MATH 521 Lecture 8
CARDINALITY:
Recall: we defined an equivalence relation on set:

$$S \sim T$$
 if $2f: S \simeq T$
which is a bijection
Note If $f: S \simeq T$, then $f^{-1}: T \simeq S$
Transitivity $S \simeq T = T = U$ check of is a bijection
The equivalence classes under ~ are called cardinalities
Fact: If S and T are finite sets, $S \sim T$ iff $|S| = |T|$
 V pidgeonhole principle
 $This means that the equivalence classes of finite sets are
notiural numbers
 $e.g. {f(1,2,3,4), directom : Beatles, wheels on
 $|S| = |T|: no injection at oblicition]$
BUT: $Z \rightarrow Z$ is an injection
 $n \rightarrow 2n$ but not a bijection
 $Def A set S$ is infinite if $\exists:f: S \subseteq S$ an injection which is not
a bijection$$

Fact An infinite set cannot be equivalent to a finite set

$$PE: Suppose S is infinite for the Fact S is the set Suppose F is a set with Fact S is the start of the figure of the figure of the infinite but not of the figure of the figure of the infinite if $S \sim Z_{>0}$
But and prove $\phi^{-1}f\phi$ is infinite if $S \sim Z_{>0}$
But Song S is countable infinite if $S \sim Z_{>0}$
But Z is countable infinite if $Z_{>0} \rightarrow Z$
This function depicts a lifection f: $Z_{>0} \rightarrow Z$
f(0) = 0 finite flex never hits the same number twice
f(0) = 0 finite life never hits the same number twice
f(1) = 1 f surjective : every number is eventually hit by the flex
f(2) = -1 f(2) = -2 i
f(3) = 2 f(4) = -2 i
i
Prop D₂₀ is countable f(0) = $\frac{0}{2}$ f(4) = $\frac{4}{3}$ f(1) = $\frac{4}{1}$ f(2) = $\frac{3}{2}$ i
 $\frac{1}{2}$ is $\frac{1}{2}$ if $f(1) = \frac{4}{1}$ f(2) = $\frac{3}{2}$ i
Vectual facts:
If S. The countable, so is SUT
S. (S) S, S. (O) S.$$

If S, T are countable, so is
$$S \times T$$
 e.g. \mathbb{Z}^{100} is countable
Cantor (1880s) there are uncountable sets
Notation: if S and T are sets, we denote by S^{T}
the set of functions from T to S
e.g. $\{0, 1\}^{Barthes} = set of all functions from Beatles to $\{0, 1\}^{P}$
Paul 1
Ringo 0 is an element of $\{0, 1\}^{Barthes}$
John 0 $[\{0, 1\}]^{Harthes} = 16 = 2^{4} = [\{0, 1\}]^{[Beatles]}$
George 1 $[\{0, 1\}]^{Harthes} = 16 = 2^{4} = [\{0, 1\}]^{[Beatles]}$
In general, if S,T finite $|S^{T}| = |S|^{T}$
Note disc: $\{0, 1\}^{P}$ functions from \emptyset to $\{0, 1\}^{P}$
A function from \emptyset to $\{0, 1\}$
A function from \emptyset to $\{0, 1\}$ actisfying Erules]
 $\{(a, b) \ b \in \{0, 1\}\}$ $(\forall \times \{0, 1\} = 4 = [\{0, 1\}]^{P}$
A function f: $\emptyset \rightarrow \{0, 1\}$ is a subset of \emptyset sotisfying Erules]
 \emptyset is the only subset of \emptyset $[\{0, 1\}^{P}] = 1 = 2^{\circ} = [\{0, 1\}]^{P}$
Thus (Contor) $\{0, 1\}^{Z \ge 0}$ is uncountable
set of subsets of $Z_{\ge 0}$$

$$\frac{Pf}{Suppose f: \mathbb{Z}_{\geq 0} \xrightarrow{\longrightarrow} \{0, 1\}}$$

Suppose f: \mathbb{Z}_{\geq 0} \xrightarrow{\longrightarrow} \{0, 1\}}
f(0): [D]1110100 ...
f(1): 1[D]1110100 ...
f(2): 00 [D]000000 ...
f(2): 01 0[D]01010 ...
Def D: \mathbb{Z}_{\geq 0} \xrightarrow{\rightarrow} \{0, 1\} defined by D(n)=1-f(n)(n)
Chin: D is not on the list
Pf: Suppose it is - D = f(m) for some $m \in \mathbb{Z}^{>0}$
so D(m) = f(m)(m)
D(m) = 1 - f(m)(m) X
Collony R is uncountable
Pf: Let S be set of decimds with only 0's and 1's
0.1001000111 ... $S \sim \{0, 1\}^{\mathbb{Z}_{\geq 0}}$
0.111011111 ... $S_0 \leq is$ uncountable
But S < R if R is countable, S would be countable
In fact, $R \sim \{0, 1\}^{\mathbb{Z}_{\geq 0}}$

tact,
$$\mathcal{K} = \{0,1\}^{\mathbb{Z}_{\geq 0}}$$
 is called \mathcal{X}_{o}
The equivalence class of $\mathbb{Z}_{\geq 0}$ is called \mathcal{X}_{o}
 $\{0,1\}^{\mathbb{Z}_{\geq 0}}$ is \mathcal{X}_{2} continuum
 $\{0,1\}^{\mathbb{Z}_{\geq 0}}$ \mathcal{X}_{2}

$$\chi_2^{(\chi_2)}$$
 χ_2

The set of all finite-length English texts is countable => There exists real numbers which cannot be described SOME HAVE SUGGESTED: (Intuitionism, Constructionism, Browner, etc.) R does not exist