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ABSTRACT

In discrete undirected graphical models, the conditiondependence of the node labéisis
specified by the graph structure. We study the case where ihanother input random vectar
(e.g. observed features) such that the distribufigi’ | X) is determined by functions of that
characterize the (higher-order) interactions amongdftee The main contribution is to learn the
graph structure and the functions conditionedomt the same time.

Parameterizing the graphical models with potential fuoreti might lead to overparameteri-
zation. We prove that the discrete undirected graphicaletsodith featureX are equivalent to
the multivariate discrete models. The reparameterizadiothe potential functions in graphical
models by conditional log odds ratios of the latter offersadages in the representation of the
conditional independence structure. And the two paranzetisons are proved to be equivalent.
In addition, the spaces of conditional log odds ratios cachmsen flexibly. They could be lin-
ear functional spaces (parametric), or separable Repimglé@rnel Hilbert Spaces determined by
kernels (non-parametric).

To obtain a sparse estimation of the graph structure, we ssa@oStructure Lasso (SLasso)
penalty on groups of the conditional log odds ratios to legaegraph structure. These groups
with overlaps are designed to enforce hierarchical fumcsielection. An efficient gradient descent
algorithm is given to estimate the complete model. The dlabavergence of the algorithm is
guaranteed. And a greedy approach is applied when the ggdguige. The BGACV tuning method
is derived to select the tuning parameter. It achievesfaat@y numerical results in simulation

studies.



The asymptotic analysis shows that the SLasso method igstemisin terms of estimating
the graph structure. The consistency properties hold ftin bee parametric models and the non-
parametric models. The experiments show that the SLassoochét able to recover the graph

structure with increasing sample size. It also outperfoother methods in the simulation studies.



Chapter 1

Overview

In undirected graphical models (UGMs), a graph is definedas- (2, ), whereQ) =
{1,---, K} is the set of nodes anfl C () x ) is the set of edges between the nodes. In fads,
associated to a multivariate response variable (Yi,--- ,Yx)?, andE specifies the conditional
independence structure among the components. The UGMsheavewidely used in computer
vision, natural language processing and other applicatibor example, the Conditional Random
Fields (CRFs) (Lafferty et al. (2001) [48]) and the extensioce.g., dynamic CRF (Sutton et al.
(2007) [82]), are well known in Natural Language Processimigmunity. The CRFs achieve great
success by modeling the effects of featuke®sn the labels (responseg)of the nodes. There are
also numerous applications of the UGMs to computer visiae(iSki et al. (2007) [83], Schnitzs-
pan et al. (2009) [77]), image processing (Schmidt et al08(076]), social networks (Banerjee
et al. (2008) [8]), and so on.

Graphical Models facilitate the prediction &f by modeling the relations between its com-
ponents. Multi-task learning (Caruana (1997) [15]) is tedto Graphical Models in this sense.
The difference is that the multi-task learning is not foaus@ higher order interactions on the
responses. In the Multi-task learning setting, a set of nlasens are given for each of tHE
tasks. In many cases, these tasks will share the same settofdfe. The general assumption is
that there are certain relations between the tasks. Therefmdeling thd” tasks at the same time
and considering the relations will be a better choice thaating each task independently. For ex-
ample, learning speech recognition models for differemagers could be treated as a multi-task

learning problem, since the commonality between diffesgr@akers could be utilized to improve



the performance. Another example is identifying differbat related objects in computer vision
(Torralba et al. (2004) [85]).

Evgeniou et al. (2005) [22] considered the embedding of éad¢uires into another space and
proposed to learn at the same time theask functions that are in Reproducing Kernel Hilbert
Spaces (RKHS). The algorithm works for the linear task fiomst with linear embedding. Ar-
gyriou et al. (2008) [3] proposed a framework to learn spaggpeesentations shared across mul-
tiple tasks. The objective function is non-convex becatisgs to learn the feature map and the
regression parameters at the same time. They proved thabtireonvex problem is equivalent to
a convex problem and provided the corresponding iteraliiegrating algorithm. This method is
also related to multiple kernel learning (Bach et al. (2q@%)) Caponnetto et al. (2008) [13] stud-
ied the theoretical conditions under which every contiraiaunction in a RKHS can be uniformly
approximated in the multi-task settings.

The UGMs are powerful in modeling the joint distribution¥dfconditioned on input variables
X. The graph structure specifies the conditional indeperelancong the nodes. In many ap-
plications, the graph is pre-determined by certain domaiomkedge. For example, Duan et al.
(2008) [20] proposed a collective model for labeling musgnals with fully connected graph,
which they called collective conditional random fields. yhmeave50 labels in10 semantic cat-
egories such as genre (blues, rap, ...), instrument (gytano, ...), production (studio, live),
rhythm(strong, weak, middle), and etc. It is possible tlweme links should not appear, e.g., pro-
duction and instrument. Estimating the parameters witBaheteractions included will possibly
lead to overfitting. It is important to learn the graph sturetand the functions associated with the
structure at the same time.

Many prior works have focused on the graphical structurenieg without conditioning on
X. For instance, Meinshausen andtmann (2006) [63] and Peng et al. (2009) [67] studied the
sparse covariance estimation of the Gaussian Markov Rarkdelas (Speed and Kiiveri (1986)
[80]). The covariance matrix fully determines the indepameck structure in the Gaussian dis-
tribution, and thus, specifies the linkage. But it is not tlasecfor non-elliptical distributions,

such as the distribution of the multivariate discrete rand@riables. Ravikumar et al. (2010)



[71] and Xue et al. (2010) [98] discussed consistent strectelection of Ising models based
on thel,-regularized logistic regression, whiledfling and Tibshirani (2009) [33] proposed using
pseudo-likelihood with; penalty for estimating sparse Ising models. Ising modetsspecial
cases of discrete UGMs with only pairwise interactions, @rsdially) without features. We focuse
on the discrete UGMs with both higher order interactions fmadures. It is important to note that
the graph structure may change conditioned on diffef&sf thus our approach may lead to better
estimations and interpretation.

