $a^{n} \geqslant x$
If $x \geqslant 1$, claim $x^{n} \geqslant x$
Pf $x^{n}-x=x\left(x^{n-1}-1\right)=x(x-1)\left(1+x+x^{2}+\cdots+x^{n-2}\right)$
positive em-negative positive
If $x<1, T_{n, x}$ is bounded above by 1
So let $\alpha=\sup T_{n, x}$
$w_{\text {e }}$ will show $\partial^{n}=x$

Tho steps: $\alpha^{n} \leq x \leftarrow$ we will just do this

$$
2^{n} \geqslant x
$$

Suppose, on the contrary, $2^{n}<x$
To derive a contradiction, we want to find some α^{\prime} such that

$$
\alpha^{\prime}>\alpha \quad \alpha^{\prime} \in T_{n_{1} x}
$$

i.e, choose $\varepsilon>0$ such that $(\alpha+\varepsilon) \in T_{n, x}$
piecewise

$$
(\alpha+\varepsilon)^{n}=\alpha^{n}+n \alpha^{n-1} \varepsilon+\binom{n}{2} \alpha^{n-2} \varepsilon^{2}+\cdots+\varepsilon^{n}
$$

We want:

$$
\begin{aligned}
& \alpha^{n}+\cdots+\varepsilon^{n}<x \\
& n \alpha^{n-1} \varepsilon+\binom{n}{2} \alpha^{n-2} \varepsilon^{2}+\cdots+\varepsilon^{n}<x-\alpha^{n} \\
& \\
& \text { note this }
\end{aligned}
$$

note this is

$$
\sum\left(n \alpha^{n-1}+\binom{n}{2} \alpha^{n-2} \varepsilon+\cdots+\varepsilon^{n-1}\right)<\begin{aligned}
& \text { posilitive } \\
& \\
& x-\alpha^{n} \\
& x-\alpha^{n}
\end{aligned}
$$

we need to choose ε sit. $\quad \sum<\frac{x-\alpha^{n}}{\left(n \alpha^{n-1}+\cdots+\varepsilon^{n}\right)}$ $C_{11,2}$
Let us suppose $\varepsilon<1$
Then $n \alpha^{n-1}+\binom{n}{2} \alpha^{n-2} \varepsilon+\cdots+\varepsilon^{n} \leqslant n \alpha^{n-1}+\binom{n}{2} 2^{n-2}+\cdots+1$
Now $\frac{x-\alpha^{n}}{C_{n, \alpha}} \leqslant \frac{x-\alpha^{n}}{\left(\ln \alpha^{n-1}+\cdots+\varepsilon^{n}\right)}$
So choose $\varepsilon<\frac{x-2^{n}}{C_{n, 2}}$
To sum, we showed that if $\partial=\sup T_{n, x}$ then $\alpha^{n} \geqslant x$

$$
M M, \alpha^{n} \leq x \Rightarrow \alpha^{n}=x
$$

Uniqueness: Suppose $4, y^{\prime}$ satisfy $y^{n}=\left(y^{\prime}\right)^{n}=x$
To prove: $y=y^{\prime}$
If $\left(y^{\prime}\right)^{n}=y^{n}, \quad\left(y^{\prime}\right)^{n-y^{n}}=0 \Rightarrow$

$$
\begin{aligned}
& \left.\left(y^{\prime}\right)^{n}=y^{n}, \underline{y^{\prime}} y^{n-2}+y^{n-1}\right]=0 \\
& \left(y^{\prime}-y\right)\left[\left(y^{\prime}\right)^{n-1}+y^{\prime} y^{n-2}+\cdots+y^{\prime}\right.
\end{aligned}
$$

In arm field, $x y=0 \Rightarrow$ either $x=0$ or $y=0$ because if $x \neq 0, y \neq 0,{ }_{\substack{4 \\ y_{0} \\ 0}} \cdot \frac{1}{x} \cdot \frac{1}{y}=1$
$\left(y^{\prime}\right)^{n-2} y$ is positive, since y and y^{\prime} are
So $y^{\prime}-y=0$
CONSTRUCTION OF \mathbb{R}

$$
1,1.414,1.4142, \ldots
$$

A real number is a sequence of rational numbers

$$
1,2,4,8,16, \cdots
$$

A bounded sequence? $1,-1,1,-1,1,-1$
We want to say a sequence is convergent without talking about what it converges to
Insight of Cauchy: if the temp of a sequence are getting closer and closer to ????, they are getting closer and closer to each other

Def A cauchy sequence in \mathbb{Q} is a sequence $a_{1}, a_{2}, a_{3}, \ldots$
such that
$\forall \varepsilon>0$, there exists $N \in \mathbb{Z}>0$ such that,
for all $m, n>N, \quad\left|a_{m}-a_{n}\right|<\varepsilon$
Picture

$$
\jmath \Sigma
$$

Cauchy Sequence: $1,1.4,1.41,1.414, \ldots$
Not Comely Sequencer: $1,-1,1,-1, \ldots \quad \varepsilon=\frac{1}{2}$
A real number is a Cauchy sequence

$$
\begin{aligned}
\sqrt{2} & =1,1,4,1,4,1, \ldots \\
2 & =2,2,2,2,2,2, \ldots \\
2^{\prime} & =3,2.1,2.01,2.001,2.0001, \ldots \\
2^{\prime}-2 & =1,0.1,0.01,0.001, \ldots
\end{aligned}
$$

$$
\frac{1}{2^{\prime}-2}=1,10,100,1000, \ldots \text { Not a Canchy }
$$

