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Abstract

We have developed a file system interface to the World Wide Web, which makes possible access to web documents using the same system calls used for the local file system. This provides a uniform interface for users and applications and enables applications written to use the local file system to be automatically extended to use web files. Our file system consists of a kernel module that provides the basic file system infrastructure and implements file system specific calls like open, read and close. Access to the World Wide Web is provided by a user level process Webfsd which communicates with the kernel using message queues. A persistent cache is maintained to help speed up repeated access to web files. The cache replacement policy can be configured by the user according to system needs. Webfs also handles concurrent access to files in the web file system. Our system is reasonably fault tolerant across system crashes. Tests show that for large cached files our system is almost as fast as the EXT2 file system. The performance degradation from EXT2 in a cat filename operation on cached files was found to be 11.12% for 10 KB files and 2.86% for 5 MB files. For uncached files, the access time is dominated by the network fetch time. 
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1 Introduction

The rapid growth of the World Wide Web (WWW) has resulted in an explosion in the amount of information that a user has access to at the click of a button. The World Wide Web is organized as a hierarchical tree of files and lets users access remote files through a standard interface. Logically, the web can be thought of as just another file system exposed to the user. So a user should be able to treat the web as an appendage of the file system. However, the method used to access local files is different from the method used to access web documents. Thus while a file on the local disk can be accessed by normal open, read, write and other file system calls, accessing a web document involves using the Hyper Text Transfer Protocol (HTTP) to communicate with a remote server. So if we view files as information baskets, the above difference presents to an application or user a highly non-uniform way of accessing information. 

Presenting the web as a file system to users and applications allows access to web files in a way that is identical to the access of local files. It also enables programmers to access the web using local file system calls. Thus program development to use the web is made easier. Existing programs based on standard Unix file system calls are automatically extended to use files exposed through HTTP. This eliminates the need to rewrite such applications for web documents. For example, ghostview may be automatically used to view PostScript files exposed through HTTP.   

The main contribution of our work is the design and implementation of a file system interface to the World Wide Web called Webfs. That is, application programs are able to use the standard open, read and other file system calls to access a file residing on the World Wide Web. So web file access is made transparent to applications and users. The motivation for this is that an end user need not have to view the web file system as separate and different from the local file system.   

Some of the features of our implementation are:

Support for caching A web file once accessed is cached in on local disk by making use of the EXT2 file system [2]. This enables fast access the next time the file is accessed through our web file system. The reason for this being useful is the high probability of repeated reference of a particular web file, notably the search engines and web based mail accounts. The concept of a disk cache brings in important considerations of eviction policy and timeout of files in the cache. 

Implementation as a kernel module and minimal changes to the kernel The facility to write kernel modules in Linux enables the entire implementation of the file system to be a kernel module. Our module can be installed and removed at will. Also apart from a single header file we have made no changes to the kernel.

Flat cache We chose to implement the disk cache as a flat structure with a specified number of maximum cached files. Maintaining a hierarchical cache with the same structure as the web directory structure would involve more processing and more disk access to set up a cache entry with that directory structure. The advantage in that scheme is that directory content listing and traversal can be directly mapped on to the disk cache and we do not need any special mechanism for directory handling. Since we maintain a flat cache, we also need to maintain an inode table listing all the inodes allocated in our file system along with the corresponding URL (Uniform Request Locator) to which it is allocated. This structure ( which is a hash table for efficiency in traversal ) enables directory content listing and directory traversal.    

Cache management in the kernel  The cache manager in our design forms part of the kernel. This avoids an upcall to the user daemon when the file is found in the disk cache itself. If instead the cache manager is implemented as part of the user level HTTP client, every check for an entry being in the cache will also involve a kernel to user call. This could significantly slow down performance and hence we chose to have our cache manager in the kernel.   

Persistency of cache entries It is important that cache entries and the cache table itself be persistent across machine crashes and reboots since retrieving a file across the network is an expensive operation especially for large files. Further in the scenario where a user has retrieved a really huge file from the web, the user should not have to reget it owing to a machine crash before the file is used. For this purpose, we implemented a persistent cache that stores the cache table contents in a file in the cache directory itself. The inode table is also made persistent to enable a user to (after reboot) browse through directories looked up before the crash.

Concurrent access  Our implementation allows for concurrent access of files in the web file system. Once the file system is mounted, every user has the same view of the file system. The user level daemon allows for multithreading of requests through the use of a mechanism called event loop provided by the Libwww library. 

