Lecture 7 Abstract Nonsense
Basics of Set Theory
Say $f: A \rightarrow B$ is a map of sets. Then f is surjective iff (if and only if) it has the following property:
For every $g_{1}, g_{2}: B \rightarrow C \quad\left(C=\right.$ some $0^{\text {the }}$ set $)$ st.

Then $g_{1}=g_{2}$

$$
g_{1} \circ f=g_{2} \circ f
$$

Take any $b \in B$ want to show

$$
g_{1}(b)=g_{2}(b)
$$

We know $\exists a \in A$ sit. $f(a)=b$

$$
\begin{array}{ll}
g_{1}(b)=\left(g_{2} \circ f\right)(a) & \text { converse } \\
\prime \prime & =\text { exercise }
\end{array}
$$

$$
g_{2}(b)=\left(g_{2} \circ f\right)(b)
$$

Nonexample: Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \rightarrow x^{2}$
Let $g_{1} g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be $g_{1}(x)=x$, and $g_{2}(x)=|x|$
Then g_{1} of $=g_{2}$ of, but $g_{1} \neq g_{2}$

f "does not know"

$$
g_{1}=g_{2} \text { over } \mathbb{R} \geq 0
$$

about $\mathbb{R}_{\leq 0}$ in B

$$
g_{1} \neq g_{2} \text { over } \mathbb{R}_{<0}
$$

$f: A \rightarrow B$ is infective $\Leftrightarrow\left(\forall g_{1}, g_{2}:(\rightarrow A\right.$ s.t. $)$

Let as Exercise

Factorization of maps
Let $f: A \rightarrow B$ be maps of sets

$$
g: A \rightarrow C
$$

$A \xrightarrow{f} B$
gl
we say that f factors through g if $\exists h: C \rightarrow B$

If g is surjective, then h has to be unique if it exists

$$
\left(\begin{array}{l}
\text { if } h^{\prime}: C \rightarrow B \text { is another map s.t. } \\
f=h^{\prime}-g \text {, then } h=h^{\prime}
\end{array}\right.
$$

Equivalence Relations.
Recall that $X=$ set $2^{X}=$ set of all subsets of X
Given $\alpha \in Z^{x}$, write X_{2} for the corresponding subset of X
Def A binary relation \sim on X is a subset $\mathbb{R} \subseteq X \times X$ sit. $x \sim y$ if $(x, y) \in \mathbb{R}$
Eg. $R \subseteq \mathbb{R} \times \mathbb{R}$ be defined by $R=\left\{(x, y) \mid \exists r \in \mathbb{R}\right.$, sit. $\left.y-x=r^{2}\right\}$
Then $x \sim y \Leftrightarrow x \leq y$ i.e., $\sim=" \leq "$
Similarly, $R \subseteq \mathbb{Z} \times \mathbb{Z}$ be defined by

$$
R=\{(a, b) \mid \exists k \in \mathbb{Z} \text { s.t. } b-a=n k\}
$$

Then $x \sim y \Leftrightarrow x \equiv y \bmod \wedge$
We say that \sim is an equivalence relation if it is
(a) reflexive $x \sim x \quad$ (i.e., $(x, x) \in R)$
(b) symmetric $\quad x \sim y \Leftrightarrow y \sim x$
(c) transitive $x \sim y \quad y \sim z \Rightarrow x \sim z$

Non-examples: < is not reflexive but \leq is
$<$ and \leq are both transitive

$$
(x \leq y \quad y \leq z \Rightarrow x \leq z)
$$

but not symmetric (if $x<y$ then $y<x$ is false)
Example: $\equiv \bmod n$ is an equivalence relation!
Clearly $\quad \forall x \in \mathbb{Z} \quad x \equiv x \bmod n$

$$
\begin{aligned}
& \text { Clearly } \quad \forall x \in \mathbb{Z} \\
& \forall x, y \in \mathbb{Z} \quad(x \equiv y \bmod n \Leftrightarrow y \equiv x \bmod n) \\
& \qquad \exists k \in \mathbb{Z} \text { sit. } y-x=k_{n} \quad x-y=(-k) \cdot n \quad-k \in \mathbb{Z}
\end{aligned}
$$

Transitive. $x \equiv y \bmod n \quad y \equiv z \bmod n \Rightarrow x \equiv z \bmod n$

$$
\begin{array}{ccc}
x \equiv y \bmod n & b / c & z-x=(k+l) n \\
y-x=k n & z-y=l n \\
k \in \mathbb{Z} & l \in \mathbb{Z} & k+l \in \mathbb{Z}
\end{array}
$$

Suppose that if define $(n \in \mathbb{N}) R \leq \mathbb{Z} \times \mathbb{Z}$
by $\{(a, b) \mid b-a=k n$ for some $k \in \mathbb{N}\}$
Then the resiting \sim is not symmetric
Partition A partition of a set X is given by a subset

$$
I \leqslant 2^{x} \quad \text { s.t. } \begin{aligned}
& \begin{array}{l}
\bigcup_{i \in I} X_{i}=X \\
\forall i, j \in I, i \neq j, x_{i} \cap x_{j}=\varnothing
\end{array} \\
& \forall x \in X, \exists!i \in I \text {, sit. } x \in X_{i}
\end{aligned}
$$

When satisfied, we have a well-defined map $X \xrightarrow{\pi} I$ s.t. $\forall x \in X, \pi(x) \in 2^{x}$ is the unique element s.t. $x \in X \pi(x)$
F.9., For $b \in \mathbb{Z}$, write $b+\mathbb{Z}=\{a \in \mathbb{Z} \mid a-b=k \cap$ for some $k \in \mathbb{Z}\}$ Then $\mathbb{I}=\{n \mathbb{Z}, 1+n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}\} \subseteq \mathbb{Z}^{\mathbb{Z}}$ is a partition of \mathbb{Z}

For a set X, giving an equivalence relation is the same thing as giving on partition

Suppose we are given an equivalence relation \sim

$$
\Rightarrow I \subseteq 2^{x} I=\left\{\alpha \in 2^{x} \mid x_{\alpha}=\{y \in X \mid y \sim x\} \text { for some } x \in X\right\}
$$

$x \sim y \Leftrightarrow \pi(x)=\pi(y) \notin$ Suppose we are given a partition $I \subseteq 2^{x}$
Revisit the statement that + on \mathbb{Z} gives rise to a nell-defined

$$
\begin{aligned}
& \text { " }+ \text { " on } \mathbb{Z} / n \mathbb{Z} \\
& \mathbb{Z} \ln \mathbb{Z} \leq 2^{\mathbb{Z}} \\
& x \mapsto x+n \mathbb{Z} \\
& \text { (or } \bar{x}) \\
& (x, y) \longmapsto x+y \\
& \mathbb{Z} \times \mathbb{Z} \xrightarrow{+} \mathbb{Z} \\
& \pi \times \pi \downarrow \quad \downarrow \pi \\
& \mathbb{Z} \ln \mathbb{Z} \times \mathbb{Z} \ln \mathbb{Z} \xrightarrow{"+"} \mathbb{Z} / n \mathbb{Z}
\end{aligned}
$$

\exists " + " sit. the diagram commutes

$$
\downarrow \pi \cdot+={ }^{\prime}+\prime \circ(\pi \times \pi)
$$

is in particular a binary
operation on $\mathbb{Z} \ln \mathbb{Z}$
Mare generally. suppose that $(G, *)$ is a group
\sim is an equivalence relation on G and let G / N be the resulting partition of G.

If \exists "*" sot.

then "*" defines a group structure on G/W

