Automatically Learning Measures of Child Language Development

Sam Sahakian and Benjamin Snyder

How does this happen?

000-83404643 (RP) C www.vtmaslphotor

When does this happen?

6 months

2 years

4 years

000-83404643 [RF] C www.wita.adphoto

Language Development Metrics

- MLU (Mean Length of Utterance) [Brown '73]
- Parse depth [Yngve, '60]
- D-Level [Rosenberg et al., '87;Covington et al., '06]
 [Lu, '09]
- IPSYN [Scarborough, 1990] [Sagae, '05]

Language Development Metrics

- Drawbacks of previous metrics:
 - Coarse and ad-hoc
 - ➤ Questionable validity
 - Accuracy degrades with age

<u>Question I</u>: Can we induce a more accurate metric using statistical learning methods?

Skill as function of time

Skill acquisition follows sigmoidal curve [Hodgetts '91]

Time as Ground Truth

$$t = \frac{b - \ln\left(\frac{1}{s} - 1\right)}{a}$$

- Invert sigmoid
- Skill as combination of features
- Evaluate learned metric via age prediction error

Age Prediction Model

$$t = a(\beta \cdot \mathbf{x}) + b$$

- Age window at linear part of sigmoid
- Predict age as linear function of skill

Features

- Pre-defined metrics:
 - ~ MLU
 - ∼ Parse Depth
 - ∼ D-Level

- Novel features
 - \sim Preposition counts
 - ∼ "Be" verb counts
 - \sim Article counts
 - ∼ Word frequency
 - Function to content word ratio

Data

 Child speech from transcribed conversations in CHILDES database [MacWhinney, '00]

Longitudinal studies of 7 children

• Learn via linear regression -- Separately for each child.

Results (lower is better)

	D-Level	Depth	MLU	All Features
Mean	63.795	66.327	64.578	54.041

Mean squared error of age prediction in months

Results (lower is better)

	D-Level	Depth	MLU	All Features
Adam	14.037	14.149	11.128	14.175
Abe	34.69	44.701	34.509	39.931
Ross	329.64	336.612	345.046	244.071
Peter	23.58	13.045	8.245	24.128
Naomi	24.458	28.426	34.956	45.036
Sarah	12.503	20.878	13.905	6.989
Nina	7.654	6.477	4.255	3.96
Mean	63.795	66.327	64.578	54.041

Mean squared error of age prediction in months

Results (lower is better)

	D-Level	Depth	MLU	All Features
Adam	14.037	14.149	11.128	14.175
Abe	34.69	44.701	34.509	39.931
Ross	329.64	336.612	345.046	244.071
Peter	23.58	13.045	8.245	24.128
Naomi	24.458	28.426	34.956	45.036
Sarah	12.503	20.878	13.905	6.989
Nina	7.654	6.477	4.255	3.96
Mean	63.795	66.327	64.578	54.041

Mean squared error of age prediction in months

Question 2: Can we learn a metric that generalizes across children?

- Task: Train on a set of children, evaluate on a held-out child.
- Children learn at different rates, so must predict relative mastery, not absolute age.

- Each iteration trains on 6 children, tests on heldout child
- Score each sample as weighted combination of features and feature pairs
- Rank speech samples in order of ascending score

Evaluation: Kendall's au

 $\tau = \frac{(\text{num. concordant pairs}) - (\text{num. discordant pairs})}{\frac{1}{2}n(n-1)}$

- Kendall's rank correlation coefficient
 - ∼ Measures similarity between 2 orderings over a set
 - Identical orderings yield +1, independent orderings yield 0

Parameter Estimation

$$(\beta^*, \gamma^*) = \underset{\beta, \gamma}{\operatorname{argmax}} \sum_{k \in kids} \tau(k, \beta, \gamma)$$

- $\tau(k,\beta,\gamma) \equiv$ Kendall τ between model ordering and true chronological order for child k.
- Find best parameters via Nelder-Mead [Nelder and Mead, '65]
 - Gradient-free hill climbing search that shifts parameter values until reaching a local optimum.

Results

(higher is better)

MLU	All Features	MLU & Fn. / Content
0.7456	0.7457	0.7780

Average Kendall τ of model orderings versus true chronological orderings.

Contributions

- New method of inducing language development metrics
- Methodology for validating these metrics
- Increased performance over hand-crafted baseline metrics