In addressing the problem of structure learning with feadutiu et al. (2010) [55] assumed
thatY is Gaussian distributed givek, and they partitioned the space &finto bins. We do not
assume any special structureso% in this work but focus ort” which is multivariate discrete
when conditioned onX. Schmidt et al. (2008) [76] proposed a framework to jointharn the
pairwise CRFs and the parameters with bléckegularization. Bradley and Guestrin (2010) [11]
learned tree CRF that recovers a max spanning tree of a ctengykgoh based on heuristic pairwise
link scores. These methods utilize only pairwise informatio scale to large graphs. The closest
work is Schmidt and Murphy (2010) [75], which examined thghar-order graphical structure
learning problem without considering features. They usedetive set method to learn higher
order interactions in a greedy manner. Their model is oweameterized, and the hierarchical
assumption is sufficient but not necessary for conditiondépendence in the graph. Buchmann
et al. (2012) [12] proposed a structure learning method &ty UGMs without features based
on spectral parameterization. This parameterization isvatent to the multivariate Bernoulli
parameterization discussed in Section 2.2. They compaifedesht parameterizations and showed
that the spectral parameterization is one of the best pamfgy parameterizations.

To the best of our knowledge, no previous work addressedstueiof graph structure learning
of all orders while conditioning on input features. The atea@e is the combination of the graph
structure learning and the flexible choice of the functisces oX'. Our contributions include
a reparemeterization of the UGMs with bivariate outcomeshgymultivariate Bernoulli (MVB)
models. It can be easily extended to general discrete UGM&@sn in Section 2.3. The set of

conditional log odds ratios in the MVB models are completegqaresent the effects of features



on responses and their interactions at all levels. The gpansthe set of functions are sufficient
and necessary for the conditional independence in the giaghtwo nodes are conditionally
independent if and only if all the interactions that contdiese two nodes are constant zero; and
the higher order interaction among a subset of nodes mearesafdhe variables is separable from
the others in the joint distribution.

To obtain a sparse graph structure, we impose StructureoL@sasso) penalty on groups
of the conditional log odds ratios with overlaps. SLasso loarviewed as the group lasso with
overlaps. The group lasso that is proposed in Yuan and Li@GP[L00] leads to the selection of
variables in groups. They showed that it is consistent whergtoups are exclusive and cover the
whole set. Jacob et al. (2009) [35] considered the penaltyronps with arbitrary overlaps. Zhao
etal. (2009) [103] set up the general framework for hiererahvariable selection with overlapping
groups, which we adopt here for the functions. Our groupsdasagned to enforce the sparsity
on the set of functions and shrink higher order interactisingilar to the hierarchical inclusion
restriction in Schmidt and Murphy (2010) [75]. We give a proal linearization algorithm that
efficiently learns the complete model, where the normabrafactor is calculated by the junction
tree algorithm (Koller and Friedman (2009) [44]). The glbbanvergence is guaranteed (Wright
(2010) [96]). It can be used in applications where the nunabeesponses is small, such as the
Census Bureau data in Section 5.2. It can also be applieddelrtite relations of multiple clinical
responses (hypertension, diabetes, etc.) and how theyffactea by the person’s genetic and
environmental variables (smoking, income, etc). We thappse a greedy search algorithm to
scale our method to large graphs as the number of parametsvs gxponentially. This algorithm
can scale to large graphs (100 nodes or more) by a greedy égpelsfrom main effects to higher
order interactions.

In addition, we allow the conditional log odds ratios of tleénj distribution be functions in
any separable Reproducing Kernel Hilbert Spaces. In thig wa extend the linear models to
the non-parametric models. For the non-parametric regmess exponential families, Lin and
Zhang (2006) [53] proposed the component selection and gnmgpoperator (COSSO) method

for model selection and estimation. They proposed itegaditernating algorithm for learning the



model parameters and the dummy variables that determirespéusity in the model. Although
optimizing over the two sets of parameters is not convexy g8tewed it is equivalent to a con-
vex optimization problem. They also showed the rate of CO®Stnators converging to the
true model in terms of thé, norm of the function values on the observations. Other esfess
about the asymptotic results of non-parametric modelsugelbut not restricted to Bach (2008)
[6], Radchenko and James (2010) [69], Ravikumar et al. (RO0Y, Meier et al. (2009) [62],
Huang et al. (2010) [34], and Koltchinskii and Yuan (2013][40ur contribution is to give the
sufficient and necessary conditions for the model selectmsistency of SLasso with parametric
and non-parametric models. Due to the special design oftthetsre penalty, the SLasso method
is consistent in terms of graphs structure estimation. Thaft the true model satisfies the hier-
archical structure assumption, the SLasso method is densis estimating the set of non-zero
conditional log odds ratios. If not, the SLasso method vetaver a superset of the non-zero con-
ditional log odds ratios in the true model. The supersetsiill give the same graph structure, so
the result will still preserve the conditional independestructure.

The thesis is organized as follows: Chapter 2 introducesGiaphical Models, multivariate
Bernoulli model and its generalizations, multivariatecdede model. We show that Graphical
Models are equivalent to the multivariate discrete modetgpter 3 discussed the SLasso method
and the structure penalty. We provided the gradient desalgotithm for learning the model.
We derive the GACV and BGACYV score to select the tuning patame&hapter 4 discusses the
asymptotic results for parametric and non-parametric Hsodéhe experiments are discussed in
Chapter 5. Chapter 6 gives the concluding remarks.

The notations in this paper are summarized in Table 1.1. Mfitepecial notice|| - ||, denotes
the Euclideari, normifn =1,2,---; || - || denotes the norm in the spakg || - || x denotes the
norm induced by the kerné{’; || - || ; denotes the conjugate norm with respecyitdf 7 is itself a

norm (or a penalty) as defined in Definition 4.17.



