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Abstract

Protein characterization in silico is a difficult problem that could have large reper-
cussions for the field of biochemistry. Whereas the structure for a crystallized pro-
tein is easy to determine, it is a time-intensive task to characterize a protein. We
propose a novel approach to characterizing functional interfaces on proteins by using
region matching on a determined structure. These regions are comprised of descrip-
tors that contain shape and chemical information. These local, multi-scale descriptors
are grouped together into regions based on techniques from the computer vision based
community. Using this model, we expect to see an advantage in functionality matching
over the canonical protein shape matchers by incorporating chemical data at multiple
scales.

1 Introduction

Proteins have a whole host of roles in the cell, and elucidating the roles of individual proteins
is a very challenging problem. Once crystallized, biochemists can use the structure of the
protein to help inform the functionality of the protein. However, much of the information
gleamed from visual inspection of the protein surface is highly empirical, and depends on
the set of assumptions that the inspector arrives with. One of the more traditional rules-
of-thumb for characterizing functionality is the lock-and-key metaphor: the protein acts as
the lock, and the incoming ligand to be bound acts as a key. The idea is that the protein
surface lends itself to selectively binding the exact ligand, so the shape of the protein gives
clues to which ligand it binds. Discovering which ligand binds to a protein is a critical step
for assessing protein functionality, and is frequently a time-consuming step in discovering
protein function.

While the lock-and-key metaphor holds for small ligands such as calcium atoms, NAD+, and
ATP, larger molecules such as DNA, protoporphyrin, and other proteins demand a signifi-
cantly larger interface area on the protein. Contemporary methods for determining protein
interfaces utilize the lock-and-key metaphor for divots on the protein surface, appropriately
called pockets. Given an un-annotated protein structure, many solvers attempt to find
pockets, and then attempt to classify the shape of the selected pockets based on a training
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set [1, 2]. Given small ligands, these solvers are very reliable at predicting pockets and clas-
sifying the ligands. For larger ligands (20+ atom molecules) and those with an affinity for
significant charge, hydrogen bonds, or hydrophilicity, the canonical methods break down.

While many of these ligand predictors use just shape to classify, we propose using and
extending our idea of multi-scale local descriptors. Based on the idea that a ligand only
depends the local environment in which it is situated, we strive to maintain and collect
chemical and physical information as well as shape information at regular points over the
proteins surface. Additionally, we want to extend the idea of pocket matching to region
matching. This breaks out of the limitation of limiting prediction to small pockets, and
provides an avenue for accurate prediction of RNA, DNA, and protein binding.

2 Approach

An open question in biochemistry is how to determine the specificity of a protein binding
to a specific DNA sequence. With the canonical ligand matchers (cf. [3]), using just shape
to determine a fit does not lend itself to specifying specificity; it might be apparent that
the protein binds DNA at that location, but lacks the information to inform the classifier
exactly which bases and chemical interactions occur in that region. This is precisely the
interaction that we propose to capture with both the multi-scale local descriptors and the
region matching.

To generate the local descriptors across the surface of the protein surface, the solvent-
excluded surface (SES) is first computed. This process is done by rolling a sphere of radius
1.5 Å(approx. the radius of a molecule of water) over the proteins surface to determine
the solvent-reachable areas and pockets. With the SES computed, a triangle mesh is then
constructed in order to provide reference points over the entire surface of the protein. At
each of these reference points (vertices in the mesh), many physical and shape attributes are
computed at different scales:

The ranges of potential interfaces for a specific ligand is extremely broad. Even a cross-
section of PDB proteins that only bind, say, ATP, have incredible variation on how they latch
onto their desired ligand. Using just a single descriptor to categorize the ligand interface
seems like an insurmountable and intractable task. The advantage of our descriptors is their
frequency; binding interfaces can be compared by combining these descriptors in a flexible
way.

