MATH 541 Lecture 053 feb 2023
Last time: $D_{2_{n}} \xrightarrow{\varphi} \operatorname{Ant}(X) \quad X=$ set of vertices

$$
\begin{aligned}
& \text { Ex: } n=4 \\
& \frac{3}{2}=-0_{1}^{0} 2^{r} \\
& \varphi(r)=\left(\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right) \\
& \varphi(s)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& X=[4]=\{0,1,2,3\}^{\varphi\left(r^{2} s\right)=\left(\begin{array}{ll}
0 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)} \\
& \operatorname{Aut}(x)=S_{4}
\end{aligned}
$$

Def $G=$ group $X=$ set
An action of G on X is a group homomorphism

$$
G \rightarrow \text { Ant }(X) \stackrel{\text { def }}{=}\{f: X \rightarrow x \mid f \text { bijection }\} \quad \text { group law }=\text { composition }
$$

Slogan: A group is like a man and he should be understood through his actions

Consider $\psi: D_{2 n} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$
As a function of sets

$$
\begin{aligned}
& \text { a functiven of sets } \\
& \psi: A=\left\{1, r_{1}, r^{n-1}\right\} \rightarrow \overline{0} \quad B=\left\{r s, r^{2} s, \cdots, r^{n-1} s\right\} \rightarrow \overline{1} \\
& \quad e, g, r^{n} s=s r^{-n}
\end{aligned}
$$

Check: x is a group orphism
Need; $x(x y)=x(x)+x(y)$

$x \in$	A	B
A	(1)	(2)
B	(3)	(4)

(1) $x=r^{i} \quad y=r^{j}$ for some i, j

$$
\begin{aligned}
& \psi(x y)=\psi\left(r^{i+j}\right)=\overline{0} \\
& \psi(x)+\psi(y)=\overline{0}+\overline{0}=\overline{0} v
\end{aligned}
$$

(2) $x=r^{i} s \quad y=r^{j} \quad \psi(x y)=\psi\left(r^{i} s r^{j}\right)=\psi\left(r^{i-j} s\right)=\overline{1}$

$$
\psi(x)+x(y)=I+\bar{D}=\overline{1}
$$

(4)

$$
\begin{aligned}
& x=r^{i} s \quad y=r^{j} s \\
& \psi(x y)=\psi\left(r^{i} s r^{j} s\right)=\psi\left(r^{i-j}\right)=\overline{0} \\
& x(x)+\psi(y)=\overline{1}+\overline{1}=\overline{0}
\end{aligned}
$$

In general if G is given by generators and relations, to check whether $x: G \rightarrow H \quad(H=$ group $)$ is a group morphism, it suffices to check that ψ represents the relations

Ex For $\psi: D_{2_{n}} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ as above, only need to check

$$
\neq\left(r^{n}\right)=\overline{0}, x\left(s^{2}\right)=\overline{0}, \text { and } \psi(r s r s)=\overline{0}
$$

There is a natural action
$x=$ set
$z^{x}=$ porer set of x

$$
\varphi(f) \in \operatorname{Ant}\left(2^{x}\right)
$$

$$
\varphi(f): 2^{x} \rightarrow 2^{x}
$$

$A \leq X$ $\varphi(f)(A) \in 2^{x}$
$=$ set of all subsets of $X \quad f: X \rightarrow X$ bijection

$$
\begin{array}{ll}
& \varphi(f) \in \operatorname{Ant}\left(2^{x}\right) \\
A \subseteq X & \varphi(f)(A)=\{f(a) \mid a \in A\} \leq X
\end{array}
$$

Say $x=\{0,1,2,3\} \quad f=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right)$

$$
\begin{aligned}
& A \in 2^{x} \text {, say } A=\{2,3,1\} \subseteq x \\
& \varphi(f)(A)=\{2,0,3\} \leq X \\
& A=\{2,3,1\} \\
& \text { vf } \\
& X=\text { set of vertices } \\
& \{2,0,3\} \\
& n=4 \quad D_{8} \rightarrow S_{4}=\operatorname{Ant}(X) \rightarrow \operatorname{Ant}\left(2^{x}\right) \\
& \left.\frac{3}{2}-\right]_{1}^{0} \frac{\partial^{r}}{-\rho_{s}} \quad \text { Ex } \quad A=\{0,2\} \\
& r \cdot A=2(r)(A) \\
& r \cdot A=\{1,3\} \quad S \cdot A=\{1,3\}
\end{aligned}
$$

Claim: $\forall g \in D_{2 n}$, either $\left\{\begin{array}{l}g \cdot A=A \text { or }\left\{\begin{array}{l}g \cdot A=B \\ g \cdot B=B\end{array} \text { g.B=B}\right.\end{array}\right.$
Example: $1 \cdot A=A \quad r^{2} \cdot A=A$
Then I define $\pi: D_{2 n} \rightarrow \operatorname{Aut}(\{A, B\}) \cong \mathbb{Z} / 2 \mathbb{Z}$ $\pi \neq \psi$ because $\psi(r)=\overline{0} \quad \pi(r)=\overline{1}$