Configurable cache policy  Our implementation allows the system administrator to modify the cache eviction policy according to system needs. The policy could be based on size or the usage pattern. This facility is provided to the user through a command line configuration tool.

Memory mapping We have provided support for web files to be memory mapped. 

Fault tolerance We have also provided support for fault tolerance for protection against a crash of the user level daemon and uninstall of the web file system by a malicious user. Logically this should not disrupt future installs of the file system module. Further, deletion of the files cached in the web cache while the file system module is installed and file access is happening is handled gracefully. If the user modifies a file in the web cache, the next access of the web file will identify that the cached version has been modified and refetch the file from the server.

The platform we chose for our implementation of the file system is Linux. This is due to the need for change in kernel code to accommodate a new file system that connects up to the World Wide Web.  We worked with Linux version 2.2.12-20. The HTTP client that forms part of Webfs makes use of the Libwww protocol library to provide the basic HTTP client functionality and builds on it. 

The rest of this paper is organized as follows. Section 2 presents the architecture of the web file system with the next three sections following it describing the various components in detail. Section 6 describes the disk caching mechanism employed and the cache replacement policies implemented. Section 7 explains the handling of concurrent accesses and introduces the concept of an Outstanding Reference List. Section 8 presents the measures we took for performance improvement. Fault tolerance measures used on failure or unexpected behavior is described in Section 9 while Section 10 presents the results of benchmarking our web file system. The paper ends with conclusions and some ideas on future work.

2 Architecture

This section describes the architecture of our implementation. We first describe the Linux approach to the file system implementation and then present our design of a web file system.

2.1 The Linux File System

The Linux file system has a Virtual File System (VFS) layer that abstracts the lower level file system services. This is a layer of code that implements the generic file system actions and vectors requests to the correct specific code to handle the request. This layer also defines an inode structure. Every file in the filesystem corresponds to an inode that is used to identify the file and encapsulates all the details about the file attributes. Contained in this inode structure is an inode operations field that specifies the operations that manipulate the inode. One can visualize VFS as a base class and these inode operations as virtual functions that are actually filled in by the specific file system beneath (Figure 1). 
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Figure 1   Structure of the Linux file system implementation

The specific file systems come below the VFS layer. The large number of file systems supported by Linux is made possible by the uniform interface VFS provides.  The basic structure is same for all different file systems. All information essential for the management of the file system is held in the super block[3]. This includes pointers to the file system specific routines for lookup, read, write and other file operations. Each file system can have other specific details like disk layout, organization and placement of inode and data blocks, but this is transparent to the VFS since the VFS layer is intended to be device independent.

Each file system registers itself with the VFS when it is installed. The VFS layer maintains a table that contains information about the file systems supported. During registration, the file system passes onto to the VFS layer information about a function that is to be invoked when the file system is mounted. This function will initialize the super block structure for the file system.  

Whenever a file operation is done - an EXT2 file open for example - the VFS layer routine (sys_open in this case) is invoked by the system call. This routine makes several sanity checks and then calls the namei routine. This function parses through the whole path name and for each component of the pathname gets the inode corresponding to that component. This inode is obtained by calling the file system specific lookup function (ext2_lookup in this case). Namei succeeds if it obtains the inode of every component of the path. VFS stores this inode information returned by namei in the table of open files. Finally VFS opens the file by calling the file system specific open(ext2_open).

For further operations (like read/write) on this open file, VFS calls the particular file operation. A close of the file will call the file system specific close and the VFS layer removes the entry from the open file table.

    2.2 Adding a new file system

Building a new file system involves implementing the file system specific functions and adding an entry into the VFS table so that the VFS layer can suitably vector the requests to it. One of the major challenges involved in implementing a new file system is to do so without changing anything in the VFS layer since that could change the VFS abstraction and would thus be highly unscalable. Other interesting issues include supporting concurrent requests and giving high performance.

We implemented the web file system as a module that can plug itself into the Linux kernel at run-time. This facility of Linux wherein a user process fetches the kernel symbol-table into its own address space and using that relocates the object file addresses is of immense help in building any new kernel feature[3]. Thus integration of our file system into the kernel is accomplished just by inserting the module rather than having to recompile the kernel. 

The basic structure of our web file system is shown in Figure 2. The main component of the architecture is the Webfs kernel module. The Webfs module contains the implementation of the web file system specific operations. This module, on being installed, registers the filesystem ‘webfs’ with the VFS layer. The user can then mount a filesystem of the type ‘webfs’ at any point in the local file system. Once mounted, all the file operations at this mount point are vectored by VFS to the Webfs specific routines.

