Automatically Learning Measures of Child Language Development

Sam Sahakian and Benjamin Snyder

How does this happen?

When does this happen?

4 years

Language Development Metrics

Language Development Metrics

- Drawbacks of previous metrics:
~ Coarse and ad-hoc
~ Questionable validity
~ Accuracy degrades with age

Question 1: Can we induce a more accurate metric using statistical learning methods?

Skill as function of time

- Skill acquisition follows sigmoidal curve ${ }_{[H o d g e t s}$ '9 $]$

Time as Ground Truth

$$
t=\frac{b-\ln \left(\frac{1}{s}-1\right)}{a}
$$

- Invert sigmoid
- Skill as combination of features
- Evaluate learned metric via age prediction error

Age Prediction Model

$$
t=a(\beta \cdot \mathbf{x})+b
$$

- Age window at linear part of sigmoid
- Predict age as linear function of skill
S (skill)

Features

- Pre-defined metrics:
~MLU
\sim Parse Depth
~ D-Level
- Novel features
\sim Preposition counts
~"Be" verb counts
\sim Article counts
~Word frequency
\sim Function to content word ratio

Data

- Child speech from transcribed conversations in CHILDES database [MacWhinney; 00]
- Longitudinal studies of 7 children

- Learn via linear regression -- Separately for each child.

Results
 (lower is better)

	D-Level	Depth	MLU	All Features
Mean	63.795	66.327	64.578	$\mathbf{5 4 . 0 4 1}$

Mean squared error of age prediction in months

Results
 (lower is better)

	D-Level	Depth	MLU	All Features
Adam	14.037	14.149	$\mathbf{1 1 . 1 2 8}$	14.175
Abe	34.69	44.701	$\mathbf{3 4 . 5 0 9}$	39.931
Ross	329.64	336.612	345.046	$\mathbf{2 4 4 . 0 7 1}$
Peter	23.58	13.045	$\mathbf{8 . 2 4 5}$	24.128
Naomi	$\mathbf{2 4 . 4 5 8}$	28.426	34.956	45.036
Sarah	12.503	20.878	13.905	$\mathbf{6 . 9 8 9}$
Nina	7.654	6.477	4.255	$\mathbf{3 . 9 6}$
Mean	63.795	66.327	64.578	$\mathbf{5 4 . 0 4 1}$

Mean squared error of age prediction in months

Results
 (lower is better)

	D-Level	Depth	MLU	All Features
Adam	14.037	14.149	$\mathbf{1 1 . 1 2 8}$	14.175
Abe	34.69	44.701	$\mathbf{3 4 . 5 0 9}$	39.931
Ross	329.64	336.612	345.046	$\mathbf{2 4 4 . 0 7 1}$
Peter	23.58	13.045	$\mathbf{8 . 2 4 5}$	24.128
Naomi	$\mathbf{2 4 . 4 5 8}$	28.426	34.956	45.036
Sarah	12.503	20.878	13.905	$\mathbf{6 . 9 8 9}$
Nina	7.654	6.477	4.255	$\mathbf{3 . 9 6}$
Mean	63.795	66.327	64.578	$\mathbf{5 4 . 0 4 1}$

Mean squared error of age prediction in months

Question 2: Can we learn a metric that generalizes across children?

- Task: Train on a set of children, evaluate on a held-out child.
- Children learn at different rates, so must predict relative mastery, not absolute age.

Ordering Model

Sum over features

- Each iteration trains on 6 children, tests on heldout child
- Score each sample as weighted combination of features and feature pairs
- Rank speech samples in order of ascending score

Evaluation: Kendall's τ

$$
\tau=\frac{(\text { num. concordant pairs })-(\text { num. discordant pairs })}{\frac{1}{2} n(n-1)}
$$

- Kendall's rank correlation coefficient
~Measures similarity between 2 orderings over a set
\sim Identical orderings yield $+I$, independent orderings yield 0

Parameter Estimation

$$
\left(\beta^{*}, \gamma^{*}\right)=\underset{\beta, \gamma}{\operatorname{argmax}} \sum_{k \in k i d s} \tau(k, \beta, \gamma)
$$

- $\tau(k, \beta, \gamma) \equiv$ Kendall τ between model ordering and true chronological order for child k.
- Find best parameters via Nelder-Mead ${ }_{[N e l d e r ~ a n d ~ M e a d, ~ 65] ~}$
\sim Gradient-free hill climbing search that shifts parameter values until reaching a local optimum.

Results

(higher is better)

MLU	All Features	MLU \& Fn. / Content
0.7456	0.7457	$\mathbf{0 . 7 7 8 0}$

Average Kendall τ of model orderings versus true chronological orderings.

Contributions

- New method of inducing language development metrics
- Methodology for validating these metrics
- Increased performance over hand-crafted baseline metrics

