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How does this happen?



When does this happen?
6 months 2 years 4 years



Language Development 
Metrics

25 40 55 70

Age (Months)

MLU Mean D-Level

MLU (Mean Length of 
Utterance)  [Brown ’73]

Parse depth [Yngve, ’60]

D-Level [Rosenberg et al., ‘87;Covington et al., ’06] 
[Lu, ’09]

IPSYN [Scarborough, 1990] [Sagae, ’05]



Drawbacks of previous metrics:  
Coarse and ad-hoc 

Questionable validity

Accuracy degrades with age

Question 1:  Can we induce a more 
accurate metric using statistical 
learning methods?

Language Development 
Metrics



scaffolding

rapid learning

plateau

Skill acquisition follows sigmoidal curve [Hodgetts ’91]
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Skill as function of time
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t
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Time as Ground Truth

parameters featuresskill

Invert sigmoid

Skill as combination 
of features

Evaluate learned 
metric via age 
prediction error

t =
b− ln ( 1s − 1)

a

s ≈ β · x



Age Prediction Model

t
(time)

(skill)s

t = a(β · x) + b

Age window at linear 
part of sigmoid

Predict age as linear 
function of skill



Features

Pre-defined metrics:
MLU

Parse Depth

D-Level

Novel features
Preposition counts 

“Be” verb counts

Article counts

Word frequency

Function to content 
word ratio
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Adam 0.798 0.532 0.817 0.302 0.399 0.371 0.847 0.855
Abe 0.633 0.479 0.591 0.144 0.269 0.413 0.534 0.625
Ross 0.252 0.153 -0.061 0.125 0.314 0.209 0.134 0.165
Peter 0.371 0.429 0.781 0.562 0.638 0.657 0.524 0.638

Naomi 0.812 0.746 0.540 0.652 0.504 0.609 0.710 0.710
Sarah 0.829 0.550 0.733 0.382 0.654 0.570 0.731 0.808
Nina 0.824 0.758 0.780 0.560 0.451 0.429 0.780 0.890

Mean: 0.646 0.521 0.597 0.390 0.461 0.465 0.609 0.670

Table 1: τ of each feature versus time, for each individual
child. In this and all following tables, traditional devel-
opmental metrics are shaded.

been implementations of completely automated as-
sessments of IPSYN (Sagae et al., 2005) and D-
Level (Lu, 2009) which take advantage of automatic
parsing and achieve results comparable to manual
assessments. Likewise, in the ESL domain, Chen
and Zechner (2011) automate the evaluation of syn-
tactic complexity of non-native speech.

Thus, it has been demonstrated that NLP tech-
niques can compute existing scores of language pro-
ficiency. However, the definition of first-language
developmental metrics has as yet been left up to hu-
man reasoning. In this paper, we consider the au-
tomatic induction of more accurate developmental
metrics using child language data. We extract fea-
tures from longitudinal child language data and con-
duct two sets of experiments. For individual chil-
dren, we use least-squares regression over our fea-
tures to predict the age of a held-out language sam-
ple. We find that on average, existing single met-
rics of development are outperformed by a weighted
combination of our features.

In our second set of experiments, we investigate
whether metrics can be learned across children. To
do so, we consider a speech sample ordering task.
We use optimization techniques to learn weight-
ings over features that allow generalization across
children. Although traditional measures like MLU
and D-level perform well on this task, we find that
a learned combination of features outperforms any
single pre-defined developmental score.

2 Data

To identify trends in child language learning we
need a corpus of child speech samples, which we
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Figure 1: Number of utterances across ages of
each child in our corpus. Sources: Nina (Suppes,
1974), Sarah (Brown, 1973), Naomi (Sachs, 1983),
Peter (Bloom et al., 1974; Bloom et al., 1975),
Ross (MacWhinney, 2000), Abe (Kuczaj, 1977) and
Adam (Brown, 1973)

take from the CHILDES database (MacWhinney,
2000). CHILDES is a collection of corpora from
many studies of child language based on episodic
speech data. Since we are interested in development
over time, our corpus consists of seven longitudinal
studies of individual children. Data for each child
is grouped and sorted by the child’s age in months,
so that we have a single data point for each month
in which a child was observed. The size of our data
set, broken down by child, is shown in Figure 1.

