MATH 541 01/25
We will cover basics of groups, rings, and modukes There are all sets $w /$ additional structures E.g. \mathbb{R} is a rigg (a field)
A vector space over \mathbb{R} is a module
Recup of sets $A, B=$ sets

$$
\begin{aligned}
& f: A \rightarrow B \text { a function } \\
& \text { non-example } \\
& f \text { is \{injective if } f(a)=f(b) \Rightarrow a=b \quad \begin{array}{ll}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& x \mapsto x^{2}
\end{array} \\
& x+x^{2} \\
& \text { not inf. } f(2)=f(-2) \\
& \text { Surjective if } \underset{\uparrow}{\forall b \in B} \underset{\uparrow}{\exists} \underset{\uparrow}{\exists a} \in A, \underset{\uparrow}{\text { s.t. }} f(a)=b \\
& \text { formll exists sweh that } \\
& \text { bijective buth injective and surjective } \\
& \text { unigne if } \\
& \text { exists }
\end{aligned}
$$

f is bijective $\Leftrightarrow f$ has an inverse f^{-1}

$$
f^{-1}(f(a))=a \quad \forall a \in A, \quad f\left(f^{-1}(b)\right)=b, \forall b \in B
$$

Products of sets $A, B=$ sets

$$
\begin{aligned}
A \times B & =\{(a, b) \mid a \in A, b \in B\} \\
\text { e.g. } \mathbb{R}^{2} & =\mathbb{R} \times \mathbb{R}
\end{aligned}
$$

Binary operation on a set X is a function $*$

$$
\begin{array}{l|l}
*: X \times X & \rightarrow X \\
(x, y) \mapsto x+y & \text { Example } \\
& x=\mathbb{Z} \text { (integers) } \\
&
\end{array}
$$

Consider the set $[n]=\{1,2, \ldots, n\}$

$$
\left.\begin{array}{rl}
\text { Ant }([n])=\{f:[n] \rightarrow[n] \mid f \text { is bijective }\} \\
E_{x, n}=3 \quad f & =(2,1,3)=(1,3,2) \\
& g=(2,3) \\
& 2 \mapsto 1,1 \mapsto 3,3 \mapsto 2
\end{array} \quad 2 \mapsto 3,3 \mapsto 2,1 \mapsto 1\right\}
$$

can form fog $[n] \xrightarrow{g}[n] \xrightarrow{f}[n]$

$$
\begin{aligned}
& f \circ g(1)=f(g(1))=f(1)=3 \\
& f \circ g(2)=f(g(2))=f(3)=2 \\
& f \circ g(3)=f(g(3))=f(2)=1 \\
& f \circ g=(3,1)=(1,3)
\end{aligned}
$$

(Aut[n],0) forms a group
A group G is a set equipped $w /$ a binary operation $*$, sit.

$$
\begin{aligned}
& \text { (i) }(a * b) * c=a *(b * c), \quad \forall a, b, c \in G \\
& \text { (ii) } \exists e \in G, \quad \text { sit. } \quad e * a=a * e=a, \quad \forall a \in G \\
& \text { (iii) } \forall a \in G, \exists a^{-1} \in G \text { sit. } a * a^{-1}=a^{-1} * a=e
\end{aligned}
$$

Check (Ant $[[n]), 0$) as group
(i) associativity

$$
\begin{aligned}
& \text { as group } \\
& (f \circ g) \circ h=f \circ(g \circ h) \text { This is an equality } \\
& \text { Nerd: functions }[n] \rightarrow[n] \\
& \text { No } \in[n],(f \circ g) \circ h(x)=f \circ(g \circ h)(x) \\
& \ / I \\
& f(g(h(x)))
\end{aligned}
$$

(ii) e is called the identity element
$e \in \operatorname{Ant}([n])$ is just the identity function $i d_{[n]}(x)=x$,

$$
\forall x \in[n]
$$

(The permutation that does nothing)
(iii) clear. blk $f \in \operatorname{Aut}([n])$ is bijective

Exercise Compute $(1,2,3) \circ(2,3)$ and $(2,3) \circ(1,2,3)$

$$
\begin{aligned}
& (1,2,3) \cdot(2,3)=(2,1,3) \\
& (2,3) \cdot(1,2,3)=(1,3)
\end{aligned}
$$

In general, for a group $(G, *)$
$a * b \neq b * a$ (not necessarily)
If $a * b=b * a, \forall a, b \in G$, then G is called abelian/commutative
Ex $(\mathbb{Z},+)$ is an abelian group
(\mathbb{Z}, X) is not a group!
Unverses do not always exist)
$(\{ \pm 1\}, x)$ is an abelian group

$$
M_{n \times n}=\{n \times n \text { matrices } / \mathbb{R}\}
$$

$\left(M_{n \times n},+\right)$ is an abelian group

$$
\begin{aligned}
& \left(M_{n \times n}, \cdot\right) \quad(\{0\}, \cdot) \\
& M_{n \times n}^{x}=\left\{A \in M_{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
\end{aligned}
$$

Then $\left(M_{n \times n}^{x}\right.$,) is a group
$\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ usually commutative