Our idea of generating and using local descriptors for categorization has become a canon-
ical method in the computer vision community (survey: [5]). Small descriptors, given the
correct dimensions and scales, can be made invariant to undesired effects, and can be ag-
gregated together to represent a larger region. Local descriptor allegories can be drawn
to image descriptors such as SIFT [6] and SURF [7], and many ways for building regions
out of those descriptors have been studied, including template methods that enforce spatial
relationships [8].
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Item Scales Notes

% Visibility Outside world visible from pt
Non-polar backbone Distance to item
Aromatic sidechain Distance to item
Aliphatic sidechain Distance to item
N-backbone atom Distance to item
O-backbone atom Distance to item
S-backbone atom Distance to item
Amide-N sidechain Distance to item
Amide-O sidechain Distance to item
W sidechain Distance to item
OH sidechain Distance to item
Charged O sidechain Distance to item
Charged H sidechain Distance to item
Patch anisotropy 1.6, 3.2, 4.8, 6.4, 8 Å Sampled at different levels
Path curvature 1.6, 3.2, 4.8, 6.4, 8 Å Sampled at different levels
Path curvature var. 1.6, 3.2, 4.8, 6.4, 8 Å
Hydropathy 1.6, 3.2, 4.8, 6.4, 8 Å
Charge 1.6, 3.2, 4.8, 6.4, 8 Å
H-bond donor Distance to nearest donor
H-bond acceptor Distance to nearest acceptor

Table 1: Listing of the 40 descriptive features encoded in each mesh vertex [4]

To match and grow regions, we can use the computed local descriptors in conjunction with
one another to define a region. Given a point’s feature vector, and the feature vectors of its
k neighbors in its vicinity, it is conceivable to find a similar region by matching the center of
the given region with n points in the protein to compare. Those n points will be potential
region matches, but those n points need to be expanded to see if the k neighbors of the given
region match the k neighbors around the n points. The best match of the n center points
will not necessarily match to the best region. Therefore, my algorithm depends on both of
these parameters: k starting seeds for potential matched regions, and n vertex neighbors
in each region. Varying these two parameters changes the sensitivity of generating region
matches. The pseudo-code is below in Algorithm 1.

There are several aspects of this algorithm that need clarification. The first is finding the closest
point in terms of descriptor distance. Here we are using a simple L2 distance metric (Euclidean
distance) that may not be representative or accurate distance metric depending on the chemical
properties of the ligand (see Discussion section). Searching a 40-dimensional space of over ten
thousand items for the nearest match is a very expensive computation, so we take advantage of
an Approximate Nearest Neighbor (ANN) library. This library takes algorithmic advantages over
standard iteration by utilizing data structures such as kd-trees and box-decomposition trees, allowing
for compatible matches to be found in a fraction of the time.

For finding neighboring points in three-dimensional space, we again use the ANN library to organize
the points for easy retrieval. The positions of the vertices are determined by fitting the solvent
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Algorithm 1 Region-Matching(k, n) – Find region matches in two homologous proteins

Require: Input integers k, n > 0.
Require: Two proteins compareFrom, compareTo
Require: Seed center pc on compareFrom

1: origNN, origNNDist ← find closest k points in space to pc on compareFrom
2: dt ← max(origNNDist)

3: for each origNN do
4: M ← find n closest descriptor matches on compareTo
5: end for
6: T ← build tree with 3D coordinates from points in M

7: regCenter, regCenterDist ← best n possible pc descriptor matches on compareTo
8: for each regCenter do
9: Di ← query T with regCenter’s 3D coordinates, limit to k matches

10: if max(Di) < dt then
11: This regCenter is a probable region!
12: else
13: This is not a likely region
14: end if
15: end for

excluded surface with a triangle mesh that is facilitated by trimesh2. This allows easy selection of
neighboring vertices when growing/matching a region. See Figure 1 for an example.

For the testing of our hypothesis, we will use our in-house molecular visualization tool to quickly
visualize, abstract, and color arbitrary protein molecules in the PDB format [4]. This application
creates the multi-scale descriptors, allows for interaction with the protein, and can color points
based on similarity. Although the code is of academic quality, there are hook-in points where
differing distance metrics and methods can be placed. The application also reads in all protein
chains into the viewer, and calculates the shadows that the ligand chains cast onto the protein
domains. This is useful extra information for debugging, but is noted that shadow information will
not be provided in a given uncharacterized protein structure.

