Lecture 8 Abstract Nonsense (cont.)

$$
\begin{aligned}
& \pi \circ x \\
& \because *^{-1} \circ \pi \times \pi
\end{aligned}
$$

Recall $G=D_{2 n}$ Let the partition defined by \sim be

$$
I=\left\{\left\{1, r, r_{1}^{2}, \ldots, r^{n-1}\right\},\left\{s, r s, \ldots, r^{n-1} s\right\}\right\}
$$

$I=\{A, B\} \leq 2^{Q}$ Then we have a group morphism

$$
\begin{array}{ll}
G \stackrel{\psi}{\not} \mathbb{Z} / 2 \mathbb{Z} \\
A & \mapsto \bar{O} \\
B \mapsto 1 & A=x^{-1}(\overline{0}) \\
B=x^{-1}(\overline{1})
\end{array}
$$

In particular, \Rightarrow implies that " $*$ " exists

We have checked before that

if | $y \in B$ | A | B |
| ---: | :--- | :--- |
| A | $x y \in A$ | $x y \in B$ |
| B | $x y \in B$ | $x y \in A$ |

	$I \times I$	$=\{(A, A),(A, B),(B, A),(B, B)\}$		
well	"*" \downarrow	I	I	I
defined	I	A	B	B

The formation of I is completely analogous to the formation of $\mathbb{Z} \ln \mathbb{Z}$
A general procedure of putting a partition on G $(G, *)=$ a group $\quad H \subseteq G$ is a subgroup

Define a binary relation \sim on G by

$$
x \sim y \Leftrightarrow \exists h \in H, \quad \text { sit. } \quad h x=y
$$

Check thor this is an equivalence
(a) $x \sim x \quad$ (true b/c $1 \in H \quad 1 \cdot x=x$)
(b) $x \sim y \Leftrightarrow y \sim x \quad\left(h_{x}=y \Leftrightarrow x=h^{-1} y\right)$
(c) $x \sim y \quad y \wedge z \Rightarrow x \sim z \quad\left(h x=y, h^{\prime} y=z \Rightarrow h^{\prime} h x=z\right)$
($\equiv \bmod n$) as an equivalence relation is precisely given by the subgroup $n \mathbb{Z} \leq \mathbb{Z}$
$y-x=k n$ for some $k \in \mathbb{Z}$ is precisely saying that for some $h \in \cap \mathbb{Z} \quad h+x=y$

+ is the group law of \mathbb{Z}
Similarly the partition $\left\{\begin{array}{l}A=\left\{1, r, \ldots, r^{n-1}\right\} \\ B=\left\{s, r s, \ldots, r^{n-1} s\right\}\end{array}\right\}$ of $D_{2 n}$
is given by the subgroup $H=\left\{1, r, \ldots, r^{n-1}\right\}$ of $D_{2 n}$
The set of elements in the partition defined by a subgroup $H \subseteq G$ is commonly denoted by G / H
$(\mathbb{Z} \mid n \mathbb{Z}$ is really a special case)
Rok: It is not true fur any subgroup $H C G$,
"*" can be defined for G/H

Fermat's Little Theorem
$p=$ prime number $a \in \mathbb{Z} \quad a^{p}=a \bmod p$
Egg. $p=3 \quad a=2$
$2^{3} \equiv 2 \bmod 3$

$$
p=5 \quad a=2 \quad 2^{5}=32 \equiv 2 \bmod 5
$$

Introduce the $\operatorname{group}(\mathbb{Z} / n \mathbb{Z})^{x} \leftarrow$ cross
Exercise: The binary operation is indeed defined for $2 \ln \mathbb{I}$

$$
(a, b) \mapsto a b
$$

For $\mathbb{Z} \ln \mathbb{Z}$, write x for " x "
x defines a binary operation on $\mathbb{Z} / n \mathbb{Z}$ but it is not a group operation. b / c not all elements have an inverse!
Suppose $\bar{a} \in \mathbb{Z} / n \mathbb{Z}$ has an (multiplicative) inverse, then $\exists \bar{b} \in \mathbb{Z} \ln \mathbb{Z}$ sit. $\bar{a} \times \bar{b}=\overline{1}$
In other words, if $a \in \mathbb{Z}$ is sot. $\bar{a} \in \mathbb{Z} \ln \mathbb{Z}$ has a multiplicative inverse, then $\exists b \in \mathbb{Z}$ sot. $a b=1 t_{n k}$ for some $k \in \mathbb{Z}$
\Uparrow if this condition holds, then $d=\operatorname{gcd}(a, n)=1$ $d l a d l_{n} \Rightarrow d\left|b a-k_{n}=1 \Rightarrow d\right| 1 \Rightarrow d=1$
The converse is also true!
The Given $x, y \in \mathbb{N} \quad d \stackrel{\operatorname{def}}{=} g c d(x, y)$. Then $\exists \lambda, \mu$ in \mathbb{Z} sit. $\lambda x+\mu y=d$

$$
\begin{array}{llll}
x=20 & y=6 & d=2 & x-3 y=2 \\
x=5 & y=7 & d=1 & 3 y-4 x=1 \\
x=30 & y=18 & d=6 & 2 x-3 y=6 \quad 2 y-x=36-30=6 \\
x=y+12 & \\
y=12+6 & 6=y-12=y-(x-y)=2 y-x)
\end{array}
$$

Pf Define $S=\{n \in \mathbb{Z}>0 \mid n=\lambda x+\mu y$ for some $\lambda, \mu \in \mathbb{Z}\}$ Then $s \neq \phi$. so by well-ordering principle we have $S_{\text {min }}$

$$
s_{. t .} \exists d l s_{\min }
$$

It suffices to show $s_{\min } l d$ i.e., $S_{\text {min }} \mid x$ and $s_{\text {min }} l y$ By division $w /$ remainder, $\exists q$ and r s.t.

$$
x=9 \cdot s_{\text {min }}+r \quad 0 \leqslant r<s_{\text {min }}
$$

If $r \neq 0$, then $r \in S$, which contradicts the minimality of $S_{\text {min }} \Rightarrow r=0$, ie., $S_{\min } \mid x$ Similarly gainly
Now define $(\mathbb{Z} \ln \mathbb{Z})^{x} \leq \mathbb{Z} \times n \mathbb{Z}$ to be the subset of elements $w /$ a multiplicative inverse

$$
a \in \mathbb{Z}, \quad \bar{a} \in(\mathbb{Z} \mid n \mathbb{Z})^{x} \Leftrightarrow \operatorname{gcd}(a, n)=1
$$

Exercise: This implies that $(\mathbb{Z} / p \mathbb{Z})^{x}=\{\overline{1}, \overline{2}, \ldots, \overline{p-1}\}$

$$
\left|(\mathbb{Z} \mid p \mathbb{Z})^{x}\right|=p-1
$$

(\# elements)
$(\mathbb{Z} \ln \mathbb{Z})^{x}$ is a group under multiplication (Exercise)

Lemma If H is a subgroup of a finite group G, then $|H||G|$ I. particular, $g \in G$, then $|g|||G|$

Lemma \Rightarrow Fermat little theorem
Toke $a \in \mathbb{Z}$ pX, Consider as $\in(\mathbb{Z} / p \mathbb{Z})^{x}$
Lemma $\Rightarrow|\bar{a}|\left|(\mathbb{Z} \mid p \mathbb{Z})^{x}\right| \Rightarrow|\bar{a}| \mid p-1$

$$
\Rightarrow a^{p-1} \equiv 1 \bmod p \text {, i.e., } a^{p} \equiv a \bmod p
$$

Lemma is actually called Lagrange theorem left to HW

