Lecture & Abstract Nonsense (cont.)

To
$$x$$

 $r_{1}^{*} \cdot \pi \times \pi$
Recall $G = D_{2n}$ let the partition defined by r be
 $I = \begin{cases} f_{1}, r, r_{1}^{2}, ..., r^{n-1} \end{cases}, f_{5}, r_{5}, ..., r^{n-1} \lesssim \end{cases}$
 $I = \begin{cases} f_{1}, r, r_{2}^{2}, ..., r^{n-1} \end{cases}, f_{5}, r_{5}, ..., r^{n-1} \lesssim \rbrace$
 $I = \begin{cases} f_{1}, g_{2}^{*} \leq 2^{\circ} \end{cases}$ Then we have a group morphism
 $G \stackrel{K}{} Z / 2Z$
 $G \mid n = I$
 $f_{1} \rightarrow G$
 $f_{2} \rightarrow G$
 $f_{2} \rightarrow G$
 $f_{3} \rightarrow I$
 $f_{3} \rightarrow I$
 $f_{4} \rightarrow G$
 $f_{3} \rightarrow I$
 $f_{4} \rightarrow G$
 $f_{5} \rightarrow G$
 $f_{$

Define a binory relation
$$r$$
 on G by
 $r_{NY} \Leftrightarrow \exists h \in H$, s.t. $hx = y$
(held that this is an equivalence
(a) r_{NX} (true b/c $1 \in H$ $1: x = x$)
(b) $r_{NY} \Leftrightarrow y_{NX}$ ($hx = y \Leftrightarrow x = h^{-1}y$)
(c) $r_{NY} \Leftrightarrow y_{NZ} \Rightarrow x^{-2}$ ($hx = y, h'y = 2 \Rightarrow h'hx = 2$)
(c) $r_{NY} \Leftrightarrow y_{NZ} \Rightarrow x^{-2}$ ($hx = y, h'y = 2 \Rightarrow h'hx = 2$)
($\equiv mod n$) as an equivalence relation is precisely
given by the subgroup $nZ \leq Z$
 $y_{-X} = kn$ for some $k \in Z$ is precisely saying
that for some $h \in nZ$ $h + x = y$
 r
 f
Similarly the portition $\begin{cases} A = \{1, c, ..., r^{n-1}\} \\ B = \{s, rs, ..., r^{n-1}\} \end{cases}$ of D_{2n}
is given by the subgroup $H = \{1, c, ..., r^{n-1}\}$ of D_{2n}
The set of elements in the partition defined by a subgroup
 $H \subseteq G$ is commonly denoted by G/H
 $(Z|_nZ)$ is really a special case)
Ref : It is not true for any subgroup $H \subset G$,
"4" (an be defined for G/H

Fermat's Little Theorem p=prime number a EZ a^p = a mod p $2^3 \equiv 2 \mod 3$ F.g. p=3 a=2 $2^5 = 32 \equiv 2 \mod 5$ p=5 $\alpha=2$ Introduce the group (Z/nZ) × < cross Exercise: The binom operation is indeed defined for 2/nZ (a, b) -> ab $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\times} \mathbb{Z}$ Z/nZ×Z/nZ ~~ Z/n7 For ZInZ, write X for "X" x defines a binary operation on ZInZ but it is not a group operation. b/c not all elements have on inverse! Suppose a EZ/nZ has an (multiplicative) inverse, then 356Z/nZ s.t. axb=1 In other words, if a EZ is s.t. a EZINZ has a multiplicative inverse, then Zb EZ s.t. ab=1tnk for some kEZ It if this condition holds, then d = g(d(a, n) = 1)dla dln \Rightarrow d| ba-kn = 1 \Rightarrow d|1 \Rightarrow d=1 The converse is also true! Given X, y EN defgcd (x, y). Then I), M in Z Thm $s,t, \lambda x + \mu y = d$

Lemma If H is a subgroup of a finite group G. then
$$|H|||G|$$

I particular, $g \in G$, then $|g|||G|$
Lemma \Rightarrow Fermat little theorem
Take $a \in \mathbb{Z}$ pla. Consider $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$
Lemma $\Rightarrow |\overline{a}| ||(\mathbb{Z}/p\mathbb{Z})^{\times}| \Rightarrow |\overline{a}|| p-1$
 $\Rightarrow a^{p-1} \equiv 1 \mod p, i.e., a^{p} \equiv a \mod p$
Lemma is actually called Lagrange theorem left to HW