The actual work of sending and receiving HTTP requests is handled by the Webfs daemon that is running as a user process. This daemon (Webfsd) listens to requests from the kernel. Whenever the kernel wants some resource from the network it contacts Webfsd. Upon getting a request Webfsd performs the required operation and sends the results back to the kernel. Message queues are used to communicate between the kernel and Webfsd. The communication mechanism and the associated protocol are described in detail in Section 5. The implementation of the Webfsd is dealt with in greater detail in Section 4. 

The other important part of the whole structure is the interaction of Webfs with the EXT2 file system. Webfs uses the EXT2 file system for caching in web files and performs the actual file read operations on the cached in EXT2 file. Every open Webfs file is associated with an EXT2 file, whose contents correspond to the web file specified by a URL. Thus the Webfs read operation is a wrapper function of the corresponding function in the EXT2 filesystem.










                                   Figure 2   Architecture of Webfs 
3 Webfs Kernel Module

The Webfs kernel module provides the infrastructure for a new file system. Apart from implementing the necessary functions for mounting and unmounting the new file system, it defines the routines for the various file operations. It also includes inode management and cache management.

3.1 Inode Management

In Unix, an inode number uniquely identifies a file in the file system. But unlike other file systems like EXT2, the files of Webfs are not stored in some fixed known locations. As and when a new URL is accessed, a new inode number is dynamically assigned to that file. This would be a very naive and incorrect implementation, as the same URL would be assigned a different inode number each time it is looked up. To prevent this an in-memory list of inode entries is maintained. This inode list contains information about the inodes that were accessed in the past. An entry is inserted into this list whenever a new inode is assigned (in lookup). Each entry consists of the inode number and the URL that it corresponds to. Thus whenever a URL is accessed in the lookup routine, a search is done in this list to determine if an entry exists for that particular URL. If so, the inode number corresponding to it is returned. Otherwise a new inode number is chosen and an entry is inserted into the list. The generated inode number is a monotonically increasing value.

Maintaining this inode table as a linked list would make the search sequential and therefore highly inefficient. In order to make the search fast inode entries in the list are hashed based on their URL names. The hashing function is based on the domain name part of the URL. This function was chosen because different URL names having the same domain names would hash to the same bucket, and this greatly increases the performance of the directory listing operation.

Since we maintain the inode list in memory rather than on disk, the same URL can get two different inode numbers on two different runs of Webfs (by a run we mean the period of time from the mount of Webfs to its unmount). But on any particular run, it is ensured that an inode number allocated to a particular entry will remain associated with it till the end (i.e. till the file system is unmounted).

Each inode in our file system has Webfs specific information in its ‘u’ area. This area contains the URL name that the inode represents. It also contains a pointer to the EXT2 file associated with the URL.

3.2 Semantics of file operations

The semantics of open is identical to that of the EXT2 file system except that files can be opened only in the read mode. The semantics of read is the same as EXT2. We do not support create, truncate and write operations. The call to lseek has the same effect as that of EXT2 lseek. We also support memory mapping using mmap, the only constraint being that files can be memory mapped only in the read mode.

3.3 Directory Semantics

Webfs treats each URL as either a file or a directory. The information about whether a URL corresponds to a directory or a file is determined at the time of lookup. Following EXT2 directory semantics, Webfs does not allow normal read operations on directory files. 

3.4 Description of the implementation of kernel routines

The major file system specific routines are summarized below.

Lookup  The VFS layer calls the Webfs specific lookup routine webfs_lookup each time it wants to get the inode corresponding to a path-component in a pathname. In webfs_lookup, we check to see if an entry corresponding to the URL exists in the inode table. If it is found, the inode number corresponding to that entry is returned. If the entry is not found we send a request to Webfsd requesting it to check if the URL exists. If the URL exists we create a new inode for it and dynamically assign a new inode number to it. We also fill in the Webfs specific information in the ‘u’ area of the inode, namely the absolute URL address. We then insert this entry into the inode list. Webfsd also determines whether the URL corresponds to a file or a directory in our file system. The inode data structure is filled in accordingly.

 Open Every inode in Webfs, which corresponds to a file in the web file system has a corresponding EXT2 file associated with it. This EXT2 file contains the actual contents of the URL. In the webfs_file_open routine,  Webfsd is contacted and is requested to bring in the contents of the URL and dump it to a specific local EXT2 file to set up this correspondence. This EXT2 file pointer is then associated with the Webfs inode and will be used for further operations on this file. 