Table 1.1 Notations

Symbol | Description
|- | Euclidean/;, norm
n Sample size
D Number of covariates
K Number of Response/Output
Y K dimensional Response/Output
X Covariates/Feature/Input, x p matrix
Q Setof{1,2,...,K}
©(£2) | Power set of2 except the empty set
w,k,v | Element ofp(Q2) used for indexing
v (@) | y2(0) = iew ur(2)
V(i) | Augmented responsés’ (i), ..., y"(i)) wherey” (i) = [, v (?)
c Model parameters
D Dimension ofc. Itis (p + 1) in linear models
K Number of f“’s. Itis |p(€2)] if there is no restriction on the model
T, T, = {w|v C w} is the subgraph rooted atcontaining all its descendants
fl [T = (f*),w € T, wheref* is the conditional log odds ratio
J(f) | Penalty onf
Iy The objective with tuning parametar
Do Weight for penalty on structurg,
sy, 7, | Subgradient oh.J(f*) of thevth group
S(y; ) | S9(yiw) = 3 eqe ¥ "




Chapter 2

Graphical Models and Multivariate Discrete Distribution

In this chapter, we will discuss the distribution of a mudtilate discrete random vector which
has higher order interactions. We will show that the forrtialaof the multivariate discrete distri-
bution is equivalent to the discrete Undirected Graphicatl®ls. And the former is more suitable

for learning the graph structure.

2.1 Discrete Undirected Graphical Models

In Undirected Graphical Models (UGMs), a graph is definedzas- (2, E), whereQ) =
{1,---, K} is the set of nodes anfl C Q) x Q is the set of edges between the nodes. A UGM
is also called a Markov Random Field (Kindermann et al. (3980]) because of its Markov
properties we will discuss later.

Suppose the multivariate response vector associatedhdthddes i = (Y;,--- , Yx)T, and
suppose there is@dimensional predictive variabl& which can be viewed as common features
shared by thd{ response variables. We call a UGM with discrete respondahlas as a discrete
UGM.

The Markov property formulates the conditional indeperagestructure of a UGM: given three
sets of nodes!, B, C'in 2, A and B are independent givefi if all the paths from a node id to
a node inB will go throughC'. Define a clique to be a fully connect subgraphthfand define a
maximal clique to be a clique which is not properly contaimedny other cliques. The Markov

property leads to the conclusion that any two nodes not ingaelare conditionally independent



given others. This property gives a reasonable decompaositf the graphz according to the
cliques.
One formulation of the joint distribution of discreté = (V4,...,Yx)? conditioned onX is

parameterized by a set of potential functions on a set oitjmens (Bishop (2006) [10] Chapter 8)

P(Yl:yla---aYK:yK|X): H@C(yc;X) (2.1)

1
2(X) Gee

whereZ(X) is a normalization factor that ensur$-) is a well defined probability measure

Z2(X)=> ] ®clye; X) (2.2)

y CeC
The distribution in Equation (2.1) is factorized accorditmgC, which is usually the set of
cliques in the graph.®-(X) is a potential function ofX on C, indexed by the realization of

Yo = yo = (¥i)icc, that is

Po(X) = ZI(YO =1yc)®c(ye; X) (2.3)

Yyc
where(-) is the indicator function. And we only considég > 0 to make sure the probability
will always > 0.

For the purpose of efficient computatian,js often chosen to be the set of maximal cliques.
Different representations by non-maximal cliques can beveded to maximal cliques represen-
tation by reformulation of the potential functions (Waingirt and Jordan (2008) [94] Chapter 2).
SoC does not have to be the set of cliques implied by the grapbtsire, as long as it is sufficient
to represent the joint distribution. For example, the m@stegal and trivial choice for any given
graphisC = {Q}. In this case, we cannot infer the conditional independémce the formulation
in Equation (2.1). There ar2® potential functions for any given graph, even a sparse otgs T
number is much more than that in a maximal cliques repregengafor a sparse graph. This is
because choosingas{2} is over-parameterized. And a lot of those potential funtiare trivial
in the sense of being constant functions. In this case, thdittonal independence between the

response variables is implicitly formulated by the formloé fpotential functions.



Example 2.1. In Figure 2.1(a), we have a triangle cliqug, Y5, Y3} indicate a third order in-
teraction. Y, is independent with other nodes. Additionally, there is avpiae interaction be-
tweenY; andY,. Y, is conditionally independent with; or Y; givenYs. C in Figure 2.1(a) is
{{1,2,3},{3,4}}.

In Figure 2.1(b),Ys, Y; are another set of interacted random variables which arepehdent
of other 4 nodes. In this cas€)>,Y,} are conditionally independent given, so are{Y3,Y,}.
C=1{{1,2,3},{3,4},{5,6}}.

In Figure 2.1(c),Ys, Ys, Y7, Y form a 4-node clique that are independentfoY>, Y3 and Y.

C ={{1,2,3}.{3,4},{5,6,7,8}}.
In Figure 2.1(d),Ys, - - - , Ys form a 4-node cliqueYy, Y7, are connected to the clique through

Y. C = {{1,2,3}, 13,4}, {4,5},{5.6,7,8},{7,9}, {9, 10} }.

2.2 Multivariate Bernoulli Distribution

The Graphical Model representation in Equation (2.1) is @dw in formulating the joint dis-
tribution of the multivariate discrete random variablethié graph structure is known in advance.
It greatly reduces the number of parameters. But if the giapinknown in advance, estimat-
ing the potential functions on all possible cliques tenddeocover-parameterized (Schmidt and
Murphy (2010) [75]). Furthermore, forcing ®-(yc; X) = 0 is sufficient for the conditional
independence among the nodes but not necessary (see S&eti8nh Therefore, we introduce
another parameterization to learn the joint distributidmew the conditional independence (graph
structure) is not known.

In this section, we consider the multivariate Bernoulli (BMandom variables, i.€/;, = 0 or

1. The general results of multivariate discrete random Wéemare provided in Section 2.3.

2.2.1 Multivariate Bernoulli Distribution formulation

The multivariate Bernoulli (MVB) model o random variables is equivalent to Equation (2.1)

with binary nodes (see Theorem 2.3). It RAs— 1 natural parameters (Whittaker (1990) [95]) if



(a) Graph 1 (b) Graph 2
(c) Graph 3

(d) Graph 4

Figure 2.1 Graphical model examples.
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the graph is fully connected. The distribution of the MVB nebi$

P(Yi=yi,....Yi =yl X) = exp { VT f(X) = b(f(X))} (2.4)
= exp{ylfl(X) +...+nyK(X)
+ ?le2f1’2(X) + -+ yK_lnyK—LK

Here, we use the following notations. Let= {1, ..., K} be the set of the nodes in the graph.
Denotep((2) the power set of? leaving out the empty s€f)} to index the components from main
effects to higher order interactions in the model. There|at€)| = 2% — 1 components {~’s)
in (2.4) as free parameters. Letdenotes a set ip(Q2), definey = (y*,--- ,y~,--- ,4*) be the
augmented response with

v =] v (2.5)
€W

Given the predictive variabl&, f = (f',..., f“,..., f*)is a vector of functions ok, called
conditional log odds ratios (Gao et al. (2001) [25]). It isafeferred to as natural parameters in
the exponential family (McCullagh and Nelder (1989) [60)e will call f!,--- , f& main effects,
andf%2, ... | fiK the interactions between the response variables.

