
Confidential draft for NVMW 2017 - Do not distribute

WHISPER: Wisconsin-HPL Suite for Persistence

Persistent memory (PM) has received significant attention in
software research [2, 5, 6, 14], hardware research, [8, 12, 15]
and industry [1, 7, 10, 13]. We define PM as non-volatile
(NVM) accessed with byte addressability (not just blocks)
at low latency (not I/O bus) via user-mode CPU memory
instructions (not system calls). Preliminary PM work, however,
has used varied benchmarks and micro-benchmarks, making
it challenging to compare PM proposals and be that confident
proposed systems optimize for actual future PM use.

Persistent	
  Memory	
   (PM)

Application

DAX

NVML Mnemosyne

VFS

load/
store

mmap

TX

mmap/read
/write

load/store

user
kernel

TX

PMFS

Figure 1: Current interfaces to Persistent Memory. NVML
and Mnemosyne provide transactional and the kernel exposes
filesystem APIs. DAX (Direct-Access) is a new Linux/Windows
feature that allows filesystems (e.g., ext4, XFS) to access PM
using load/store and bypass the pagecache and block layers.

This paper seeks to put PM systems research on a firmer
footing by developing, analyzing and releasing a PM bench-
mark suite called WHISPER [9]. It is a suite of ten PM appli-
cations we gathered to cover current interfaces to persistent
memory (Fig.1). We modified the applications to be recover-
able and instrumented them for our own and future analysis.
PM programs, such as those in WHISPER, behave differently
than programs written for volatile memory only. Importantly,
they carefully order and persist their writes to memory for
crash-recovery after a power failure. Ordering is conveyed via
epochs, which is are sets of unordered writes that must eventu-
ally be made durable after all previous epochs and before any
following epochs [5, 11].

Our quantitative analysis of WHISPER yields several in-
sights relevant to the design of future PM systems: (a) only
5% of application writes are to PM and the rest are to volatile
memory. (b) there are 5-50 epochs per durable transaction, (c)
80% of epoch write to only one 64B cache line, (d) 80% of
epochs depend on previous epochs on the same thread while
only 0.1% of epochs depended on epochs from other threads.

1. WHISPER Suite

WHISPER applications fall in three categories, suitable to
study access patterns across different interfaces.

Application Brief description
N-store DBMS for PM inspired by H-store
Echo Scalable client-server key-value store
Memcached Scalable object cache for web applications
Vacation Travel booking system from STAMP
Redis Fast object store for web applications
C-tree Inserts/deletes to a persistent crit-bit tree
Hashmap Inserts/deletes to a persistent hashmap
Exim Popular mail server & mail-transfer agent
NFS Linux client-server for remote file access
MySQL Popular relational DBMS for OLTP

Table 1: WHISPER applications cover three interfaces to PM.
Native Applications use regular loads/stores to directly ac-
cess PM; Library-based applications rely on a transaction li-
brary; Filesystem applications use a PM-aware filesystem.

Native Applications: N-store [2] and Echo [3] access PM
using regular loads/stores and implement their own crash con-
sistency mechanisms. N-store implements DB tables atomi-
cally updated with an undo log. Echo is a multi-versioning
client/server key-value store (KVS). We modified Echo and
N-store to place tables, indexes and logs in PM while thread
stacks and the volatile heap are in DRAM.
Library-based Applications: Macrobenchmarks using either
Mnemosyne or NVML for accessing PM comprising Mem-
cached, Vacation from the STAMP suite [4] and Redis. Mem-
cached and Redis are in-memory object caches used by web
applications. Vacation emulates an online transaction process-
ing (OLTP) workload that resembles a travel reservation sys-
tem. We modified Memcached and Vacation to access PM via
Mnemosyne, and use Redis modified to access PM via NVML.
Microbenchmarks are C-tree and Hashmap distributed with
NVML for simulator-suitable studies.
Filesystem Applications: NFS, Exim and MySQL are unmod-
ified open-source programs that access PM using PMFS [6].
NFS is a network file service, Exim is a mail server that stores
user emails in per-user files, and MySQL is a popular RDBMS
often used for OLTP.

2. Experimental Methodology

We instrumentWHISPER applications to record PM operations
performed during application execution such as PM writes,



0%
25%
50%
75%

100%

Distribution	
  of	
  Epoch	
  Sizes

1 2	
  to	
  63 64

Figure 2: Size of an epoch is the number of unique cache lines
written back to PM as part of the epoch.

epochs, and transactions.
Identification. We use PIN for user-space applications and
mmiotrace for the kernel to identify all statements that update
PM. We found 100 statements on average in each applica-
tion and 275 in the kernel. We identify epochs as PM writes
followed by a fence, and transactions boundaries from the
program or library code.
Instrumentation. We use C Macros to annotate all PM oper-
ations in WHISPER and generate a trace file. This enables a
variety of offline analyses in addition to the ones in our study,
on various processor architectures.

