MATH 521 Lecture 7
We are proving \mathbb{R} has the LUBP
$S \subset \mathbb{R}$ nonempty, bounded above $<M$

$$
\begin{array}{ll}
v & s \leq M \\
\left(l_{0}, u_{0}\right)=(s, M)
\end{array}
$$

. $m=$ average of l_{i}, u_{i}

- If m is an UB for $S,\left(l_{i+1}, u_{i+1}\right)=\left(l_{i}, m\right) \quad u_{i}$
- Otherwise, $\left(l_{i+1}, u_{i+1}\right)=\left(m, u_{i}\right)$

Properties $U_{i}>l_{i} \quad \forall_{i}$
\underline{u} is non-increasing
$\underline{\ell}$ is non-drecreasing
u bounded above by M
\underline{l} bounded below by S
$\forall i u_{i}$ is an upper bound for S
$\forall i l_{i}$ is not an upper bound for S
Countess S is an UB for S, but then $S=\sup S$ done)
We will prove:

- U and \underline{I} both have limits, the limits are same, and they are sups

Prop (\mathbb{R} is complete) Every Cauchy sequence $\underline{x}=X_{1}, X_{2}, X_{3}, \ldots$ R indeed, a sequence in \mathbb{R} has has a limit a limit it f it is canchy
Main idea: $\forall i$ choose $a_{i} \in \mathbb{Q}$ st. $\left|a_{i}-x_{i}\right| \leqslant \frac{1}{2^{i}}$

$$
\underline{a}=a_{1}, a_{2}, a_{3}, \ldots
$$

Then prove a is Cauchy
Take 4 to be the real number represented by a
Then prove $\lim \underline{x}=y$
for this last step: $\underline{a}-\underline{x}$ is a sequence with $\left|a_{i}-x_{i}\right|<\frac{1}{2}{ }_{i}$
So $\lim (a-x)=0$
$\lim a-\lim x$

To show \underline{l} has a limit, we will show
Prop (Monotone Convergence Th m)
A non-decrasing sequence of real \#s which is bounded above is Canchy (and thus converges to a limit)
EVERY THING THAT RISES MUST CONVERGE

Pf x an non-decreasing sequence, bounded by some M
Suppose x is not Cauchy
X Cauchy would mean

$$
\forall \varepsilon>0, \exists N: \underbrace{\forall \forall_{i} j>N,\left|x_{j}-x_{i}\right|<\varepsilon}_{N \text { is } \varepsilon-\text { green }}
$$

" $\varepsilon>0$, there exists an ε-green N "
Suppose $\exists \varepsilon>0$ for which there is no ε-green N

$$
\begin{aligned}
& \Leftrightarrow \exists \varepsilon>0 \text { such that } \forall N, N \text { is not } \varepsilon \text {-green } \\
& \exists \varepsilon>0, \quad \forall N, \quad \exists i, j>N \quad\left|x_{i}-x_{j}\right| \geqslant \varepsilon \\
& \geqslant \varepsilon\left[{ }_{x_{j}^{\prime}} \quad x_{i}{ }^{\prime}\right. \\
& \text { LOG } \\
& \text { without loss of generedity } \\
& \geqslant \varepsilon\left[\begin{array}{ll}
\dot{x}_{j} & \dot{x}_{i}
\end{array}\right. \\
& \dot{x}_{0} \\
& N=0 \quad x_{i} \geqslant x_{j}+\varepsilon \geqslant x_{0}+\varepsilon \\
& N=x_{i} \quad x_{i^{\prime}} \geqslant x_{j^{\prime}}+\varepsilon \geqslant x_{i}+\varepsilon \geqslant x_{0}+2 \varepsilon \\
& N=X_{i^{\prime}} \cdots
\end{aligned}
$$

There by this process (induction) for every $m \in \mathbb{Z}>0$
\exists s.t. $X_{J} \geqslant X_{0}+m \varepsilon$
But $X_{i}<M$ for all $i \quad$ Archemedean property
Choose m sit. $m \varepsilon>M-x_{0}$

$$
x_{0}+m \varepsilon>M \quad X
$$

Buck to Proof of LUBP:
Bu Monotonic Convergence,
l has a limit mutchs mutadis
U has a limit

$$
l_{i}-u_{i}=\frac{1}{2^{i}}(m-s)
$$

So $\lim (\underline{l}-\underline{u})=0$, so $\lim \underline{l}=\lim \underline{u}$
Let $u=\lim _{\underline{u}}=\lim _{i \rightarrow \infty} u_{i}$
To show: $u=\sup S$
First: show u is an $U B$ for S
Recall: each u_{i} is an $\cup B$ for S
Suppose u is not an UB for S, i.e., then is $s \in S$ s.t. $u<s$
Let $\varepsilon=\left(\frac{1}{2}\right)(s-u)$
$s . \quad$ Choose in st. $\left|u_{i}-u\right|<\varepsilon$
u. $]$ then $u_{i}<s X$
To show u is the least upper bound, Suppose $V<U$ is also an $U B$ for S
Recall $u=\lim \underline{\ell}$

$$
\left.\begin{array}{l}
\text { Recall } u=\lim \underline{l} \\
u . \\
l_{i} .
\end{array}\right] \quad \begin{aligned}
& \text { choose } \ell_{i} \text { st. } \quad\left|\ell_{i}-u\right| \leqslant \frac{1}{2}(u-v) \\
& \quad \text { So } l_{i}>v \\
& l
\end{aligned}
$$

v. $S_{0} l_{i}$ is an UB for $S X$

Extension of \mathbb{R}
$\overline{\mathbb{R}}$, the "extended reals", an ordered set $\mathbb{R} \cup\{\infty,-\infty\}$

$$
-\infty \cdots \frac{\mathbb{R}}{\cdots}
$$

Def If X_{1}, X_{2}, \ldots is a sequence in $\overline{\mathbb{R}}$, we say $\lim \underline{x}=\infty$ if

$$
\forall E, \exists N, \forall i>N, \quad x_{i}>E
$$

cross bound and never back
choosing ε is choosing smaller and smaller nelghbormods of -1 nelighorhoods
$[E, \infty]$ is a neighborhood of ∞ $\left[E^{\prime}, \infty\right)$ is a smaller neighborhood of ∞

Problem with \mathbb{R} - not a field

$$
\begin{align*}
\infty & =\lim 1,2,3,4,5, \cdots \\
1 & =\lim 1,1,1,1, \ldots \\
\infty+1 & =\lim 2,3,4,5, \ldots=\infty \\
\infty+1 & =\infty \\
1 & =0
\end{align*}
$$

INFINITESIMALS

$$
\varepsilon=\sqrt{0}
$$

Including this in the reds, we get numbers of the form

$$
\begin{gathered}
a+b \varepsilon \quad a, b \in \mathbb{R} \\
(a+b \varepsilon)(c+d \varepsilon)=a c+(b+d) \varepsilon
\end{gathered}
$$

$\varepsilon<x$ for any $x>0$

$$
\varepsilon>0
$$

$a+b \varepsilon>c+d \varepsilon$ if either $a \geqslant c$ or
($a=c$ and $b \geqslant d$)
Not a field because ε has no reciprocal

$$
\text { pf } \quad \begin{aligned}
(a+b \varepsilon) & =1 \\
0+a \varepsilon & =1+0 \varepsilon
\end{aligned}
$$