From the distribution of a MVB random variablé?(x) is equivalent to
f(x) =1log OR(Y;,i € w|Y; =0,j ¢ w; X = x) (2.6)

Here, the odds ratios are calculated recursively as

. P, =1X=u)
omnuﬁﬂg_l_mnznxzxy (2.7)
_ OR(Y,icwlY,=1,X =)

C OR(Y,,i €w|Yr=0,X =2)

The following two notations are useful in optimization aratgmeter tuning

OR(Y;,i € wU {k}X = z) , with k ¢ w (2.8)

S(yse) =yt frw); SUe) =D fr(w); (2.9)

KCw kCw
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Then the normalization factor is

exp(b(f(2))) =1+ Y exp(59(x)) (2.10)

wep(Q)

In practice, thexp(b(f(z))) is calculated by the junction tree algorithm (Koller andefirnan
(2009) [44] Chapter 10) to avoid enumeratitiy possible values df , which is intractable in large
graphs.

We assumg" is in a separable Reproducing Kernel Hilbert Space (RKHSvith kernel K,
(Wahba (1990) [90]). The details are discussed in Sectién\&e focus on estimating the set of

1 (x) with featurex where the sparsity in the set specifies the graph structure.

2.2.2 Relations to Binary Undirected Graphical Models

We present the following lemma and theorem which show thévatpnce between the binary
UGM in Equation (2.1) and the MVB model in Equation (2.4):

Lemma 2.2. In a MVB model, define the odd-even partition of the power Betas: p,(w) =
{k Cw | |k| = |w| — k,wherek is odd}, andp.(w) = {k Cw | |k| = |w| — k, wherek is ever}.
Note|p,(w)| = |pe(w)| = 2“/~1. The following properties hold:

PY;=1,icw,andY; =0,j € Q\w|X)

exp(S¥(X)) = POV, = 0.1 € OX) (2.11)
. [Ticpow) PYi=1i € r;Y; = 0,5 € Q\s|X)

P =l = PV = TiemY, =0, € O\a[X) (2.12)

b(f(X)) = log (X) (2.13)

HCec (I)C( )

Proof. This lemma follows from the formulation of MVB in Equation.@ and the definition of

odds ratios in Equation (2.6). O

Theorem 2.3. A UGM of the general form21) with binary nodes is equivalent to a MVB model

of (2.4). In addition, the followings are equivalent:

1. There is ndC|-order interaction in{Y;,i € C'};
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2. There is no cliqué&’ C 2 in the graph;

3. f¥=0forall wsuch that” C w.
Proof. The proof is given in Appendix A.1. O

The |C|-order interaction in{Y;,i € C} is defined as{Y;,i € C} are not separable in the
joint distribution. Theorem 2.3 states that there is a @diquin the graph, if and only if there is
w 2 C, f“ # 0in the MVB model. The advantage of modeling by MVB is that tparsity in
f“’s is sufficient and necessary for the conditional independen the graph, thus fully specifying
the graph structure. Specially;, Y; are conditionally independent if and onlyfif = 0 for any
w such that{i, j} C w. This showed the interaction is non-zero if all the nodeslved are not

pairwisely conditionally independent.

2.2.3 Examples in Bivariate Case

For a graph withK" nodes, suppose we choase= {2}, the parameters in binary UGM are
{®, | w C Q}, whered, = 0q(Y; = 1,7 € w,andY; = 0,5 € 2 — w) is the potential function.
We usually restrictby = 1 to make the model identifiable. So there afe— 1 free parameters.
Similarly, there are alsd” — 1 free parameters in MVB modef¥, . .., /)

WhenK = 2, Q = {1,2},C = {Q}, write p,,,, = P(Y1 = y1,Y> = 52| X)) for simlicity, the

distribution ofY given X is:

P(Y1 =y, Yy = yng) _ p.vﬁyzplljé(l*92)p(()11*y1)y2p(()%fy1)(1*y2) (2.14)

= exp {y1 log U] + y5 log ot + y1y2 log PuPoo + 1Og(poo)}
Poo Poo P1oPo1

The MVB formulation of the distribution isf* denotesf“ (X ) for simplicity):

P(Y1 =12, Y2 = 1| X) = exp {ylfl + y2f* + e f1 (2.15)

- IOg [exp(fl) + exp(fz) —+ eXp(fl + f2 + f1,2):| }
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Write @ (Y; = y», Y2 = yo; X ) as®,,,, for simplicity, then the distribution with UGM param-
eterization is
1

PY1=12,Y, = 1| X) = m‘bylyz(){) (2.16)
Comparing Equation (2.14), (2.15) and (2.16), and appltfiegesults in Lemma 2.2, we know
1 1 1 1
Poo = 2@00, Po1 = 2@017 P1o = 2@10, P11 = Ecpu
f'=log(pio), 2 =log(por), [ = log P
P1oPo1
And the relations between UGM and MVB are
P
1=1o ﬁ,
/ & Do
P
2 _ 1o ﬂ7
f & Do
Py -P
1,2 —lo 11 00
/ s Dy - Py
Note, the independence betwegénandY; implies:
Hy-P
1,2 11 00
“=0 or log———=0
/ 301 - Dy

Therefore,f!? being zero in the bivariate MVB model is sufficient and neaeg$or the con-
ditional independence in the model. On the other h&ngdd = 0 is a sufficient condition but not

necessary.

2.3 Multivariate Discrete Distribution

The distribution of a general multivariate discrete randaator wherey), € {0,--- ,m — 1}

can be extended from Equation (2.4).

