Lecture b Symmetry groups and cubes
Question. What is the symmetry group of a cube?

$\psi^{\frac{\pi}{2}}, \pi, \frac{3}{2} \pi$

Type I rotations trivial $=$ identity
$9=3 \times 3$ nontrivial notation \#axis of this shape

Type II rotations
$8=4 \times 2$ nontrivial ones \#axis of this type
Type III rotations

$$
6 \times 1
$$

\#axis of this type
In total, we have $9+8+6+\frac{1}{4}=24$ elements in the identity element
$G=$ symmetry group of a cube
It tums out that every element in G can be obtained by composing Type III rotations!

Symmetry group S_{n} revisited

$$
S_{n}=A_{n}+([n]) \quad[n]=\{0,1,2, \ldots, n-1\}
$$

Def A transposition in S_{n} is an element of the form $\underbrace{\left(a_{1}, a_{2}\right)}$, for $a_{1}, a_{2} \in[n]$
e.g. $(0,1),(2,3),(1,3)$ are transpositions in S_{3}

The S_{n} is generated by transpositions, i.e., $\forall g \in S_{n}$, \exists an expression $g=g_{1} \cdots g_{m}$ for some m and g_{i} is a transposition for every i

Eng. Say we consider $(0,1,2, \ldots, n-1) \in S_{n}$ How to decompose it into transpositions? Consider the dihedral group $D_{2_{n}} \subseteq S_{n}$
e.g. $n=5$

Then $(0,1,2,3,4)=r$
we already know that the reflections are products of transpositions S, is are both reflections

$$
r=(r s)(s)
$$

$$
\begin{aligned}
s & =\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
r s & =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
\end{aligned}
$$

What about ($\left.\begin{array}{lllll}2 & 1 & 3 & 0 & 4\end{array}\right)$

same logic applies

But we know that all elements in S_{n} can be expressed as a product of cycles, and a cycle can be decomposed into a product of transpositions
Exercise: Decompose $\left(\begin{array}{lll}2 & 1 & 3\end{array}\right)\left(\begin{array}{lll}3 & 4 & 5\end{array}\right) \in S_{6}$ int. a product of transpositions
Exercise: Use the above to write down a formal proof of the theorem
Back to the cube

$$
\begin{array}{cccc}
\{0,7\}, & \{1,6\}, & \{2,5\}, & \{3,4\} \\
A & B & C & D
\end{array}
$$

action on $\{A, B, C, D\}$

$(A D C B)$

$$
\{2,5\} \rightarrow\{2,5\}
$$

Left as an exercise

$$
\underset{\{1,6\} \rightarrow\left\{\begin{array}{c}
C \\
B
\end{array}, 5\right\}}{ }
$$

All other pairs are fixed

Similarly, you can realize all other transpositions by reflecting at suitable axis of type II
\# transpositions in $S_{4}=\binom{4}{2}=\frac{4 \times 3}{1 \times 2}=6$
Now I consider my action of $G=$ symmetry group of cube on the set $\{A, B, C, D\}$ of pairs

$$
\text { Ant }(\{A, B, C, D\}) \xlongequal{\bumpeq} S_{\text {isomo }}
$$

t isomorphism not unique

$$
G \rightarrow A_{n}+(\{A, B, C, D\})
$$

HW: A group morphism is injective if and only if the kennel is $\{1\}$

$$
\operatorname{ker}(\varphi)=\{g \in G \mid \varphi(g)=1\}=\{1\} \text { in our case }
$$

$\Rightarrow \varphi$ is infective
Is φ surjective? Answer = Yes!
$B / C \quad \operatorname{Aut}(\{A, B, C, D\}) \cong S_{4}$ is generated by transpositions, which all lie in the image of φ

Exercise: Suppose $\varphi: G>H$ for general groups G and H If in (φ) contains a set of generators of H, then φ is surjective
$Y \subseteq H$ is a set of generators if $\forall h \in H$ is of the form subset h_{1}, \ldots, h_{m} for some m and $h_{i} \in Y$

Conclusion: Symmetry group of a cube is isomorphic to S_{4} !

