MATH 541 Lecture 03 30 January 2023

Last time: Dihedral group $D_{2n} = \langle r, s | r^{n} = 1, s^{2} = 1, rs = sr^{-1} \rangle$ Example n=4 $R_{i} = \{1, r, r^{2}, r^{3}\} \leq D_{8}$ closed under the group multiplication ⇒ R is a subgroup of D8 subset W⊆V=vector space Linear algebra W is a subspace \Leftrightarrow closed on t and scalar multiplication r2. r3=r5=r Look at powers $\Gamma^{3}, \Gamma^{3} = \Gamma^{2}$ $\Gamma^{i}, \Gamma^{j} = \Gamma^{i+j}$ but for the exponents "4 = 0" Def Let a, b \in Z Say "a divides b/b is divisible by a" cal 7 at b=ak Notation: alb

if
$$\exists k \in \mathbb{Z}$$
, s.t. $p = 0$

Exercise: If albe, albe, then alberton
Pf By assumption,
$$\exists k_1, k_2 \in \mathbb{Z}$$
, s.t. $b_1 = aki$ for $i=1, 2$
 $b_1 + b_2 = \frac{(k_1 + k_2)}{\mathbb{Z}}a \Rightarrow a|b_1 + b_2$

Def Song "
$$p \in \mathbb{Z} > 1$$
 is a prime number", if the only $a \in \mathbb{Z} > 1$
Hot divides p is p itself
Ex: 2,3,5,7,... prime 4, b,8,9,10,... composite numbers
Fun fact: 57 is called the "Grothendieek prime" (3.19)
Division w/ remainder
For any $a, b \in \mathbb{Z}$, $a \neq 0$, there exists a unique pair $(q,r) \in \mathbb{Z}^2$
s.t. $b = qa + r$ and $0 \leq r < |a|$
Exercise: $a = q$, $b = 1373$ Find $\frac{q}{q}$ and r
Pf assume $a = 0$ ($a < 0$ exercise)
Consider $b/a \in \mathbb{Q}$
 $\exists 1 q \in \mathbb{Z}, s.t. q \leq b/a < q + 1$
there eintse
 a unique $\frac{1}{-2} + 1 = 0$ is $\frac{1}{2} = 3$
Then we set $r = b - aq$
Def Lat $a, b \in \mathbb{N} = \mathbb{Z} \ge 0$
We say that " $d \in \mathbb{N}$ is the greatest common divisor of a, b "
if $b \leq d$ for every $b \in \mathbb{N}$, s.t. $b | a, b | b$
 $d = gcd(a, b)$
Ex. $gcd(12, 18) = b$ $gcd(30, 31) = 1$

Well ordering principle
Let
$$S \leq \mathbb{Z}$$
 which is bounded below (resp. above)
Then $\exists I$ suin (resp Snow) in $S \leq I$. $\forall S \in S$, $s \geq S_{min}$ (resp. $S \leq S_{max}$)
Ex $S \leq \mathbb{R}$
 $\exists q \in \mathbb{Q} \mid q < \overline{b} :$ does not have a max
 $Say frax \in S$ quax $< q < \overline{b}$
Con always find $q \in S$
We write $a \equiv b \mod n$ (equivalent/congruent)
if $n|a-b \in Eq$. $t \equiv 3 \mod 2$
E.g. $n=4$ $\{\dots, -8, -4, 0, 4, 8, \dots : t\}$
 $\overline{q} = -\overline{3} = \{2-7, -3, 1, 5, 9, \dots : t\}$
 $\{-6, -2, 2, 6, 10, \dots : t\}$
 $\{-6, -2, 2, 6, 10, \dots : t]$
For $a \in \mathbb{Z}$, write \overline{a} for its congruence class
 $\mathbb{Z}/n\mathbb{Z} = \overline{Sa} \mid a \in \mathbb{Z}$ is a group with defined by $\overline{a} + \overline{b} = \overline{a+b}$
 $Say \overline{2} + \overline{3} = \overline{3}$
 $(n=4)$
 $-10 + \overline{7} = \overline{-3}$

Need to check:
$$\forall a, b, a', b' \in \mathbb{Z}$$

s.t. $a \equiv a' \mod n$, $b \equiv b' \mod n$
We have $a+b \equiv a'+b' \mod n$ (exercise)
Def Two groups G. H are isomorphic if $\exists \varphi: G \Rightarrow H$ bijection of sets
s.t. $\varphi(a) \varphi(b) = \varphi(ab)$, $\forall a, b \in G$
Then I can say $R \leq D_{2n}$
 $i \leq 1, r, r^2, ...$
 $R \leq \mathbb{Z}/n\mathbb{Z}$ isomorphic