Since bringing in a file for each open involves an upcall from the kernel to Webfsd and from there to the network and back, this whole scheme would be highly inefficient. To improve performance, we maintain information about the files already cached on disk. Thus in the open call we check to see if we have the web file already cached in the Webfs cache. If so, we simply associate the EXT2 file with the Webfs file. Otherwise we bring in the file (through Webfsd) and then store it in the cache. 

Read  Since the content of the URL is fetched into a local EXT2 file on the open call, webfs_file_read is a wrapper for the EXT2 file read routine for the EXT2 file associated with the particular Webfs file. Adhering to the EXT2 semantics, we do not allow read on directory files.

Close  Here the association between the Webfs file and the EXT2 file associated with it is broken.

Apart from these basic system calls, Webfs supports the following system calls.

Lseek  This call seeks the file pointer to a particular position. This is implemented by calling the EXT2 file system specific lseek operation on the EXT2 file associated with the Webfs file.

Mmap  Webfs also allows memory mapping of web files. This call is again a wrapper for the EXT2 file system mmap.

3.5 Directory Listing 

The directory listing of a particular directory in our web file system results in a display of all the files and subdirectories in that directory that were looked up in this run of the Webfs. This is accomplished by hashing into the inode table and then traversing through the chain of buckets to find all the entries that correspond to a file or subdirectory of this directory.  

4 Webfs daemon

The Webfs daemon runs as a user level process and listens for requests from the kernel. The kernel contacts the daemon using message queues whenever it needs some HTTP service. On getting a new request, Webfsd issues the corresponding HTTP request, gets the results and forwards the results to the kernel. This whole operation can be compared to the client server model of communication with the kernel acting as a client and Webfsd acting as the server.

Webfsd uses the Libwww Client API [4] to process HTTP requests. Libwww is an open source HTTP client implementation and comes with full HTTP1.1 functionality. We chose Libwww because it  has a focus on performance, modularity and extensibility.

The kernel contacts Webfsd in two situations.

a. In lookup, to verify that the URL being looked up exists. Using the message queue mechanism, the kernel sends the URL and a request parameter encapsulated in a message to Webfsd. This request parameter indicates to Webfsd to just verify if the specified URL exists but to not bring the contents of the URL in. Webfsd calls the appropriate Libwww function and based on the outcome of this request, responds to the kernel with the status of the request.

b. In open, to bring in the contents of a URL into a local EXT2 file. Like in the previous case, the kernel sends information about the URL, the EXT2 filename associated with it and a request parameter as a message to Webfsd. The parameter indicates to Webfsd to load the contents of the URL into the file. As before, using the Libwww calls, Webfsd loads the contents of the corresponding URL into the specified local file and responds with the status to the kernel.

To support concurrent servicing of multiple requests, we use the event loop mechanism provided by the Libwww library. In this mechanism, at startup time Webfsd starts an event loop specifying the event to wait upon (in our case the event is arrival of a message in the message queue). Upon getting a message from the kernel, we create a Libwww request, associate it with a request termination handler and issue the request asynchronously. Libwww carries out the actual handling of the request in the background (using non-blocking socket calls) and calls the request termination handler with the outcome of the request once the request is complete. In this termination handler, we send the results back to the kernel by encapsulating it in a message and putting it out on a message queue. Since request handling is done in the background, Webfsd is ready to accept new messages on the message queue the moment it issues the request. 

We preferred using event loops over the standard {listen, fork, service} paradigm because creating a new process to handle each request was deemed highly inefficient and unscalable. We deemed that the user threads created and managed by Libwww are more efficient.

Another important feature of Webfsd is the support for timeouts. Whenever we generate a new request, we start a timer that expires after a particular interval. This is done by calling the Libwww routine HTTimer and providing to it a function that will be called when the timer times out. If the request gets serviced before the timer expires then we delete the timer. Otherwise the timer will call the specified function. In this function we report back to the kernel that the file was not found. This feature is extremely useful when Webfs is dealing with slow networks. The timeout value is a configuration parameter that is passed to the Webfsd when it is started. 