The region matching functionality can be dropped in, and with some modification to the coloring
code, the vertices in the protein surface can visualize the matched regions. I added a new interaction
mode for the user to manipulate and compare two arbitrary proteins by region. The anticipated
workflow (as a user) is as follows:

1. The user loads two proteins that bind similar ligands

2. The user then selects the “Region” interaction mode and selects a point in the shadow on
one protein

3. Regions are highlighted:

a. On the comparison protein, the top 3 similar regions are highlighted and colored according
to rank
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Figure 1: A representation of the triangle mesh defining the SES of 3DFV (the red chain is
one strand of bound DNA, purple is another domain). At each vertex, the descriptors from
Table 1 are computed

b. On the original protein, the region grown from the user-picked point is highlighted

4. The user can interact with the two proteins to get a full three-dimensional picture of the
matched regions

While the user workflow has been implemented, I’ve unfortunately run out of time to implement the
coloring in the molecular visualizer. My plan over the summer is to implement this and experiment
with different ways of growing and matching similar regions. Some additional discussion on this
matter is in Section 4 (Discussion).

3 Emperical Evaluation

Algorithm 1 above was tested textually. The molecular visualization tool has a facility to dump the
feature vector of the first chain in the protein (often the chain under test, and the white chain in
all figures in this paper). I made some amendments to label just the ligands that we are interested
in, ignoring other protein domains and smaller ligands (e.g. calcium atoms). This dumped feature
vector has one vector on a line, each with its assigned ID number, x, y, and z coordinates in space,
the 40 predictive dimensions outlined in Table 1, and several dimensions that allow for tracebacks
to the original PDB file (e.g. residue ID, closest AA, etc.).

The python script as written takes two input feature vectors and a given vertex ID with which
to grow the region to be matched. Some sample output is below (Region-Matching() with
k = 3, n = 8):

Testing scipy implementation
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Parsing file 1-1GAT

Parsing file 1-3DFV

Original point 1749 (-1.691, -5.004, 30.577)

Found neighbor 1749 (2.122, -0.383, 1.221)

Distance: 0.0

Found neighbor 10534 (2.63, -0.208, 1.253)

Distance: 0.538249941941

Found neighbor 6296 (1.551, -0.608, 1.376)

Distance: 0.633001579777

Distance threshold: 0.633001579777

Matching point 2257.0 (7.887, -9.078, 45.061)

Matching point 6946.0 (8.445, -9.227, 45.081)

...

Matching point 9760.0 (7.172, -8.545, 44.952)

Matching point 9761.0 (7.172, -7.911, 44.952)

Testing vertex 6948 for matches.

potRegionMatches: [2 3 1 0]

potRegionDists: [ 0. 0.57820585 0.62487199 0.87036429]

Vertex 6949.0 (7.777, -9.545, 45.54) distance: 0.0

Vertex 6946.0 (8.445, -9.227, 45.081) distance: 0.578205845699

Vertex 2257.0 (7.887, -9.078, 45.061) distance: 0.62487198689

Farthest point in NN match is 0.870364291547 ; wanted < 0.633001579777

...

Testing vertex 9760 for matches.

potRegionMatches: [7 5 6 8]

potRegionDists: [ 0. 0.61637489 0.63287044 0.634 ]

Vertex 6985.0 (7.758, -8.416, 44.811) distance: 0.0

Vertex 9759.0 (7.172, -9.115, 45.227) distance: 0.616374885926

Vertex 9761.0 (7.172, -7.911, 44.952) distance: 0.632870444878

Found matching region!!!!!!!

In the above output, two different DNA-binding proteins are compared. The first section corre-
sponds to the first line of Algorithm 1; the Distance threshold line corresponds to line 2. The
next section builds the closest matches on the other protein (lines 3-6), while the last couple of
sections correspond to the iterations of the for loop that filters out region outliers (lines 7-15).
Sections are eclipsed with elipses for berevity. In the output above, a matching region is found
after generating matching region neighbors in the original protein (1GAT) to the potential region
neighbors protein being compared (3DFV).

To verify the output and the conclusions reached by the region matcher, the textual tool is first
given the same protein twice to see if it matches identical regions on both proteins. The main two
proteins that I’ve been working with so far are two specific DNA binders — that is, they both only
bind DNA sequence of a distinct sequence of bases. These two proteins are 1GAT and 3DFV and
are shown below. Here, we try to rectify the textual match given by the above output to the visual
surface of the two proteins.

