Lecture 7 Abstract Noncense

Bosice of Set Theory
Sony
$$f: A \rightarrow B$$
 is a map of sets. Then f is surjective iff
(if and only if) it has the following property:
For every g_L , $g_x: B \rightarrow C$ ($C =$ some other set) s.t.
 $g_L \circ f = g_1 \circ f$
 $A = g_{\frac{1}{2}} c$
 $f_{\frac{1}{2}} c$
 $f_{\frac{1}{$

Foctorization of maps
Let
$$f: A \rightarrow B$$
 be maps of sets
 $g: A \rightarrow C$
We say that f factors through g if $\exists h: C \rightarrow B$
 $s.\tau. f = h \circ g$
 $g \downarrow c$
 $f: e., A \stackrel{f}{=} B$ commutes
 $g \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $f \downarrow c$
 $f \downarrow c$
 $f \downarrow c$
 $g \downarrow c$
 $f \downarrow$

If g is surjective, then h has to be unique if it exists

$$\begin{pmatrix} if h': C \Rightarrow B \text{ is another map s.t.} \\ f = h' - g, then h = h' \end{pmatrix}$$

Equivalence Relations.
Recall that
$$X = set 2^{X} = set of all subsets of X$$

Given $\partial \in 2^{X}$, write $X + for the corresponding subset of X$
Def A binary relation $n \text{ on } X$ is a subset $R \subseteq X \times X$ s.t.
 $x \cdot y = iH (x, y) \in IR$
Eq. $R \subseteq R \times R$ be defined by $R = \{(x, y) \mid \exists r \in IR, s.t. y - x = r^{2} \}$
Then $x \cdot y \Leftrightarrow x \in y = i.e., n = " \leq "$
Similarly, $R \subseteq \mathbb{Z} \times \mathbb{Z}$ be defined by
 $R = \{(a, b) \mid \exists k \in \mathbb{Z} \ s.t. \ b - a = nk \}$
Then $x \cdot y \Leftrightarrow x \equiv y \mod n$
We say that n is an equivalence relation if it is
(a) reflexive $x \cdot y \iff y \cdot x \equiv y \cdot x$

Non-examples: < is not reflexive but
$$\leq$$
 is
< and \leq are both transitive
($x \leq y, y \leq z \Rightarrow x \leq z$)
but not symmetric (if $x < y$ then $y < x$ is false)
Example: \equiv mod n is an equivalence relation!
Clearly $\forall x \in \mathbb{Z} \quad x \equiv x \mod n$
 $\forall x, y \in \mathbb{Z} \quad (x \equiv y \mod n \Leftrightarrow y \equiv x \mod n)$
 $\exists k \in \mathbb{Z} \quad s.t. \quad y - x = kn$ $x - y = (-k) \cdot n - k \in \mathbb{Z}$
Transitive. $x \equiv y \mod n$ $y \equiv z \mod n \Rightarrow x \equiv z \mod n$
 $y - x = kn$ $z - y = dn$ $b/c \quad 2 - x = (k+\ell) \cdot n$
 $k \in \mathbb{Z} \quad l \in \mathbb{Z} \quad k + l \in \mathbb{Z}$
Suppose that if define ($n \in \mathbb{N}$) $\mathbb{R} \leq \mathbb{Z} \times \mathbb{Z}$
by $\{(n, b)|b - n = kn \quad for \text{ some } k \in \mathbb{N}\}$
Then the resulting n is not symmetric
Portition of a set X is given by a subset
 $I \in 2^{X} \quad s.t. \quad \left[\begin{array}{c} \mathbb{U} \quad X_{1} = X \\ \mathbb{V} \quad i, j \in \mathbb{I}, \quad i \neq j, \quad X_{1} \cap X_{j} = \emptyset \\ \mathbb{V} \quad X_{1} = X \\ \mathbb{V} \quad i, j \in \mathbb{I}, \quad i \neq j, \quad X_{1} \cap X_{j} = \emptyset \\ \mathbb{V} \quad X \in X, \quad \exists i \in \mathbb{I}, \quad s.t. \quad x \in X_{1}$
When satisfied, we have a well defined map $X \stackrel{s}{\rightarrow} I$
 $s.t. \quad \forall x \in X, \quad \pi(x) \in 2^{X}$ is the unique element $s.t. \quad x \in X \pi(p)$
 $Eq.$
 $F = i, \mathbb{Z}, \quad withe \quad b + \mathbb{Z} = \{a \in \mathbb{Z} \mid a - b = kn \text{ for some } k \in \mathbb{Z}\}$
Then $I = \{n \mathbb{Z}, \quad 1 + n \mathbb{Z}, \dots, \quad (n-1) + n \mathbb{Z}\} \leq 2^{\mathbb{Z}}$ is a partition
of \mathbb{Z}