Proposition 2.4. LetV = {1,...,m — 1}, y, = (¥i)icw, then

P(Yi=yr, Y =yxlX) =exp{ Y Y Iyo=0)f7 —b(f)} (2.17)

w=1 yeVlv

wherel is an indicator function and’™ = V x --- x V is the Cartesian product of V''s. Each

f«isa(m — 1)l dimensional vector.
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R TR
(m—1) +(m—1) +--+(m—1) =m" —1 (2.18)
1 2 K

Thus, the number of free parameters in Equation (2.17) ialdquhe number in Equation (2.1).

Note

And similarly, the multivariate discrete distribution foulation is equivalent to UGM whose re-

sponse variables taking valuelih= {0,1,--- ;m — 1}.
2.4 Multivariate functions in Reproducing Kernel Hilbert S paces

The Reproducing Kernel Hilbert Space (Aronszajn (1950) f4]is a Hilbert space of func-
tions onX for which all the evaluation functionals are bounded anddin It is associated with
a unique Kernel functioX which is positive definite in the sense that for amy= 1,2, -,
z(1),---,z(n) € Xanday, -+ ,a, € R, 3" a;a;K(x(i),z(j)) > 0. K(z,-) is the Reisz
representer of the evaluation functional such t¥&tz, -), f),, = f(«), forany f € H. More
details about the related theorems and choicés can be referred to Wahba (1990) [90].

The extension to the general Reproducing Kernel Hilbertc8paf multivariate functions is
discussed in Wahba (1992) [91]. Micchelli and Pontil (20[@)] gave another general extension
to Hilbert space valued functions. They showed the repteséimeorem holds and provided prac-
tical discussions about the regularization problems, dsasdahe form of Kernels. Another good
reference to vector valued Reproducing Kernel Hilbert 8gaan be found in Carmeli et al. (2006)
[14].

Let f be aM dimensional vector valued function & thatisf(z) = (f*(z), -+, fM(x))’ €
RM. Let u,v index theu-th andv-th components off (z); M = {1,--- ,M}. Let K be an
positive definite function oM x X} x {M x X} in the sense that for any = 1,2,---,
z(1),--- ,z(n) € X,anda,; € Rforu=1,--- M,i=1,---,n

M n

Z Z Qi K (w, 2(1);0,2(5)) > 0 (2.19)

w,v=11,j=1



16

For any fixedv, x, we define thel/ dimensional vector function as

K(1,v,1)

K o K(Q,-;U,l’)
() = (2.20)

K(M,-;v,x)

Then, the RKHSH  associated with kernek is defined as the closure of all the countable
linear combinations of Equation (2.20) in the form f(fr) = >, Zﬁil Coily (i) (7). Kyg iS
the Reisz representer of the evaluation functional sudthd<, .),, = f*().

The famous Kimerdolf and Wahba representer theorem (Kiareéhd Wahba (1971) [39]) can
be extended to the multivariate case in Wahba (1992) [91{.yL€) denote the-th component
of the i-th response. Suppose the observation is Gaussian datatataefi (i) = f“(x(i)) +
€°(i), wheree(i),7 = 1,--- ,n are iid multivariate Gaussian random variaV€0, %7,;). The

minimizer of the following objective function

min 3737 (4 (1) = £ () + Al I (2.21)
has the form of
F@) =) éuKya(z) (2.22)

=1 v=1
We assume in the MVB distributiorf, is in a Reproducing Kernel Hilbert Space (RKHS)
with kernel K. Since we do not assume any special connection between anyf ganditional
log odds ratios, we will supposg € H, which is only associated with a reproducing kerhgl

It is equivalent to assum& (u, -; v, -) = 0 for anyu # v in the general representation. In this case,

M
1A 1 = 2202 1121,
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Chapter 3
Structure Lasso Model for Graph Learning

3.1 Structure Lasso
3.1.1 Structure Penalty

In many applications, the assumption is that the graph hpsfees large cliques. It is nat-
ual to build up higher order interactions if (at least somejhe@ lower order interactions exist.
One example is the forward search strategy in multivariat@ptve regression splines (MARS,
Friedman (1991) [24]). In terms of graph structure learniwg are mainly interested in the set
of maximal clique<” which determines the conditional independence structiitieeograph. Any
C € C contains the cliques of its subset with smaller size. It$eas to include a higher order
interaction only when all its lower order interactions ameluded. Although, with careful choice
of the potential functior on the maximal cliqué€’, we might obtain a MVB distribution where
some lower order interactions are zero givénis non-zero in the model. For examplg;>? # 0
but f1? = 0 in the true mode. This situation is highly related to the paeterization of the joint
distribution, but it does not affect the conditional indegdence structure of the graph. Later on,
the theoretical studies show that this hierarchical retsbm will lead to the estimation consistency
in graph structure learning. Schmidt and Murphy (2010) [@3plied the same hierarchical inclu-
sion restriction in structure learning with the graphicabael parameterization (Equation (2.1)).
Radchenko and James (2010) [69] also suggested to incladeaim effects ahead of the pairwise
interaction terms in high dimensional settings for linezgression.

Our model is to fit the graphical model by its multivariate Bewlli parameterization. We

consider the conditional distribution of the nodés) (given the predictive variablesX(). The
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sparsity in the set of conditional log odds ratios is suffitiand necessary for the conditional
independence in the graph. Our model are very flexible fhat) can be in an arbitrary separable
RKHS.

LetY (i) = (Yi(4),...,Yk(?)), X (i) = (X1(7),...,X,(i)) be theith observation. The aug-

mented representation of the multivariate response is:

V()= (y'(6), ...,y (), ..., y" ()" (3.1)

The joint distribution in Equation (2.4) contaid§é = ()| = 2 — 1 conditional log odds
ratios in the complete model. Suppose the input varidble X ¢ R?, the model hag = p - K
free parameters. In cases where there are no predictivablesi, e.g., Efling and Tibshirani
(2009) [33] and Ravikumar et al. (2010) [71], the complete BMMistribution hag) = 2% — 1 free
parameters. We first consider learning the full model wheis small, and later propose a greedy
search algorithm to scale to large graphs.

