MATH 521 Lecture of
CARDINALITY:
Recall: we defined an equivalence relation on sets $S \sim T$ if $z f: S \leadsto T$
which is a bijection
Note if $f: S \leadsto \sim T$, then $f^{-1}: T \xrightarrow{\sim} S$
Transitivity $S \xrightarrow[f]{\underset{f}{\sim} T \underset{g}{\sim}}$ 色 check of is a bijection
The equivalence classes under \sim are called cardinalities
$F_{A C T}$: If S and T are finite sets, $S \sim T$ iff $|S|=|T|$ "pigeonhole principle"

This means that the equivalence classes of finite sets are natural numbers
e.g. $\left\{\{1,2,3,4\}, \begin{array}{l}\text { compress } \\ \text { dictum }\end{array}\right.$. Beatles, whee on $\left.\begin{array}{c}\text { wy car, } \ldots\} \\ \text { mat }\end{array}\right\}=4$

Also for finite sets,
$|S|<\backslash T \mid$ iff there is an injection $f: S \leftrightarrow T$
which is not a bijection
$\binom{|S|>|T|:$ no injection at all }{$|S|=|T|$: every injection is a bijection }
BUT: $\mathbb{Z} \rightarrow \mathbb{Z}$ is an injection
$n \mapsto 2 n$ but not a bijection
Def A set S is infinite if $\exists: f: S G S$ an injection which is not a bijection

Fact An infinite set cannot be equivalent to a finite set
Pf: Suppose S is infinite
Suppose F is a set with F uS
You conn prove $\phi^{-1} f \phi$ is infective but not $\phi^{-1} f \phi$
bijectue $\Rightarrow F$ is infinite
Def We say S is countably infinite if $S \sim \mathbb{Z}>0$
Prop \mathbb{Z} is countable

This function depicts a bijection $f: \mathbb{Z} \geqslant 0 \rightarrow \mathbb{Z}$
$f(0)=0 \quad f$ injective: flea never hits the same number twice $f(1)=1 \quad f$ surfective: every number is eventually hit by the flea

$$
\begin{aligned}
& f(2)=-1 \\
& f(3)=2 \\
& f(4)=-2
\end{aligned}
$$

Prop $\mathbb{Q}_{\geqslant 0}$ is countable

$$
\begin{array}{cc}
f(0)=\frac{0}{1} & f(4)=\frac{1}{3} \\
f(1)=\frac{1}{1} & f(5)=\frac{3}{1} \\
f(2)=\frac{2}{1} & \vdots \\
f(3)=\frac{1}{2} &
\end{array}
$$

Useful facts:
If S,T are countable, so is SUT

If S countable, any subset of S is countably infinite or finite

If S, T are countable, so is $S \times T$ e.g. \mathbb{Z}^{100} is countable Cantor (1880s) there are uncountable sets

Notation: if S and T ane sets, we demote by S^{\top} the set of functions from T to S
e.g. $\{0,1\}^{\text {Beater }}=$ set of all functions from Beatles to $\{0,1\}$

Pail 1
Ringo 0 is an element of $\{0,1\}$ beatles

$$
\begin{array}{lll}
\text { Ringo } & 0 \\
\text { John } & 0 \\
\text { George } & 1
\end{array}|\{0,1\}|^{\text {Beat hes }}=16=2^{4}=|\{0,1\}|^{\mid \text {Beatles } \mid}
$$

George $1 \quad|\{0,1\}|$
In general, if S, T finite $|S|=|S|$
Note iso: $\{0,1\}^{\top}=$ set of subsets of T
What is $\{0,1\}^{\phi}$? $\{$ functions from ϕ to $\{0,1\}\}$
A function from ϕ to $\{0,1\}$
is a subset of $\phi x_{\| 1}\{0,1\}$ satisfying [rubes]

$$
\left\{(a, b) \begin{array}{ll}
a \in \phi \\
b \in\{0,1\}
\end{array}\right\} \quad \phi \times\{0,1\}=\phi
$$

A function $f: \phi \rightarrow\{0,1\}$ is a subset of ϕ satisfying [mules]
ϕ is the only subset of $\phi \quad\left|\{0,1\}^{\phi}\right|=1=2^{\circ}=|\{0,1\}|^{|\phi|}$
The (Contor) $\{0,1\}^{\mathbb{Z} \geqslant 0}$ is uncountable
set "f subsets of $\mathbb{Z} \geqslant 0$
"power set" of $\mathbb{Z} \geqslant 0$

Pf (Cantor's diagonal argument)
Suppose $f: \mathbb{Z} \geqslant 0 \xrightarrow{\sim}\{0,1\}$

$$
\begin{aligned}
& f(0): 011101000 \cdots \\
& f(1): 101110100 \cdots \\
& f(2): 000000000 \cdots \\
& f(3): 010101010 \cdots
\end{aligned}
$$

Def $D: \mathbb{Z} \geqslant 0 \rightarrow\{0,1\}$ defined by $D(n)=1-f(n)(n)$
Claim: D is not on the list
Pf: Suppose it is $-D=f(m)$ for some $m \in \mathbb{Z}>0$

$$
\text { so } \begin{aligned}
D(m) & =f(m)(m) \\
D(m) & =1-f(m)(m) x
\end{aligned}
$$

Collary \mathbb{R} is uncountable
Pf: Let S be set of deeimds with only 0 's and 1's

$$
\begin{array}{ll}
0.1001000111 \cdots & S \sim\{0,1\}^{Z \geqslant 0} \\
0.11101111 \cdots & \text { so } S \text { is uncountable }
\end{array}
$$

But $S \subset \mathbb{R}$ if \mathbb{R} is countable, S would be countable

$$
\text { In fact, } \mathbb{R} \sim\{0,1\} \mathbb{Z}^{\mathbb{Z}} \geq 0
$$

The equivalence class of $\mathbb{Z}_{\geqslant 0}$ is called χ_{0}

$$
\begin{array}{lll}
\ldots & \{0,1\}^{\mathbb{Z} \geqslant 0} \text { is } & x_{1} \text { continuum } \\
& \{0,1\}^{\left(\{0,1\}^{\mathbb{2}=0}\right)} & x_{2}
\end{array}
$$

The set of all finite-length English texts is countable
\Rightarrow There exists real numbers which camot be described
SOME HAVE SVGGRSTED: (Intuitionism, Constractionism, Brouwer, etc.) \mathbb{R} does not exist