5 Communication

The communication between the kernel and the user daemon is achieved using message queues. Message Queues form a part of UNIX system V IPC. The idea is that two (or more) processes can exchange information via access to a common system message queue. The sending process places (via the OS provided message-passing module) a message onto a queue, which can be read by another process. Each message is given an identification or type so that processes can select the appropriate message. Processes must share a common key in order to gain access to the queue in the first place (subject to other permissions). Thus basic IPC message passing lets processes send and receive messages, and queue messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each IPC message has an explicit length.   













Figure 3a Event Sequence in the lookup operation
Using the above IPC mechanism, a predefined message queue is set up for communication between the kernel and Webfsd. The messages written into this queue contain a message type, the length of the data (the buffer) and a buffer that encapsulates the URL name, the EXT2 file name where the file is to be cached in and a message identifier. The message identifier is a unique identifier to help identify the response from the server for a particular request. It is a monotonously increasing value. The response from the server is put onto another message queue that is also set up on the install of the web file system module.

Figures 3a, 3b and 3c depict the overall sequence of operations for cat filename when a file is not found in the cache and has to be fetched by contacting Webfsd. Figure 3a illustrates the lookup operation. This process is structured as shown, because of the way the VFS layer handles a lookup operation. The VFS layer calls the lookup of the specific file system for each component of the pathname, which in this case is a web address. As part of the Webfs open method that is depicted in Figure 3b, the file is actually fetched from the remote server. The read operation is shown in Figure 3c. The steps in the close operation are described in Figure 3c though they are not explicitly indicated in the figure. Putting all the three diagrams together shows the sequence of operations for cat filename when the requested web document is not cached in and no component of the path has an entry in the inode  




  










Figure 3b Event sequence in the open operation
table of Webfs. If there is an entry in the inode table, the call to Webfsd in the lookup process is avoided. Similarly in the open operation, if the file is already cached in, there is no need to refetch the file (unless it has timed out).  



  










Figure 3c Event sequence in the read and close operations

6  Caching

Accessing a file from the remote server each time the file is accessed in our web file system is highly inefficient due to the overhead of an upcall from the kernel to user space to access the HTTP client and going on the network. For performance considerations it is therefore essential that the file be cached on the local disk to make subsequent accesses fast.  This is also meaningful because web files are not changed very often. Further, usage patterns are normally such that accesses to web files tend to repeat in a short duration.

6.1 Webfs Cache structure

For a disk cache mechanism, our file system will have to make use of another file system to store files on disk. We have used the EXT2 file system for this purpose. 

The cache we maintain is flat in the sense that it does not preserve the hierarchical directory structure of the web files and directories. Maintaining a hierarchical cache will make directory traversal easier as the listing directly corresponds to the cache maintained. But the flat cache approach makes fewer disk accesses to set up an entry in the cache since directories will not have to be recursively created. An explicit inode table needs to be maintained to be able to generate directory listings dynamically.

Essentially, there is a cache manager in the kernel which has a cache table with the structure indicated in Figure 4. The cache table uses chain bucket hashing. The web address is used to hash into the table to identify whether it maps onto some local file. Note that a valid cache entry in the free list will also be a part of the hash table cache entries. A typical entry in this cache contains a valid field to identify whether the entry is valid, the web address it corresponds to, the usage count to indicate the number of processes that currently have this file open, the size of the file, the time of last modification, last access and expiry of the file and the corresponding EXT2 file name and pointer. 

On opening a web file, a check is made to see if an entry is there for the corresponding web address in the cache table by hashing into it. (This happens only after lookup has already determined that the file exists and can be brought in). If an entry exists, then all that needs to be done is a check to make sure that the cached file has not expired by verifying the timestamp value of the cache entry against the current time and the expiry time of the entry. If it has expired, the file has to be refetched and hence an upcall to the user daemon passing on the corresponding request is made. If an entry in the cache table does not exist, then a new entry has to be got from the free list, the file fetched in by sending a message to the user daemon, and then the entry inserted into the hash table. The file is then opened and the corresponding file pointer returned to the open function. The open function stores this value in the u area of the inode allocated for the particular web address.    

When a read occurs after the open, the file pointer stored in the u area of the inode is used to get the contents of the EXT2 file by making a call to the EXT2 file system. After the read, when the file gets closed, a call to the cache manager is made. The cache manager will now decrement the usage_count field of the cache entry corresponding to the web address and put it in the free list. 

6.2 Cache replacement policy
The position of a cache entry (with usage count = 0) in the free list will depend on the current cache policy. If it is LRU, the entry is simply appended to the end of the free list. If it is MRU, the entry is put in at the beginning of the valid entries in the free list (because first all invalid entries which correspond to as yet unused cache entries should be taken out of the free list). Other policies that we have implemented are based on the size of the file. The smallest/ largest sized file can be chosen to be evicted first. For FIFO, the modified time maintained in the cache entry is used to place the cache entry in the free list.     


