MATH 521 Lecture 9 R.T.
VECTOR SPACES
A vector space over a field k (a h-vector space)
is a set V, whose elements are colled vectors,
with operations
$$\pm$$
 and $\frac{1}{4}$
addition fielder
multiplication
i.e. given V, WEV $V\pm weV$
given $V \in V$, $\lambda \in k$, $\lambda V \in V$
satisfying many rules, e.g. $v\pm w = wtv = \lambda(v\pm w) = \lambda v \pm \lambda w$...
E.G.
· k is a R-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_1, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_1, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_1, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a k-vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· kⁿ is a vector space $V = \begin{bmatrix} x_1 \\ h \end{bmatrix}$ or $(x_2, ..., x_n)$
· $V_{ts} = \pm$ the set of all functions f: $R \Rightarrow R$
· S function f; states $\Rightarrow R$?
· R is a vector space over \mathbb{Q}
NORM
We waart a way of measuring how "large" a vector in V is
E.G. V be the space of functions on a 640 x 640 grid R^{403600}
 R^{403600}

f(x,y) specifies the brightness of K pixel (x,y) specifies the brightness of K pixel (x,y) so each vector in V is an image

Suppose yon have stored images
$$V_{1}$$
, V_{2} , V_{3} , V_{3} , V_{4}
W a new image
You believe w is a match for some V_{1} , but which one?
Which V_{2} is closet to w?
When is $V_{1}-W$ small?
What could me mean by the size of a vector $(X_{1}, ..., X_{n})$ in \mathbb{R}^{n} ?
 $|(X_{1}, ..., X_{n})|_{2}$ $(X_{1}^{2} + ... + X_{n}^{2})^{1/2}$ L^{2} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(X_{1}^{2} + ... + X_{n}^{2})^{1/2}$ L^{2} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(X_{1}| + ... + |X_{n}| L^{4}$ norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(|X_{1}|^{2} + ... + |X_{n}|^{2})^{1/2}$ L^{p} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(|X_{1}|^{p} + ... + |X_{n}|^{p})^{1/2}$ L^{p} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(|X_{1}|^{p} + ... + |X_{n}|^{p})^{1/2}$ L^{p} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $(|X_{1}|^{p} + ... + |X_{n}|^{p})^{1/2}$ L^{p} norm
 $|(X_{1}, ..., X_{n})|_{2}$ $V = V$, and $||V|| = 0$ iff V_{2}
 $\cdot ||V|| \ge 0$ $V = V$, and $||V|| = 0$ iff V_{2}
 $\cdot ||X_{1}| = |X_{1}||V_{1}| + ||W||$ $\forall V, w \in V$
 $\cdot ||V + w|| \le ||V|| + ||W||$ $\forall V, w \in V$
 e_{3} for the L^{2} norm, says: $W = V$

What about
$$L^{\infty}$$
 norm on \mathbb{R}^{n}
 $V = (X_{1}, ..., X_{n})$ $w = (Y_{1}, ..., Y_{n})$
 $V + w = (X_{1} + Y_{1}, ..., X_{n} + Y_{n})$
To show,
 $\max |X_{i_{1}} + Y_{i_{1}}| \le \max |X_{2}| + \max |Y_{i_{1}}|$
Let j in [1, ..., n] be the index s.t.
 $|X_{i_{1}} + Y_{i_{1}}| = \max |X_{i_{1}} + Y_{i_{1}}|$
 $j = \arg \max |X_{i_{1}} + Y_{i_{1}}|$

 $|y+w| = \max_{1} |X_{1}+Y_{1}| = |X_{1}+Y_{1}| \leq |X_{1}|+|Y_{1}|$ < max | Xi | + max | Yi | $\begin{bmatrix} - \end{bmatrix} \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} x_i + y_i \end{bmatrix}$ = [V|00 + [W]00 RK: the set of functions f: R > R bounded between -1 and 1 are not a vector space sin EV but their sum 2 sin is not in V sineV Def The norm ball BV, 11.11(a) is the set V vector space {vev: livileat 11.11 a norm on V Norm balls in R² B k2, 1.10 (a) BR2, 1.11 (a) B R2, 1.12 (a) (Q, a) ///(a, 0) Y-XEa LO, a) X+YEA ((a, o) (Diano) $max(|x|, |y|) \le a$ $|\chi| + |\chi| \leq 0$ $(v^2 + y^2)^{1/2} \le \alpha$ $\chi^2 + \gamma^2 \leq \alpha^2$ R, lily R, 1.11.5 Le balls for different a Def We say a subset S of a vector space V is convex if, for every V, w in S, the line segment \overline{vw} is continued in S non-convex Convex

Fact: Norm balls are always convex $\left|\left(\lambda \lor \right)\right| = \left|\lambda \left[\left|\left\{v\right\}\right|\right]$ $\sqrt{\frac{3}{4}}$ $\sqrt{\frac{1}{4}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ overy point on this line segment $\lambda_{y+}(1-\lambda) = \lambda \in [0,1]$ Pf that norm balls are convex: Suppose $v, w \in B_{v, (1-1)}(a)$. To show: (given 11v11, 11w11≤a) $\| \lambda_{V} + (1 - \lambda) \| \in \alpha$ $\|\lambda_{V} + (1-\lambda) \| \in \|\lambda_{V}\| + \|(1-\lambda) \|$ $= |\lambda| ||v|| + |1 - \lambda| ||w||$ $\neq \lambda ||v|| + (1 - \lambda) ||w||$ $\leq \lambda a + (1 - \lambda)a = a \quad \bigvee$ Are there good norms on space of f: IR > R ... continuous functions? Def Let Vb space of bounded functions f: R > R The sup norm on Vb is defined by 11 fll sup = sup (f(x)) Why does this exist? $E_f = \{|f_X|\}_{X \in \mathbb{R}}$ Ef is nonempty If(7) | Ef Ef is bounded above because f is bounded ⇒ By LUBP, Ef has a supremum To show this is a norm, need to show $\|f + g\|_{sup} \leq \|f\|_{sup} + \|g\|_{sup}$

$$R^{n} = \{(x_{1}, ..., x_{n})\}$$

$$V = \{(f(0), f(1), f(2), f(1.79), f(\pi), ...\}$$
What I'd like to say is:

$$let X_{0} be that real # such that$$

$$If(x_{0})| = sup |f(x)|$$

$$= "ang sup |f|"$$

$$f(x) = 1 - \frac{1}{(x^{2} + 1)} \qquad ||f||_{sup} = 1$$