3. Observations

We make several cross-cutting observations of WHISPER
application’s PM behavior.
Fraction of PM writes: We observed that only about 5% of all
writes by an application were to PM and the rest to volatile
memory, suggesting that optimizations for PM should not
degrade the performance of volatile memory references.
Epochs per transaction. Most durable transactions had be-
tween 5 and 50 epochs, although in some cases, like N-store,
there were over one thousand. Importantly, transactions do
not require durability until the transaction commits, which is
generally the last epoch. As epochs are more common than
transactions, PM platforms should separate ordering of epochs
from durability requirements for transactions.
Epoch size. Over 80% of epochs in native and library-based
applications were singletons, i.e., they were one cache line in
size (Fig.2). 20% of epochs had sizes varying between 2 and
63 PM cache lines. Filesystem applications exhibited epochs
of size 64 cache lines due to writes to 4K data-pages. The
dominant cause of small epochs was metadata writes from
persistent memory allocators and log subsystems in PM run-
times. These are often invoked within transactions. Updates
to the allocator state incur additional epochs as this state must
be consistent at all times to avoid persistent memory leaks.
PM platforms can optimize for singleton epochs for better per-
formance or can restructure code and data to coalesce small
epochs.

Cross- and Self-dependencies. We measure write-after-write
(WAW) dependencies to PM addresses across epochs that arise
due to shared data between application threads. For clarity, we
define:
• Em

i : Set of cachelines updated by thread i in m-th epoch.
• Cross-dependency: Em

i ⊗c En
j denotes m-th and n-th epoch

on two threads i and j respectively that update cacheline c,
where En

j follows Em
i during execution.

• Self-dependency: Em
k 	c Em′

k denotes epoch m and m’ on
thread k that update cacheline c, where Em

k precedes Em′
k

during execution.
Across all applications, 80% exhibited self-dependencies

while only 0.1% of epochs exhibited cross-dependencies.
Without multiversioning caches, repeated updates to a single
PM cache line require that the writer wait for earlier updates
to it become durable before proceeding, which is slow. PM
platforms should allow multiple versions of a cache line from
different epochs to be buffered simultaneously to avoid stalling
while data from an earlier epoch is written back to PM in the
background. Cross-dependencies are rare, and hence may not
need optimizing, but must still be handled correctly.

Additionally, we note that applications use non-temporal
instructions (NTIs) that bypass the cache for persistent data
with low temporal locality. Between 65-99% of writes in
PMFS (file data) and 14-45% in Mnemosyne (log records)use
NTIs. Most proposals for implementing epochs [5, 8] do not
discuss how to support NTIs.

References
[1] Persistent memory programming. pmem.io.
[2] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about storage and

recovery methods for nvm database systems. SIGMOD ’15.
[3] K.A. Bailey, P. Hornyack, L. Ceze, S.D. Gribble, and H.M. Levy.

Exploring storage class memory with key value stores. INFLOW ’13.
[4] Chi Cao Minh. Designing an Effective Hybrid Transactional Memory

System. PhD thesis, Stanford University, 2008.
[5] J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee. Better i/o through byte-addressable, persistent memory.
SOSP ’09.

[6] S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System software for persistent mem-
ory. EuroSys ’14.

[7] Hewlett Packard Enterprise. Persistent memory. hpe.com/us/en/
servers/persistent-memory.html.

[8] A Joshi, V. Nagarajan, M. Cintra, and S. Viglas. Efficient persist
barriers for multicores. MICRO’15.

[9] S. Nalli, S. Haria, M.M. Swift, M.D. Hill, H. Volos, and K. Keeton.
How applications use persistent memory. To appear in ASPLOS ’17.
Copy available on request.

[10] Intel Newsroom. newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology.

[11] S. Pelley, P.M. Chen, and T.F. Wenisch. Memory persistency. ISCA’14.
[12] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu. Thynvm:

Enabling software-transparent crash consistency in persistent memory
systems. MICRO ’15.

[13] SNIA. snia.org/forums/sssi/nvmp.
[14] H. Volos, A.J. Tack, and M.M. Swift. Mnemosyne: Lightweight

persistent memory. ASPLOS’11.
[15] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N.P. Jouppi. Kiln: Closing

the performance gap between systems with and without persistence
support. MICRO’13.

2

pmem.io
hpe.com/us/en/servers/persistent-memory.html
hpe.com/us/en/servers/persistent-memory.html
newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
snia.org/forums/sssi/nvmp

	WHISPER Suite
	Experimental Methodology
	Observations