To obtain a sparse estimation of the conditional log oddssatve follow the framework of
penalized likelihood method (Good and Gaskins (1971) [29])
win T0(f) = £+ AT () = 2 30 (= Y0 ) +1N) + AT (32)

feHK

i=1

Here, the loss function is the negative log likelihood of dservationZ = (X,Y)
L(Y; f(X)) = =Y'f(X) + b (f(X)) (3.3)

and denotel,(f) = L(Y; f(X)). Then,L(f) = + >, Ly,(f) is the negative log likelihood
that evaluate the goodness-of-fif.(-) is the penalty that enforce the smoothness and sparsity of
the vector valued functiori. And \ is the tuning parameter, which controls the trade-off betwe
LandJ.

Our objective is to obtain a sparse estimation of the cligaéise graph through the sparsity of
the components in the vector-valued functifinTake the pairwise links for example. No link be-
tweenY, Y; in the graphical model means they are conditionally inddpengiven other nodes, or

equivalently,f~ = 0 for all w O {s,t} (Theorem 2.3). For example, in Figure (2.1()), Y, are



19

conditionally independent mearfis*, 124, f1.34 1234 gre all zero. This objective is similar to
the sparse covariance matrix estimation in Gaussian MaRendom Fields for neighborhood se-
lection with lasso (Meinshausen andiBmann (2006) [63]). The sparse penalty:) is designed
to construct such a graph with sparse cliques. However, aaetwill deal with higher order co-
variance structures that do not exist in Gaussian data. ditiad, we not only consider the graph
structure of responsas alone, but also the effects of predictive variable®n Y.

To satisfy this intuition, the penalty is designed to shimgher order interactions in a hierar-
chical manner. The hierarchical assumption is that if thergo interaction on cliqué’, then f“
should be zero, for alb © C'. We consider the Structure Lasso (SLasso) penalty to sktiok f“
toward zero. It is guided by a lattice like Figure (3.1). Th#ite hask nodes:1,...,w,...,Q.
There is an edge frony; to w, if and only if w; C wy and|w| + 1 = |w,|. Jenatton et al. (2011)
[36] discussed how to define the groups to achieve differentzero patterns in a structured way.

Let 7, = {w € p()|v C w} be the subgraph rooted atin the lattice, including all the
descendants of. 7 = {7}, ..., T} categorize all the functions into groups with overlaps. &ten
™ be the vector of functions that concatenates all the compensf f in 7, such thatf”> =
(f“)wer,. Based on the discussion of the extension of RKHS theoremisctior valued functions
in Section 2.4, we know”* € Hp, which is a RKHS associated with kerngl.,. And K7, is the

original kernelK restricted on the index s&t,. The Structure Lasso (SLasso) penalty on group

To(F) = poll £ ey, = o, [ D 1113,
weTy

wherep, is the weight for the penalty of,. p, is empirically chosen a%, since we do not hope

is:

to penalize too much on the components that appear in mamypgroAnd the complete penalty

T =3 =D oo D 13 (3.4)
vEP(Q) vEP(N) weT,

function is



Figure 3.1 Hierarchical lattice for penalty

20
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Then, the objective is:

min To(f) = L) +A D po |3 Il (35)
vEP(Q) weTy

The following example helps illustraté 7, and the objective function.

Example 3.1.1f K = 3, the vector-valued function isf = (f!, f2, f3, f12, f13, /23, f123). The
group at nodel in the lattice (Figure (3.1) ) isf™ = (1, f42, f13, f123) and the objective is

min £f) + Apr /TP 12+ T+ 72

+2V/ (| 2112 + (1 F2212 + [ £23)12 + || F223))2
s/ IR+ NP2+ 220 + 22 (3.6)
912V I+ 7222 + o/ IFE T + 17202

225V I+ T2 + praa /1727

In non-parametric smoothing regression problems, Lin ahdng (2006) [53] first proposed
the penalty on the sum of RKHS norms instead of the squarethstw select the functional
components in Smoothing Spline ANOVA model (Wahba et al.98)992]). The RKHS norm
[N

fT» £ 0, the norm penalty will enforce the smoothness of the fumctithe penalty on the norm of

1y, IS NONsmooth af’ = 0, which leads to the sparse estimation of the componentsnWhe

a function in a RKHS can be viewed as a penalty on a group of hpaatameters, if the RKHS is
finite dimensional. Yuan and Lin (2006) [100] proposed Grbapso for the parametric regression
with similar philosophy. The structure penalty has the saifiect, except we are dealing with
vector-valued functions and we group the components oftthetfons with overlaps.

The negative log likelihood.(Y’; f(X)) of the MVB distribution ensures the loss functional
Lz(-) : Hx — R is strictly convex and continuously twice differentiab®ince it does not cause
problems for understanding the next theorem, we postpandidtussion of the differentials and
other functional operations oK in Section 4.3.1, where we are dealing with the asymptotic
results. The following theorem is the extension of the Kidodfrand Wahba representer theorem

to vector valued functions and structure penalty.
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Theorem 3.2. If the loss functionC(f) is convex and continuously twice differentiable, and the
penalty function7(f) is a norm onH, then the objective in EquatioB.p) is convex, and there
exists a minimizer of Equatio8.6). Letf be such minimizer, and assume the ketsiaé$ diagonal

in the sense thak (u, -;v,-) = 0 for anyu,v € p(Q) if u # v, then thew-th component of is

fv € span{K, xu(-),i = 1,---n}. Thatis,f*(-) = 1, ¢! K, x(;(-), for some real valued’.

Proof. See Appendix A.2. O

The representer theorem ensures that the solution of th@a@metric functional optimization
in Equation (3.5) is in a finite dimensional space. This iswcia property for the feasibility of
solving the objective function.

In addition, the following theorem shows that SLasso methciueves the hierarchical inclu-
sion restriction we impose on the graphical model. Thatysnimimizing the objective (3.5)],5“1
will enter the model beforg“? if w, C w,. Or equivalently, iff*: is zero, there will be no higher
order interactions ow, D w;. Itis an extension of Theorem 1 in Zhao et al. (2009) [103].

The reason can be easily perceived in the following exampgle? = 0 only occurs when
ffuzy = 0. Otherwise,||fT{1,2}||HT{1,2} is not at the singular point, and thus the probability of
f12 = 0is almost zero. However, jf123 = 0, we will still have the penalty ori:2 which may or

may not shrink it to zero.