We take advantage of automatic dependency
parses bundled with the CHILDES transcripts
(Sagae et al., 2007) and harvest features that should
be informative and complementary in assessing
grammatical knowledge. We first note three stan-
dard measures of language development: (i) MLU,
a measure of utterance length, (ii) mean depth of de-
pendency parse trees, a measure of syntactic com-
plexity similar to that of Yngve (1960), and (iii) D-
level, a measure of linguistic competence based on
observations of syntactic constructions.

Beyond the three traditional developmental met-
rics, we record five additional features. We count
two of Brown’s (1973) obligatory morphemes — ar-
ticles and contracted auxiliary “be” verbs — as well
as occurrences of any preposition. These counted
features are normalized by a child’s total number
of utterances at a given age. Finally, we include
two vocabulary-centric features: Average word fre-

Child speech from transcribed conversations in 
CHILDES database [MacWhinney, ’00]

Longitudinal studies of 7 children

Learn via linear regression -- Separately for each child.



Results

D-Level Depth MLU All Features
Adam 14.037 14.149 11.128 14.175
Abe 34.69 44.701 34.509 39.931
Ross 329.64 336.612 345.046 244.071
Peter 23.58 13.045 8.245 24.128

Naomi 24.458 28.426 34.956 45.036
Sarah 12.503 20.878 13.905 6.989
Nina 7.654 6.477 4.255 3.96
Mean 63.795 66.327 64.578 54.041

Table 2: Mean squared error from 10-fold cross valida-
tion of linear regression on individual children. The low-
est error for each child is shown in bold.

quency (i.e. how often a word is used in a stan-
dard corpus) as indicated by CELEX (Baayen et al.,
1995), and the child’s ratio of function words (deter-
miners, pronouns, prepositions, auxiliaries and con-
junctions) to content words.

To validate a developmental measure, we rely on
the assumption that a perfect metric should increase
monotonically over time. We therefore calculate
Kendall’s Tau coefficient (τ ) between an ordering of
each child’s speech samples by age, and an order-
ing by the given scoring metric. The τ coefficient
is a measure of rank correlation where two identical
orderings receive a τ of 1, complete opposite order-
ings receive a τ of -1, and independent orderings are
expected to receive a τ of zero. The τ coefficients
for each of our 8 features individually applied to the
7 children are shown in Table 1.

We note that the pre-defined indices of language
development — MLU, tree depth and D-Level —
perform the ordering task most accurately. To illus-
trate the degree of variance between children and
features, we also include plots of each child’s D-
Level and contracted auxiliary “be” usage in Figure
2.

3 Experiments

Learning Individual Child Metrics Our first task
is to predict the age at which a held-out speech sam-
ple was produced, given a set of age-stamped sam-
ples from the same child. We perform a least squares
regression on each child, treating age as the depen-
dent variable, and our features as independent vari-
ables. Each data set is split into 10 random folds of
90% training and 10% test data. Mean squared error
is reported in Table 2. On average, our regression

MLU All Features MLU & Fn. / Content
0.7456 0.7457 0.7780

Table 3: Average τ of orderings produced by MLU (the
best traditional index) and our learned metric, versus true
chronological order. Highest τ is shown in bold.

achieves lower error than any individual feature by
itself.

Learning General Metrics Across Children To
produce a universal metric of language development
like MLU or D-Level, we train on data pooled across
many children. For each of 7 folds, a single child’s
data is separated as a test set while the remaining
children are used for training. Since Ross is the only
child with samples beyond 62 months, we do not at-
tempt to learn a general measure of language devel-
opment at these ages, but rather remove these data
points.

Unlike the individual-child case, we do not pre-
dict absolute ages based on speech samples, as each
child is expected to learn at a different rate. Instead,
we learn an ordering model which attempts to place
each sample in its relative place in time. The model
computes a score from a weighted quadratic combi-
nation of our features and orders the samples based
on their computed scores. To learn the parameters
of the model, we seek to maximize the Kendall τ
between true and predicted orderings, summed over
the training children. We pass this objective function
to Nelder-Mead (Nelder and Mead, 1965), a stan-
dard gradient-free optimization algorithm. Nelder-
Mead constructs a simplex at its initial guess of pa-
rameter values and iteratively makes small shifts in
the simplex to satisfy a descent condition until a lo-
cal maximum is reached.

