MATH 521 Lecture 9 R.T.
VECTOR SPACES

A vector space over a field k (a k-vector space) is a set V, whose elements are called vectors, with operations $\underset{>}{+}$ and i addition | Scalar |
| :---: |
| multiplication |

ie. given $V, w \in V \quad v+w \in V$
given $v \in V, \lambda \in k, \lambda v \in V$
satisfying many rules, e.g. $v+w=w+v \quad \lambda(v+w)=\lambda v+\lambda w \quad \cdots$

EGG.
$\cdot k$ is a k-vector space $\quad v=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ or $\left(x_{1}, \ldots, x_{n}\right)$

- k^{n} is a k-vector space
(in partianlor, \mathbb{R}^{n} is an \mathbb{R}-vector space)
- $V=$ the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $V_{c t s}=\cdots$ continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a subspace of V (need sum of two continuous functions is continua s)
- $V_{b}=$ the set of all bounded $f: \mathbb{R} \rightarrow \mathbb{R}$
- \{function f : states $\rightarrow \mathbb{R}\}$
- \mathbb{R} is a vector space over \mathbb{Q}

NORM
We wart a way of measuring how "large" a vector in V is

EGG. V be the space of functions on a $640 \times 640 \mathrm{grid}$
$f(x, y)$ specifies the brightness of pixel (x, y)
So each vector in V is an image

Suppose you have stored images $V_{1}, V_{2}, V_{3}, \ldots, V_{N}$
W a new image
You believe w is a match for some V_{i}, but which one?
Which V_{i} is closet to w ?
When is $v_{i}-w$ small?
What could we mean by the size of a vector $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} ?

$$
\begin{array}{lll}
\left|\left(x_{1}, \ldots, x_{n}\right)\right|_{2} & \left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} & L^{2} \text { norm } \\
\left|\left(x_{1}, \ldots, x_{n}\right)\right|_{\infty} & \max _{i}\left|x_{i}\right| & L^{\infty} \text { norm } \\
\left|\left(x_{1}, \ldots, x_{n}\right)\right| & \left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| & L^{1} \text { norm } \\
\left|\left(x_{1}, \ldots, x_{n}\right)\right|_{p} & \left(\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} & L^{p} \text { norm }
\end{array}
$$

Def V vector space / \mathbb{R}
A nom on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ sit.

- $\|v\| \geqslant 0 \quad \forall v \in V$, and $\|v\|=0$ iff V_{0}
- $\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in \mathbb{R}, \quad v \in V$
- $\|v+w\| \leqslant\|v\|+\|w\| \quad \forall v, w \in V$
egg. for the L^{2} nom, says:

What about L^{∞} nom on \mathbb{R}^{n}

$$
\begin{aligned}
& V=\left(x_{1}, \ldots, x_{n}\right) \quad w=\left(y_{1}, \ldots, y_{n}\right) \\
& V+w=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
\end{aligned}
$$

To show,

$$
\max _{i}\left|x_{i}+y_{i}\right| \leq \max _{i}\left|x_{i}\right|+\max _{i}\left|y_{i}\right|
$$

Let j in $[1, \ldots, n]$ be the index sit.

$$
\begin{aligned}
\left|x_{j}+y_{j}\right| & =\max _{i}\left|x_{i}+y_{i}\right| \\
j & =\underset{i}{\operatorname{argmax}}\left|x_{i}+y_{i}\right|
\end{aligned}
$$

$$
\begin{aligned}
|v+w|_{\infty}=\max _{i}\left|x_{i}+y_{i}\right|=\left|x_{j}+y_{j}\right| & \leqslant\left|x_{j}\right|+\left|y_{j}\right| \\
& \leqslant \max _{i}\left|x_{i}\right|+\max _{i}\left|y_{i}\right| \\
& =|v|_{\infty}+|w| \infty
\end{aligned}
$$

$R K$: the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ bounded between -1 and 1 are not a vector space
$\sin \in V$ but their sum $2 \sin$ is not in V $\sin \in V$
V vector space Def The norm ball $B_{V,\|\cdot\|}(a)$ is the set $\|\cdot\|$ a nom on V

$$
\{v \in V:\|v\| \leq a\}
$$

Nom balls in \mathbb{R}^{2}

$$
B_{\mathbb{R}^{2}, 1 \cdot 1 / 2}(a)
$$

$$
\left(x^{2}+y^{2}\right)^{1 / 2} \leq a
$$

$$
x^{2}+y^{2} \leqslant a^{2}
$$

$\left.\mathbb{R}^{\prime} \cdot 1 \cdot\right|_{1.5}$

$$
B_{k^{2}, 1 \cdot 1 \infty}(a)
$$

$$
|x|+|y| \leqslant a
$$

$$
\max (|x|,|y|) \leq a
$$

L_{1} balls for different a
Def We say a subset S of a vector space V
 is convex if, for every V, w in S, the line segment $\overline{v w}$ is continued in S

Fact: Norm balls are always convex

$$
\|\lambda v\|=|\lambda|\|v\|
$$

$$
\underbrace{V}_{\frac{3}{4} v+\frac{1}{4} w} \underbrace{\frac{1}{2} v+\frac{1}{2} w}_{\frac{1}{3} v+\frac{2}{3} w} w
$$

every point on this line segment

$$
\lambda_{v}+(1-\lambda) w \quad \lambda \in[0,1]
$$

Pf that nom balls are convex:
Suppose $v, w \in B_{v, 11 \cdot 11}(a)$. To show:

$$
\begin{aligned}
& \text { Suppose } v, w \in D v,\|\cdot\| \cdot(1-\lambda) w \| \\
& \begin{aligned}
& \| \lambda v+(1) \\
&\|\lambda v+(1-\lambda) w\| \leq\|\lambda v\|+\|(1-\lambda) w\| \\
&=|\lambda|\|v\|+|1-\lambda|\|w\| \\
& \neq \lambda\|v\|+(1-\lambda)\|w\| \\
& \leq \lambda a+(1-\lambda) a=a \quad V
\end{aligned}
\end{aligned}
$$

Are there good norms on space of $f: \mathbb{R} \rightarrow \mathbb{R}$
... continuous functions?
bounded functions?
Def Let V_{b} space of bounded functions $f: \mathbb{R} \rightarrow \mathbb{R}$
The sup norm on V_{b} is defined by

$$
\|f\|_{\sup }=\sup _{x}|f(x)|
$$

Why does this exist?

$$
E_{f}=\left\{\left|f_{x}\right|\right\}_{x \in \mathbb{R}}
$$

E_{f} is nonempty $|f(7)| \in E_{f}$
E_{f} is bounded above because f is bounded
$\Rightarrow B_{y}$ LUBP, E_{f} has a supremum
To show this is a norm, need to show

$$
\|f+g\|_{\text {sup }} \leqslant\|f\|_{\text {sup }}+\|g\|_{\text {sup }}
$$

$$
\begin{aligned}
& \mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right)\right\} \\
& V=\{(f(0), f(1), f(2), f(1.79), f(\pi), \ldots\}
\end{aligned}
$$

What I'd like to say is:
let X_{0} be that real \# such that

$$
\begin{aligned}
& \left|f\left(x_{0}\right)\right|=\sup _{x}|f(x)| \\
& =" \arg \sup |f| " \\
& f(x)=1-\frac{1}{\left(x^{2}+1\right)} \quad\|f\|_{\text {sup }}=1
\end{aligned}
$$

A natural question:
is there some analogue of L^{2} nom for functions? Yes See inner product spaces