Theorem 3.3.Letw;,ws € p(Q2) andw; C ws. If  is the minimizer of.5) given the observations,
then0 € 91, (f) which is the subgradient df at f. In addition, /> = 0 almost surely iff“: = 0.

Proof. The proof is given in Appendix A.3. O

3.1.2 Pattern Selection by SLasso/COSSO Penalty

The structure penalty will satisfy the hierarchical inchrsassumption in the estimated model.
In some real applications, it might be preferred to allown@gorder interactions exist even some or
none of its lower order ones are in the model. But SLasso danelol sparsity within the groups.

Friedman et al. (2010) [23] considered the sparse group lax#erion with the combination df
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andl, norm as the penalty for parametric linear regression mddel = X (i)7 3 + (i)

G
J(B) = MlBll + X2 D 1712 (3.7)
g=1

where is model parameter; is a partition of the components hiwithout overlaps, and? =
(B;);eq- They proposed to solve the optimization problem by coattirdescent procedure.

Yuan etal. (2011) [99] studied the problem of overlappingugrlasso problem with the penalty
of the same formulation as in Equation (3.7), except that #ilew the groups overlap with each
other. They proposed a fast algorithm based on gradienedéstethods which solve the convex
dual problem to obtain the proximal operator of the origioplimization problem.

To extend the idea of sparse group lasso to the vector valuedibnal space, we consider the

following SLasso /COSSO penalty

J(f)=T(f)+AT(f) (3.8)

= S a0 A Y 1
vEP(R) weTy veEP(N)

where 7°(f) is the structure penalty defined in Equation (3.4) afd(f) is the COSSO type
penalty function presented in Lin and Zhang (2006) [58]s another tuning parameter that con-
trols the trade-off between the two sparse penalties. Hsy ¢o verify that7( f) is also a norm on
Hx, then the representer theorem in Theorem 3.2 holds.

In linear models, to select the features within each coowigi log odds ratio, we propose the

following feature selection objective

J(f)=T°()) +T(f) (3.9)

=Y SR R Y e
’UG@(Q) weTy ’UG@(Q)

wherec? is the vector of paramters iff’. This objective can be used to select features in multivari-

ate Bernoulli data where not all of the predictive varialdes related to the response.
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3.2 Estimating the Complete Model for Small Graphs

In this section, we discuss the parameter estimation whereth RKHSH,, is composed of a
constant functions space and a non-constant RK¥S= H,, ¢&H,, 1. We takeH, o = {1}, which
refers to the constant function space. Ard; could be a linear function space (Example 3.4), a

B-Spline function space (Example 3.5), or a general RKHS.

Example 3.4.Suppose&X = [—1, 1|, H,,1 = {z1} @ - -- @ {x,} is a RKHS of linear functions. We
denote{x; } as a space of linear functions grth component of, and assume thg, inner product
on{z;}: (f,9) ;3 = f[_1,1] fg. For example, the functions ifx;} has the form ofz;. Itis easy to
obtain the following results: the associated kernekis, ;(s,t) = 2st; the functionf € {x;}
must be in the span of the basis functions obtained Q.. fi° € span{ K, (o) (-, 2(i)),i =

1,---,n} forsomen andz(1),--- ,z(n) € R. So it has the form of
3 .
= §Zbixi'x:cjx (3.10)

for someby, - -- b, € R, ande, = 327, (i) Thus || f[5,,, = 5(c¢)*
The function in{1} is a constant:fy = ¢;; the associated kernel witfil } is K, (1,(s,?) = 1

27
1f13,, = 2(c8)*.
Theorefore, by specificly choositg,, i.e. K, = >"_;0.,K., = Koo + 321;:1 Koo {2}

the functionf“ € H,, has the form of
p
x) =cy + Z i, (3.11)
j=1

Its norm is|| f“||xe =

- || stands for Euclidea, norm. Here, we denote’ =
(cg,...,c)" € RPT! as a vector of length + 1 andc = (*)uepi) € RX7 js the concatenated

vector of all parameters, whefe= (p + 1). Letc™ = (¢*), ez, be a(p+1) - |TV| vector, then the

min  Zy(c +A2pv IS (3.12)
cERKP w€eTy
(

=L(c) + 2D _pllc”|

objective 8.5) is now
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andT, is the subgraph rooted atdefined in the previous section.

Example 3.5.B-spline basis functions are used in many applictions,l@gh dimensional additive
modeling (Meier et al. (2009) [62] and Huang et al. (2010) [34 The details about B-spline
basis functions can be found in Appendix A.8 and in De BodgL{18].

SupposeX = [—1,17, H,,; is a B-Spline function space, with reasonable amount ofsbasi

functions. And we also assume thenorm on,,. Eachf“(z) € H,, has the form of
D
r)=c+ Y95 (x)) (3.13)
=1

whereg(z;) = Y1, ¢, Bi(z;) is spanned by the B-spline basis functigii,(-)}r—1,.. p; D is
the number of basis functions, and it is determined by thebeurof knots. See Section A.8 for
more details.

Let BY be aD x D matrix whosék, [-th element i§ By ), = f[ L] gr(x)gi(x)dx; and BY =

diag(1, BY,-- -, B;) be the blockwise diagonal matrix. Then, the nornonis
1713, = eI + Z ey = ()T B = |k, (3.14)
Here, we denote” = (¢, ¢f), - -+, ¢{p, - - -, ¢;p) as the finite dimensional parameterfiri”*!

for w-th component of; ¢ = (¢*)uep) € RX? is the concatenated vector of all parameters,
wherep = pD + 1. Denotec™ = (¢*),er, be a(pD + 1) - |T”| vector. We will obtain a similar

objective function as in EquatioB.(L2)

min  Z(c +A2pv I I3, (3.15)
CGRK‘TJ wGTv

c) + )\ZpUHcT”
= 2 wer, 17| k-

where||cT

3.2.1 Gradient Method by Proximal Linearization

Many applications do not involve a large amount of responsgg, the Census Bureau data

in our experiment. In these applications, the deep undaisigs of the higher order interaction
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structure are preferrable. So it is desirable to learn thapiete model when the graph is small.
In this section, we propose a method to optimize Equatids) (8.the general form of a complete
model.