         


Figure 4   Structure of the Webfs cache

6.3  Cache persistency
For a web file system, it is essential to make the cache persistent across machine reboots and crashes. A user/ application may fetch a huge file from the web and a machine crash/ reboot should not require the file to be brought in again. If the cache table entries are periodically dumped onto the disk and used to build the cache table  when the file system is brought up, the above problem can be solved. In our implementation, we maintain a file of records in the cache directory itself. Each record has a valid field and the corresponding web address. Since we maintain a flat cache, this is all the information that is needed because the kth record will correspond to the file named k in the cache. The EXT2 file name is thus implicitly indicated by the position of the entry in the file. Every time a change to a cache entry is made (either a replacement occurs or the cache entry is used for the first time) the corresponding record in the file is changed. On starting the web cache when the file system is mounted, this file (if it exists) is used to build up the cache entries and make entries in the hash table. Thus files brought in on a previous incarnation of the machine will be recognized as existing in the cache.        

6.4  Cache replacement policy

The cache should be configurable for the convenience of the user and for the system administrator to be able to tune the cache for better performance. So in our implementation we have included a command line cache configuration tool. This tool allows the user to set and get various parameters for the cache. In the current implementation of the tool, the user can change the eviction policy for the cache. One can choose LRU, MRU, smallest file first, largest file first or FIFO depending on one’s needs. The tool allows the user to change the policy both before and after the file system is mounted for greater flexibility. 


The implementation of the tool involved defining a variable to indicate the current cache replacement policy in the kernel. This variable could be set and retrieved by the tool using two new system calls. One system call takes in a value and sets the policy using that value while the other system call simply returns the current value of the cache policy. Thus the user could do a 

· webfscache get

to see the current set value for the policy, and

· webfscache set -policy LRU

to set the policy to LRU.

7  Concurrent access 

Any file system should necessarily be able to handle concurrent access to files that form part of it. To provide concurrent access for different users logged onto a machine and trying to use our web file system, we have included locking mechanisms. There are several essential aspects to making our system concurrent.

Firstly, the user daemon as described before uses the event loop mechanism provided by Libwww to handle concurrent servicing of requests. This ensures that the requests are not serialized by the user daemon. To provide safety in concurrency, there is a need to lock the cache table for each access, for if not, two accesses could attempt to use the same EXT2 file for caching (owing to both of them picking up the same cache entry from the free list). However this locking of the cache table has to be done carefully to ensure that during the upcall to Webfsd to fetch the file, the cache is not locked but the entry chosen is not available on the free list either. The inode table also needs to be locked on every access. Essentially this involves using two semaphores, one for each table, to control access to the two tables. The cache table is locked whenever any access to the cache table is made. 

7.1 Outstanding Reference List

    The above mentioned locking mechanism is not sufficient to ensure the consistency of the cache. Cache inconsistency can arise in the case of two processes trying to access the same URL. Thus while one kernel thread reserves a new cache entry, and waits for a response from the Webfsd, another kernel thread can get a new cache entry even though the two requests are for the same URL. This means that two cache entries can exist for the same URL. 

In order to prevent the above scenario, we use an Outstanding Request List (ORL) to serialize concurrent access to the same web file. An element of the ORL consists of the URL name of the request, the number of processes waiting for that entry, the status of the request and a semaphore that controls access to that entry. The ORL operates as follows. In the webfs_file_open we lock the ORL and check to see if an entry for that URL exists. If there is no entry for that URL, a new entry is inserted into the ORL, its semaphore is acquired and the ORL lock released. If however an entry already exists, then lookup increments the wait count for that entry, gives up the ORL lock and waits on the semaphore of the entry. Thus in this setup, the first process that obtains the lock for a particular ORL entry brings in the file and all other subsequent processes that access the same URL wait on the semaphore. When the first process completes loading, it decrements the wait count for the corresponding entry, updates the status and if the wait count is not zero wakes up the next process that is waiting on the semaphore. The next process just reads the status of the entry and returns.

It is to be observed that ORL is meant only for serializing concurrent access to the same file. Even though requests for two different files go through the ORL, their lookup and open can themselves proceed in parallel.

