of (IR is complete) Every would be indeed, a sequence in IR has
has a limit a limit it is Conday
Main idea: Vi choose
$$a \in \mathbb{R}$$
 set $|a_i - X_2| \leq \frac{1}{2^i}$

$$\underline{\alpha} = \alpha_1, \alpha_2, \alpha_3, \ldots$$

Then prove a is Gueby
Take 4 to be the real number represented by a
Then prove lim
$$X = Y$$

for this lost step: $a - X$ is a sequence with $|a_i - X_i| < \frac{1}{2}$;
so lim $(a - X] = 0$
lim a - lim X
To show \pounds has a limit, we will show
Prop (Maantone Convergence Thm)
A non-decreasing sequence of real #s which is bounded above
is Couchy (and thus converges to a limit)
EVERY THING THAT RISES MUST CONVERGE
Pf x an non-decreasing sequence, bounded by some M
Suppose x is not Couchy
 $X = 0$, there exists an ξ -green N
 $\forall \xi > 0$, $\exists N : \forall i, j > N$, $|X_i - X_i| < \xi$
 $N i < \xi$ -green
 $\forall \xi > 0$, there exists an ξ -green N
 $\forall \xi > 0$, $\exists N : \forall i, j > N$ is not ξ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is not ξ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists \xi > 0$, $\forall N : \exists n : j > N$ is $n > \xi$ -green
 $\exists x_i$ x_i
 $without loss of guerdity$
 x_0
 $N = 0$ $x_i \ge x_i + \xi \ge x_0 + \xi$
 $N = X_i \cdot Y_i \ge X_i + \xi \ge X_0 + \xi$

Thee by this process (induction) for every
$$m \in \mathbb{Z} > 0$$

 $\exists I \quad (+, \quad X_S = X_0 + m \in \mathbb{Z})$
 $\exists V \quad X_1 = M \quad \text{for all } i \quad Archamedian property
Chooke $m \quad s.t. \quad m \in > M - X_0$
 $V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad Monotonic \quad Convergence, \quad V_0 + m \in > M \quad X$
 $\exists V \quad V \quad V = Sup \quad S$
 $first: Show u is an UB for S \quad S$
 $first: show u is an UB for S \quad S$
 $first: show u is an UB for S, i.e., there is $s \in S \quad s.t. \quad u < S$
 $s. \quad Let \quad s = (\frac{1}{2}) (s-u)$
 $u: \quad Choose \quad i \quad s.t. \quad |U_1 - U| < s$
 $u: \quad U \quad S \quad Choose \quad i \quad s.t. \quad |U_1 - U| < s$
 $u: \quad U \quad S \quad S$
 $recoil \quad u = tim \quad d$
 $u: \quad S \quad Suppose \quad Vcu is also an UB for S$
 $recoil \quad u = tim \quad d$
 $u: \quad S \quad Choose \quad L \quad s.t. \quad |U_1 - u| = \frac{1}{2} (u-v)$
 $s_0 \quad li \quad s \quad on VB \quad for S \quad X$
 $v: \quad S_0 \quad li \quad s \quad on VB \quad for S \quad X$$$

Extension of R
R, the "extended reds", an ordered set
$$\mathbb{R} \cup \{\infty, -\infty\}$$

 \mathbb{R} if $X_{L}, X_{2}, ..., is a sequence in \mathbb{R} , we say $\lim_{X \to \infty} x = \infty$ if
 $\forall E, \exists N, \forall i \geq N, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq E$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{1} \leq 1, \dots = \infty$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{1} \leq 1, \dots = \infty$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{1} \leq 1, \dots = \infty$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq N}, X_{2} \geq 1$
 $\lim_{X \to i} \frac{1}{\forall i \geq$$