Lecture 6 Symmetry groups and cubes Question. What is the symmetry group of a cube? Aut group = ? trivind = identity μ², π, ³₂π Type I notations 6 faces 9= 3×3 nontrivial rotation ttax is of this shape 23 m, 4, T Type II rotations $g = 4 \times 2$ nontrivial ones # axis of this type Type II rotations I this type In total, we have 9+8+ 6+1=24 elements in the identity element G = symmetry group of a cube It turns out that every element in G can be obtained by composing Type II rotations! Symmetry group Sn revisited $S_{n} = Ant(EnJ)$ $EnJ = \{0, 1, 2, ..., n-1\}$ Def A transposition in Sn is an element of the form (α_1, α_2) , for $\alpha_1, \alpha_2 \in \mathbb{I}_n$ e.q. (0,1), (2,5), (1,3) are transpositions

cycle representation

The Sn is generated by transpositions, i.e., $\forall g \in S_n$, \exists an expression $g = g_1 \cdots g_m$ for some m and g_i is a transposition for every i

E.g. Say we consider
$$(0, 1, 2, ..., n-1) \in S_n$$

How to decompose it into transpositions?
Consider the dihedrod group $D_{2n} \subseteq S_n$
e.g. $n=S \qquad \{1,1\}^r$ then $(0,1,2,3,4) = r$
e.g. $n=S \qquad \{1,1\}^r$ We already know that the reflections
are products of transpositions
 $S_1 = rs$ are both reflections
 $r = (rs)(s) \qquad s = (1 \ 4)(2 \ 3)$
 $r = (1 \ 0)(2 \ 4)$

What about
$$(21304)$$

 $4\sqrt{2}_{1}$ some logic applies

But we know that all elements in Sn can be expressed as a product of cycles, and a cycle can be decomposed into a product of transpositions Exercise: Decompose (213)(345) < S6 into a product of transpositions

Exercise: Use the above to write down a formal proof of the theorem

Back to the cube

$$40,75, 41,65, {2,55, 43, 4}$$

 $41,75, 4B$
 $40,75, 41,65, {2,55, 43, 4}$
 $41,75, 4B$
 $40,75, 41,65, {2,55, 43, 4}$

action on
$$\{A, B, C, D\}$$

A $\{0, 7\}$ B $\{1, 6\}$
T $\{1, 6\}$ D $\{3, 4\}$ A $\{0, 7\}$
C $\{2, 5\}$ D $\{3, 4\}$
(A D C B) B $\{1, 6\}$ C $\{2, 5\}$
 $\{2, 5\} \Rightarrow \{2, 5\}$
 $\{1, 6\} \Rightarrow \{2, 5\}$
All other pairs are fixed
(B C)
Similarly, you can realize all other transpositions
by reflecting at switchele axis of type TI
H transpositions in $S_4 = (\frac{4}{2}) = \frac{4\times3}{1\times2} = 6$
Nor I consider my action of G = symmetry group of cube
on the set $\{A, B, C, D\}$ of pairs
Aut ($\{A, B, C, D\}$)
Hwi A group morphism is injective if and only if the kernel
is $\{A\}$
 $kur(\psi) = \{g \in G | \psi(g) = 1\} = \{i\}$ in our case