 8 Performance considerations

Since Webfs involves switching from the kernel context to user and then going on the network, performance is a very important concern. We have employed various techniques to improve the performance of our implementation. Most of these techniques prevent either the switch from the kernel to user context or prevent going on the network.

The basic technique for better performance is file caching which eliminates a reget of the file when unnecessary. We chose to maintain a flat cache structure because this would eliminate the need for disk access to set up a directory structure similar to the web directory structure without any loss of performance on other considerations. It also eliminates the need to maintain a huge directory structure for a few files. For example, there may be only four files cached in but these four files may require a huge directory structure to be set up. All information about the directory structure is maintained in memory and made persistent by writing it out onto a file on change.      

We have also chosen to implement all our cache management in the kernel since this eliminates any need to trap to the user daemon except when the file is fetched for the first time or when it is refetched because of timeout. Further, to eliminate multiple simultaneous lookups of the same URL we maintain an Outstanding Request List (ORL). Manipulation of this list makes sure that if a request has been passed to the daemon and is in progress and another request for the same file comes in, the request is not resent to the daemon.  

9 Fault tolerance

Since we expect our file system to be heavily used, ensuring that it functions robustly amid system failures is very important. In this section we briefly discuss a few things that could fail and how Webfs is able to handle these failures.

In our architecture Webfsd acts as the gateway to the network. Thus a failure of Webfsd would make the network inaccessible to the Webfs kernel module. However it will still be able to handle the requests to those files that have already been cached in. Only those applications, which access files that are not in the cache, are affected. 

Webfs stores all its data files on the EXT2 file system. It also stores some data related to the persistent cache management. An important source of failure would be the deletion or modification of these cached files. In that case, Webfs detects this the next time the file is accessed and brings in the file. In case the metadata relating to the persistent cache gets deleted, on the next run of Webfs, it would presume that there are no cached files. So some requests would result in Webfs contacting Webfsd even though the contents of some of those files may be already cached in. This would result in a temporary degradation of performance, but eventually the cache will be filled.

The existence of persistent cache adds to the robustness of Webfs amid system crashes. If a file is cached in, and then the system crashes, the file will be available locally the next time the system boots and Webfs is mounted. This means that users need not refetch a potentially large file again.
10 Benchmark 

The design and implementation of any system is incomplete without a study of the performance of the system. We have carried out a series of tests to evaluate the performance of our web file system. We have compared the performance of our system with the EXT2 file system for access of locally cached files. For remote access we have measured the bandwidth that our file system achieves. 

The testbed used for the study consisted of a DEC Celebris XL 590 with a 90 MHz processor running Linux. The machine had 160 MB main memory and 540 MB hard disk space. The machine was connected to the local network in the University of Wisconsin-Madison through a 100 Mbps Ethernet. 

We used the clock function to get the measurements. Clock returns the processor time used by the program. To measure the resolution of clock, we ran a test program that called clock in a loop. Measurements indicate that clock gives a precision of 10ms.

The first benchmark measured the time to open a web file, read the entire file and close it once the file had been brought in from the remote web server and cached on disk. This essentially corresponds to a cat filename operation. We used a read size of 512 bytes for all the tests and carried out the tests on files of different sizes to see how our system worked with small and large files. We then measured the time for access of the same file through the EXT2 file system. This test suite attempted to determine the overhead introduced by the cache management and inode table lookup in the kernel. 

File size

(KB)
EXT2 access time

(seconds)
Webfs cached file access time (seconds)
Performance loss of Webfs over EXT2 (%)

10
0.001798
0.001998
11.12

50
0.003132
0.003448
10.09

100
0.005876
0.00632
7.56

500
0.02828
0.02954
4.46

1000
0.05642
0.05864
3.93

5000
0.2862
0.2944
2.87



Figure 5 Comparison of Webfs with EXT2 for cached file
Figure 6 Comparison of Webfs with EXT2 for cached files 

Figure 7 Comparison of access of remote files and cached files
In the second benchmark, we measured the time taken for accessing files not in the cache i.e. files which require going on the network. We also wanted a quantitative measure of the time taken to switch from the kernel to the user daemon and back and to set up a new cache entry. Though fetching files from across the network depends on the network bandwidth and network load, we believe that quantifying the results as bandwidth provided gives a reasonable estimate of the performance of our system. We repeated this test for files of different sizes. Figure 5 shows the results of the first benchmark. The same table is presented as a graph in Figure 6. We notice that for small cached files, the performance of Webfs is about 10% less than that of EXT2. This performance gap steadily reduces as the size of the file increases and reaches about 3% for files of size 5 MB. We observe that in this test set, the open is followed by a number of reads. The read count increases as the file size increases. This indicates that for small files the cost of open dominates the performance. This is expected because in the open call, we update the cache structure while EXT2 does nothing of this sort. This test also gives an indication that the read calls of Webfs impose very little overhead. Considering that Webfs reads are just wrappers around EXT2 reads, this is expected.