We report the average Kendall τ achieved by this
algorithm over several feature combinations in Ta-
ble 3. Because we modify our data set in this ex-
periment, for comparison we also show the average
Kendall τ achieved by MLU on the truncated data.

4 Discussion

Our first set of experiments verified that we can
achieve a decrease in mean squared error over ex-
isting metrics in a child-specific age prediction task.
However, the results of this experiment are skewed
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miners, pronouns, prepositions, auxiliaries and con-
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To validate a developmental measure, we rely on
the assumption that a perfect metric should increase
monotonically over time. We therefore calculate
Kendall’s Tau coefficient (τ ) between an ordering of
each child’s speech samples by age, and an order-
ing by the given scoring metric. The τ coefficient
is a measure of rank correlation where two identical
orderings receive a τ of 1, complete opposite order-
ings receive a τ of -1, and independent orderings are
expected to receive a τ of zero. The τ coefficients
for each of our 8 features individually applied to the
7 children are shown in Table 1.

We note that the pre-defined indices of language
development — MLU, tree depth and D-Level —
perform the ordering task most accurately. To illus-
trate the degree of variance between children and
features, we also include plots of each child’s D-
Level and contracted auxiliary “be” usage in Figure
2.
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ple was produced, given a set of age-stamped sam-
ples from the same child. We perform a least squares
regression on each child, treating age as the depen-
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achieves lower error than any individual feature by
itself.

Learning General Metrics Across Children To
produce a universal metric of language development
like MLU or D-Level, we train on data pooled across
many children. For each of 7 folds, a single child’s
data is separated as a test set while the remaining
children are used for training. Since Ross is the only
child with samples beyond 62 months, we do not at-
tempt to learn a general measure of language devel-
opment at these ages, but rather remove these data
points.

Unlike the individual-child case, we do not pre-
dict absolute ages based on speech samples, as each
child is expected to learn at a different rate. Instead,
we learn an ordering model which attempts to place
each sample in its relative place in time. The model
computes a score from a weighted quadratic combi-
nation of our features and orders the samples based
on their computed scores. To learn the parameters
of the model, we seek to maximize the Kendall τ
between true and predicted orderings, summed over
the training children. We pass this objective function
to Nelder-Mead (Nelder and Mead, 1965), a stan-
dard gradient-free optimization algorithm. Nelder-
Mead constructs a simplex at its initial guess of pa-
rameter values and iteratively makes small shifts in
the simplex to satisfy a descent condition until a lo-
cal maximum is reached.

We report the average Kendall τ achieved by this
algorithm over several feature combinations in Ta-
ble 3. Because we modify our data set in this ex-
periment, for comparison we also show the average
Kendall τ achieved by MLU on the truncated data.

4 Discussion

Our first set of experiments verified that we can
achieve a decrease in mean squared error over ex-
isting metrics in a child-specific age prediction task.
However, the results of this experiment are skewed

Mean squared error of age prediction in months
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of the model, we seek to maximize the Kendall τ
between true and predicted orderings, summed over
the training children. We pass this objective function
to Nelder-Mead (Nelder and Mead, 1965), a stan-
dard gradient-free optimization algorithm. Nelder-
Mead constructs a simplex at its initial guess of pa-
rameter values and iteratively makes small shifts in
the simplex to satisfy a descent condition until a lo-
cal maximum is reached.

We report the average Kendall τ achieved by this
algorithm over several feature combinations in Ta-
ble 3. Because we modify our data set in this ex-
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Question 2:  Can we learn a metric 
that generalizes across children?

Task:  Train on a set of children, evaluate on a 
held-out child.

Children learn at different rates, so must 
predict relative mastery, not absolute age.  