In Figure 2, the little red dot on the finger of the protein is the matched point based on the mutual
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Figure 2: An example a match between PDB proteins 3DFV (left) and 1GAT (right). The
white chain in both molecules is the one under test. One strand of DNA is shown (red on
right, purple on left). In both structures, one helix of DNA is omitted as it occludes the
matched point. The purple chain on 3DFV is another (identical) protein domain.

match of its surrounding environment. It has nothing to do with the position or interaction of the
DNA chain directly interfacing both regions; both regions are matched solely on normalized feature
vector. The results of the region mapper are pretty good – the ‘finger’ that wraps over the bound
region of DNA has a functionally similar shape and chemical information, and on manipulation of
both structures, this finger is wedged right between the two double-helices between bases ACA.

4 Discussion

The use of local, multi-scale descriptors has good promise of being a flexible interface matcher. It
manages to break the paradigm of using just pockets to predict binding sites for protein classifica-
tion, and shows promise for classifying and determining specific interactions with individual DNA
bases.

This research is deep in the exploratory stage. There are a couple avenues I’d like to explore over
the summer. The first is varying the fashion in which the region is grown. Instead of traveling
over edges in the triangle mesh, I would like to use geodesic distance instead [9]. This metric is a
technique for accurately calculating distance along a triangle mesh surface by following a line on
the surface between vertices instead of tracing edges. A ripe tool for visualization would involve the
use of exponential maps [10]. Exponential maps can be thought of as a way to flatten a complex,
curved surface into a flat surface, in part by using the properties of the geodesic distance.

As seen in Figure 3, a point of interest is in the center. The geodesics are the directional vectors
that radiate out from the picked center point. While the figure shows a simple sphere, one can
imagine that on a more complicated surface the rays would accurately follow the proper geodesic
distance from the center point. The Hopf-Rinow theorem that states that the exponential map is
defined everywhere only if the surface is smooth manifolds. Unfortunately, this is not the case in

7



Figure 3: A sample representation of an exponential map centered at point p.

the solvent-excluded surfaces of the protein. Regions that are not smooth produce fractures on
the exponential map that result in a discontinuous plane. Our anticipation based on preliminary
exploration is that the exponential map is wholly defined in a local region (< 10 Å), which should
be significant for our region matching needs.

There are a couple caveats to this approach of region matching, however. The first and formost
assumption we must acknowledge is the fact that we are doing all this functional prediction here
in silico. Our prediction of binding affinity and compatibility is only as good as our modeling, and
by extension the descriptors that we’ve chosen. The chemistry of protein interaction can only be
definitively proven in the wet laboratory – tools of this nature should therefore serve to be a useful
tool in predicting and guiding time-consuming physical experiments.

Secondly, each descriptor is weighted equally. Realistically, each descriptor should be weighted for
each specific protein-ligand and protein-protein interaction. For example, say a ligand is non-polar
and has neutral charge; now the metric of charge makes no sense and should have no effect on
binding affinity. However, when we try to find distance or the nearest comparable feature vector,
dimensions that may not apply or apply less will still be taken into account, due to the fact that
we utilize Euclidean distance (for lack of a comprehensive distance metric). This limitation has
been brought up in previous work [4], and I propose to use machine learning techniques to learn
an accurate model by weighting descriptor dimensions according to the specific binding interface.

There are several avenues to learning descriptor weights. The first is to do a per-interface learning of
dimensional parameters. Given labeled interfaces that bind the same ligand (essentially the shadow
referenced earlier), an expectation-maximization algorithm can gradually learn the corresponding
relative weights of the predictive dimensions. Another possibility that utilizes labeled data is to
perform a special kind of principal component analysis (Kernel PCA) in order to determine the key
dimensions for each unique ligand [11]. However, an anticipated problem with these approaches
echoes the original problem of weighting dimensions: regardless of the way these dimensional
weights are constructed, the weights are still specific to the ligand that is interacting with the
protein. Ideally, we should break out of this feedback loop and weight the feature dimensions of the
protein’s interface based either on the ligand composition, cellular environment, or other biological
hints.

The lessons learned over the last couple of months will guide my research into the summer. From
the textual region matcher, we see that the idea of utilizing and aggregating these local shape
and chemical descriptors into regions to describe a binding interface is a tractable problem and a
feasible way to match functionality. However, it does seem to have its limitations that have been
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detailed here, and solutions to those problems have been proposed and will be investigated over
the coming months. As of now, this tool acts just as a functional surface ‘highlighter,’ but I hope
it will develop into a functional unit and interface region predictor.
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