Figure 7 shows the results of the second benchmark that compares the performance of accessing files that are not cached (hence these files have to be brought in by Webfsd) vis-à-vis those that have already been cached. From the figure it can be seen that irrespective of the file size, the cost of the former is very high. The overhead involved in accessing remote files has two components, namely the communication between the Webfs and Webfsd and the actual bringing of data by Webfsd from the network. In order to quantify the effects of these two components, we repeated the second benchmark in which Webfsd returned immediately after receiving the message from the kernel without performing the fetch from network. These results are depicted in Figure 8. As can be seen it is the network fetch that accounts for almost all of the time involved in the remote access. This validates our design of keeping Webfsd in the user context. The table also shows network bandwidth achieved by Webfsd. 

File size

(KB)
Kernel to user switch time

(seconds)
Network fetch time

(seconds)
Bandwidth

(Kbps)

10
0.0009
2.1792
36.5

50
0.0009
2.5067
160

100
0.0009
2.0631
387

500
0.0009
2.8221
1400

1000
0.0009
4.1671
1900

5000
0.0009
19.2791
2070

15000
0.0009
29.3291
4000



Figure 8  Breakdown of Remote Access.
11 Conclusion and Future Work
The fundamental motivation for Webfs is to let users have a unified view of both the local files and the web files. This unified interface facilitates quick and easy development of applications to use the World Wide Web. 

Our implementation of Webfs incorporates several features for efficiency and robustness. The basic performance improvement comes from caching web documents on the local disk to eliminate the need for refetching files on repeated access. The use of a persistent cache makes the file system robust across system failures. The system is reasonably tolerant to accidental or malicious modification to the cache. Our benchmarks have shown that Webfs performs very well for cached files and gives high bandwidth for large remote files.

An excellent opportunity exists to develop applications on top of Webfs. Of particular interest is building a web browser that uses the normal open, read, close calls instead of issuing HTTP requests.

Further improvements to Webfs can include getting the actual directory listing of a directory from Webfsd if the remote web server permits it. We can then use this listing to build the inode list. Also a detailed investigation of the hashing mechanism can be done to analyze the impact of hashing on the performance and to chose the best hashing function.
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File open operation:


The VFS layer calls the open routine of Webfs.


Webfs looks up the cache manager to see if an entry exists in the cache for the file.


The file is not found in the cache. So the cache manager contacts Webfsd to fetch the file. If needed it chooses a file to replace based on the current cache management policy.


Webfsd fetches the file and puts it into the EXT2 file system by passing through the VFS layer.


Webfsd responds to the cache manager request with the status.


The cache manager returns the EXT2 file pointer for the cached in file to Webfs. It also increments the usage count for the file. 


Webfs associates the EXT2 file pointer with the inode corresponding to the web file and returns to the VFS layer.


The VFS layer returns to the application layer with a response for the open call.








File lookup operation:


Request for open of the web address � HYPERLINK http://www.cs.wisc.edu/index.html ��www.cs.wisc.edu/ index.html� comes in.


VFS calls lookup of Webfs for www. cs.wisc.edu. 


A check is made in the inode table of Webfs for this address.


The address is not found.


A call to Webfsd for lookup of this address is done.


Webfsd determines if it exists and in this case returns OK.


Webfs returns to the VFS layer with a positive response.


The VFS layer calls lookup for the next component in the pathname index.html.


9, 10, 11, 12 and 13 are simply the same 


       operations as 3, 4, 5, 6 and  7 and are 


       hence not indicated in the diagram.
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File read operation:


The application requests a  read operation on an open web file. 


 The VFS layer calls the read routine of Webfs.


Webfs gets the file contents by directly contacting the EXT2 layer.


Webfs passes on the requested data to the VFS layer which passes it on to the user level application.





File close operation:


 The application requests a close of an open web file.


The VFS layer calls the close routine in Webfs.


Webfs requests the cache manager to decrement the usage count for the file and if it is not in use by anybody to put it on the free list in accordance with the current cache management policy.


Webfs returns to the VFS layer which returns to the application.
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