MATH 541 01/25
We will cover basics of groups, rings, and modules
There are all sets of additional structures
E.g. IR is a ring (a field)
A vector space over IR is a module
Recoy of sets A, B= sets

$$f:A \Rightarrow B$$
 a function ron-example
 f is f injective if $f(a)=f(b) \Rightarrow a=b$ $f: R \Rightarrow R$
 $\chi \mapsto \chi^{2}$
 $not infj: f(2)=f(-2)$
surjective if $\forall b \in B$, $\exists a \in A$, s.t. $f(a)=b$
 f is bijective and surjective f
 f is bijective f has an inverse f^{-1}
 $f^{-1}(f(a)) = a \forall a \in A, f(f^{-1}(b)) = b, \forall b \in B$

Products of sets
$$A, B = sets$$

 $A \times B = \{(a, b) | a \in A, b \in B\}$
 $e.g. R^2 = R \times R$
Binary operation on a set X is a function $*$
 $* : X \times X \rightarrow X$ | Example $X = Z$ (integers)
 $(X, Y) \mapsto X + Y$ | $* = + 3 + 5 = 8$

Consider the set
$$[n] = \{1, 2, ..., n\}$$

Aut $([n]) = \{f: [n] \rightarrow [n] | f is bijective]$
Ex. $n=3$ $f=(2, 1, 3)=(1, 3, 2)$ $g=(2, 3)$
 $2 \mapsto 1, 1 \mapsto 3, 3 \mapsto 2$ $2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 1$
can form fog $[n] \xrightarrow{g} [n] \xrightarrow{f} [n]$
fog $(1) = f(g(1)) = f(1) = 3$
fog $(2) = f(g(2)) = f(3) = 2$
fog $(3) = f(g(3)) = f(2) = 1$
fog $= (3, 1) = (1, 3)$
(Aut[n], o) forms a group
A group G is a set equipped w/ a binary operation *, s,t
(i) $(a \star b) \star c = a \star (b \star c)$, $\forall a, b, c \in G$

A group G is a set equipped w/ a binary operation
$$*$$
, s.t.
(i) (a*b) * c = a*(b*c), $\forall a, b, c \in G$
(ii) $\exists e \in G$, s.t. $e*a = a*e = a$, $\forall a \in G$
(iii) $\exists a \in G$, $\exists a^{-1} \in G$ s-t. $a \neq a^{-1} = a^{-1} * a = e$

Check
$$(A_{u+t}([n]), \circ)$$
 as group
(i) associativity $(f \circ g) \circ h = f \circ (g \circ h) \notin g \circ h$ functions $[n] \rightarrow [n]$
Need: $\forall x \in [n], (f \circ g) \circ h(x) = f \circ (g \circ h)(x)$
 $(f \circ g \circ h) \notin g \circ h(x) = f \circ (g \circ h)(x)$

(ii) e is called the identity element

$$e \in Ant(CnJ)$$
 is just the identity function $id_{CN}(x) = x$,
 $Vx \in CnJ$
(The permutation that does nothing)
(iii) clear. $b/c \quad f \in Aut(CnJ)$ is bijective
Exercise Compute $(4, 2, 3) \circ (2, 3)$ and $(2, 3) \circ (1, 2, 3)$
 $(1, 2, 3) \circ (1, 2, 3) = (2, 1, 3)$
 $(2, 3) \circ (1, 2, 3) = (4, 3)$
In general, for a group $(G, *)$
 $a \neq b \neq b \neq a$ (not necessarily)
If $a \neq b \equiv b \neq a$, $\forall a, b \in G$, then G is alled abelian / commutative
 $Ex (Z, +)$ is an abelian group
 (Z, X) is not a group!
 $(Inverces do not always exist)$
 $(f \pm 13, x)$ is an obelian group
 $M_{nxn} = \{n \times n \text{ matrices} / IR\}$
 $(M_{nxn}, +)$ is an obelian group
 $(M_{nxn}, -)$ $(f \circ f, -)$
 $M_{nxn}^{x} = \{A \in M_{nxn} | det(A) \neq 0\}$
Then $(M_{nxn}^{x}, -)$ is a group
 $R^{n} \Rightarrow R^{n}$ usually not commutative