1. In order to calculate the backpropagation of error, we have to follow four steps. I'll number the states as below (for reference from equations).

(a) Calculate the error of the output units - start by calculating the output of o_{1}, o_{2}, o_{3}, and o_{4}.

$$
\begin{aligned}
\text { net }_{3} & =1\left(x_{1}\right)-0.5\left(x_{2}\right)-0.5=1(0)-0.5(1)-0.5=-1 \\
o_{3} & =\frac{1}{1+\exp ^{-n e t_{3}}}=0.269 \\
\text { net }_{4} & =-0.5\left(x_{1}\right)+1\left(x_{2}\right)-1=-0.5(0)+1(1)-1=0 \\
o_{4} & =\frac{1}{1+\exp ^{- \text {net }_{4}}}=0.5 \\
\text { net }_{1} & =-2\left(o_{3}\right)+1\left(o_{4}\right)+0=-2(0.269)+(0.5)=-0.038 \\
o_{1} & =\frac{1}{1+\exp ^{-n e t_{1}}}=0.491 \\
\text { net }_{2} & =-2\left(o_{3}\right)-2\left(o_{4}\right)-0.5=-2(0.269)-2(0.5)-0.5=-2.038 \\
o_{2} & =\frac{1}{1+\exp ^{- \text {net }_{2}}}=0.115
\end{aligned}
$$

Now that we have the outputs, the error is as follows:

$$
\begin{aligned}
& \delta_{1}=o_{1}\left(1-o_{1}\right)\left(y_{1}-o_{1}\right)=0.491(1-0.491)(1-0.491)=0.127 \\
& \delta_{2}=o_{2}\left(1-o_{2}\right)\left(y_{2}-o_{2}\right)=0.115(1-0.115)(0-0.115)=-0.012
\end{aligned}
$$

(b) Now, calculate the updates for the output unit weights:

$$
\begin{aligned}
& \Delta w_{10}=\eta \delta_{1} o_{0}=0.1(0.127)(1)=0.0127 \\
& \Delta w_{13}=\eta \delta_{1} o_{3}=0.1(0.127)(0.269)=0.00342 \\
& \Delta w_{14}=\eta \delta_{1} o_{4}=0.1(0.127)(0.5)=0.00635 \\
& \\
& \Delta w_{20}=\eta \delta_{2} o_{0}=0.1(-0.012)(1)=-0.0012 \\
& \Delta w_{23}=\eta \delta_{2} o_{3}=0.1(-0.012)(0.269)=-0.00032 \\
& \Delta w_{24}=\eta \delta_{2} o_{4}=0.1(-0.012)(0.5)=-0.0006
\end{aligned}
$$

(c) Next, calculate the error for the hidden units:

$$
\begin{aligned}
\delta_{3} & =o_{3}\left(1-o_{3}\right) \sum_{\{1,2\}}^{k} \delta_{k} w_{k 3}=o_{3}\left(1-o_{3}\right)\left[\delta_{1} w_{13}+\delta_{2} w_{23}\right] \\
& =0.269(1-0.269)[0.127(-2)-0.012(-2)]=-0.0452 \\
\delta_{4} & =o_{4}\left(1-o_{4}\right) \sum_{\{1,2\}}^{k} \delta_{k} w_{k 4}=o_{4}\left(1-o_{4}\right)\left[\delta_{1} w_{14}+\delta_{2} w_{24}\right] \\
& =0.5(1-0.5)[0.127(1)-0.012(-2)]=0.0378
\end{aligned}
$$

(d) Finally, calculate the weight updates for the hidden units:

$$
\begin{aligned}
\Delta w_{30} & =\eta \delta_{3} o_{0}=0.1(-0.0452)(1)=-0.00452 \\
\Delta w_{3 x_{1}} & =\eta \delta_{3} x_{1}=0.1(-0.0452)(0)=0 \\
\Delta w_{3 x_{2}} & =\eta \delta_{3} x_{2}=0.1(-0.0452)(1)=-0.00452 \\
& \\
\Delta w_{40} & =\eta \delta_{4} o_{0}=0.1(0.0378)(1)=0.00378 \\
\Delta w_{4 x_{1}} & =\eta \delta_{4} x_{1}=0.1(0.0378)(0)=0 \\
\Delta w_{4 x_{2}} & =\eta \delta_{4} x_{2}=0.1(0.0378)(1)=0.00378
\end{aligned}
$$

The final weights are therefore:

weight	update	final weight
w_{10}	$0+0.0127$	0.0127
w_{13}	$-2+0.00342$	-1.997
w_{14}	$1+0.00635$	1.0006
w_{20}	$-0.5-0.0012$	-0.5012
w_{23}	$-2-0.00032$	-2.0003
w_{24}	$-2-0.0006$	-2.0006
w_{30}	$-0.5-0.00452$	-0.505
$w_{3 x_{1}}$	$1+0$	1
$w_{3 x_{2}}$	$-0.5-0.00452$	-0.505
w_{40}	$-1+0.00378$	-0.996
$w_{4 x_{1}}$	$-0.5-0$	-0.5
$w_{4 x_{2}}$	$1+0.00378$	1.0038

2. An example neural network with hidden units can represent the given equation $y=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)$ is shown below.
3. The three graphs for showing the training- and test-set accuracy are shown below. The training set accuracy is aggregated across each fold (e.g. I count the number of correct and incorrect guesses I get).

4. A sample ROC curve is shown below. There are only 4 false positives, so the graph isn't very gradual when it crosses the FPR spectrum!