Ordering Model

Each iteration trains on 6 children, tests on held-
out child

Score each sample as weighted combination of 
features and feature pairs

Rank speech samples in order of ascending score

Score used for ranking

Sum over features
Sum over feature pairs

y =
�

i

βixi +
�

i,j

γijxixj



Evaluation:
Kendall’s ts  

Kendall’s rank correlation coefficient
Measures similarity between 2 orderings over a set

Identical orderings yield +1, independent orderings 
yield 0

τ =
(num. concordant pairs)− (num. discordant pairs)

1
2n(n− 1)

τ



Parameter Estimation

                Kendall   between model ordering  
and true chronological order for child   .

Find best parameters via Nelder-Mead [Nelder and Mead, ’65]

Gradient-free hill climbing search that shifts 
parameter values until reaching a local 
optimum.

k

(β∗, γ∗) = argmax
β,γ

�

k∈kids

τ(k,β, γ)

τ(k,β, γ)≡ τ



Results

D-Level Depth MLU All Features
Adam 14.037 14.149 11.128 14.175
Abe 34.69 44.701 34.509 39.931
Ross 329.64 336.612 345.046 244.071
Peter 23.58 13.045 8.245 24.128

Naomi 24.458 28.426 34.956 45.036
Sarah 12.503 20.878 13.905 6.989
Nina 7.654 6.477 4.255 3.96
Mean 63.795 66.327 64.578 54.041

Table 2: Mean squared error from 10-fold cross valida-
tion of linear regression on individual children. The low-
est error for each child is shown in bold.

quency (i.e. how often a word is used in a stan-
dard corpus) as indicated by CELEX (Baayen et al.,
1995), and the child’s ratio of function words (deter-
miners, pronouns, prepositions, auxiliaries and con-
junctions) to content words.

To validate a developmental measure, we rely on
the assumption that a perfect metric should increase
monotonically over time. We therefore calculate
Kendall’s Tau coefficient (τ ) between an ordering of
each child’s speech samples by age, and an order-
ing by the given scoring metric. The τ coefficient
is a measure of rank correlation where two identical
orderings receive a τ of 1, complete opposite order-
ings receive a τ of -1, and independent orderings are
expected to receive a τ of zero. The τ coefficients
for each of our 8 features individually applied to the
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is reported in Table 2. On average, our regression

MLU All Features MLU & Fn. / Content
0.7456 0.7457 0.7780

Table 3: Average τ of orderings produced by MLU (the
best traditional index) and our learned metric, versus true
chronological order. Highest τ is shown in bold.
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Learning General Metrics Across Children To
produce a universal metric of language development
like MLU or D-Level, we train on data pooled across
many children. For each of 7 folds, a single child’s
data is separated as a test set while the remaining
children are used for training. Since Ross is the only
child with samples beyond 62 months, we do not at-
tempt to learn a general measure of language devel-
opment at these ages, but rather remove these data
points.

Unlike the individual-child case, we do not pre-
dict absolute ages based on speech samples, as each
child is expected to learn at a different rate. Instead,
we learn an ordering model which attempts to place
each sample in its relative place in time. The model
computes a score from a weighted quadratic combi-
nation of our features and orders the samples based
on their computed scores. To learn the parameters
of the model, we seek to maximize the Kendall τ
between true and predicted orderings, summed over
the training children. We pass this objective function
to Nelder-Mead (Nelder and Mead, 1965), a stan-
dard gradient-free optimization algorithm. Nelder-
Mead constructs a simplex at its initial guess of pa-
rameter values and iteratively makes small shifts in
the simplex to satisfy a descent condition until a lo-
cal maximum is reached.

We report the average Kendall τ achieved by this
algorithm over several feature combinations in Ta-
ble 3. Because we modify our data set in this ex-
periment, for comparison we also show the average
Kendall τ achieved by MLU on the truncated data.

4 Discussion

Our first set of experiments verified that we can
achieve a decrease in mean squared error over ex-
isting metrics in a child-specific age prediction task.
However, the results of this experiment are skewed

Average Kendall   of model orderings versus true 
chronological orderings.

τ

(higher is better)



Contributions

New method of inducing language 
development metrics

Methodology for validating these metrics

Increased performance over hand-crafted 
baseline metrics