In solving the optimizaition problem, each conditonal ladge ratio f“ is in a finite dimen-
sional function space spanned by the kernel function eteduan the: oberservationsz(1),--- ,z(n) €
RP. This is enusred by the representer theorem. It is natunakts /“ as a vector of parameters
& € R?. p = p+ 1 forlinear casep = pD + 1 for the B-spline case; and = n for a general
RKHS case. Denote the basis functions @qﬂ? lj=1,--- ,15}, and¢“ be thep dimensional
vector of the basis functions, then the formf¢fcan be written as

fo= (@) e=> & () (3.16)

j=1

Here, we use_, to denote the x p kernel matrix, which is determined by the observations
in an infinite dimensional RKHS, i.e., thek-th element of2,, is K, (x(j),x(k)); or which is
determined by the basis functions, i.égiz;?,gzs‘,g>m, foranyj,k = 1,---,p. Without special
notice, we use* instead off“, and the norm of* is ||“||x, = ||f“llxw, = (¢*)TE.¢*, and
the inner product ofiR? with respect to the kernel matrik, is (¢, d*) = (¢*)"X,d* for any
. dv € RP,

The definition of%,, can be extended from-th component tds - j x K - j kernel matrix2
of the vector valued function space, which is blockwise diej. The(u, v)-th block of X is 0 if
u # v; the (v, v)-th block isX,. Similarly, (-,-) -, and|| - || x can be defined.

Lin and Zhang (2006) [53] proposed an equivalent formuratd the COSSO objective to
solve the functional optimization problem with RKHS normisigh are nonsmooth at the singular
point. The equivalent formulation of Equation (3.5) is

1
omin L)+ M E(jm %% 1FI15) + Ao 2()9) o (3.17)

In the equivalent formulationy, is the dummy variable. The procedure is to iteratively fix

~ to get an optimal solution of, and then fixf to obtain a solution ofy. It is efficient for the

guadratic loss function on Gaussian data, but the altergatptimization might not scale well in
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our case. In stead, we estimate the complete model withtelidation levels by iteratively solving
the following proximal linearization problem similar to Wht (2010) [96]. Other references use
the proximal method include Mairal et al. (2010) [59]. We Ivdévelop the formulation for the

general RKHS cases.

: a
min Ly, + (VLy, ¢ — ck)y,. +7k||c—ck“$m + AT (c) (3.18)

cERK D
In Equation (3.18), let) be the concatenated vector of all basis functiofig;= L(¢”cp);
VL, = VL(¢Ter); anday, is a positive scalar chosen adaptivelyk#it step. Without causing
ambiguity, we denote;. as the value of at kth step. Algorithm 1 summarized the framework of
solving (3.5).
Following the analysis in Wright (2010) [96], we can showtthi@d proximal linearization

algorithm will converge for the negative log-likelihoodslfunction with the SLasso penalty.

Proposition 3.6. Let the objective function be defined in Equati8bf, with £ be the negative
log-likelihood of the MVB distribution, and” be the SLasso penalty. Suppose the scaling factor
oy, is chosen as described. Then, the sequéngckgenerated by Algorithm 1 will converge to the

global minimum ofZ, and the convergence rate is Q-Quadratic.

See Nocedal and Wright (1999) [66] page 29 for the definitibime convergence rate.

3.2.2 Dual of the Proximal Linearization Problem

Since the framework of gradient descent method works fovisglthe SLasso problem, it
remains to solve the proximal linearization subproblemgué&tion (3.18). Although we can view
it as solving a local problem of group lasso with overlapgsiby no means trivial due to the
non-smoothness at the singular point, which is complichtetthe overlaps.

In recent years, several papers have addressed the profdeitwiog group lasso with overlaps.
Jacob et al. (2009) [35] duplicated the design matrix colsitat appear in group overlaps, then
solved the problem as group lasso without overlaps. Kim aimd) X2010) [38] reparameterized
the group norm with additional dummy variables as did in Limd&hang (2006) [53]. They

alternatively optimized the model parameters and the durmn@g at each step. As stated before,
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Algorithm 1 Proximal Linearization Algorithm

Input: co, ag, Umin, Qmaz, ¢ > 1, tol > 0, observationgy (1), z(1)), - - -

Output: ¢
repeat
Choosev; € [min, Cmaz)
Solve Eq (3.18) forl, = ¢ — ¢4,
while 6, = Z)(¢" cx) — Tn(¢" (cx + di)) < ||dx|[3,, do
/I Insufficient decrease
Setay, = max(min, ()
Solve Eq (3.18) fori,,
end while
Setag1 = o /¢
Setc 1 = ¢, + dy,

until 6, < tol
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this method might not scale well in multivariate Bernoubitd with SLasso penalty. Instead, we
will solve (3.18) by its smooth and convex dual problem inivedal. (2011) [99] and Mairal et al.
(2010) [59].

To solve the following objective of the proximal linearizat problem in Equation (3.18), we
solve its dual problem as suggested in Yuan et al. (2011) [980.A° = {v € p(Q)|||c'*|| = 0},
andA = p(Q2) \ A° be the complement. Defing for everyv € p(£2) as

50 €Sy = {5 = (8)uep@) | 5 € RE? |ls]lx < Apy, s* = 0if w ¢ T} (3.19)
Then the subgradient of (3.18) is:

K -VL+ apK(c—cp)+ Z Sy + Z Tu (3.20)
vEAC ueA

wheres, is the subgradient ofp, ||c’ | ., forv € A< andr, is the subgradient for € A:
T, = argmax, cs(s., )i, foru e A (3.21)

The subgradient, is in a unit ball of certain subspace B for the linear case. These
subspaces are not orthogonal to each other. Tdissare not separable, and closed form solution
of (3.18) cannot be obtained. We solve the proximal subprob(3.18) by its smoothing and
convex dual problem as suggested by Yuan et al. (2011) [99e KB.18) is equivalent to

min max(c,S) = (VLy,c—cp)p + %|]c—ck|]§(+ Z (Sv,C)K (3.22)
ceREK» SES 2 —,
whereSis akl - p x |p(Q)| matrix whose columns are,. S = {S|S = (s1,...,50,...,5q), Sy €

S, forv € p(Q)} is the feasible region of. Sincey (-, .S) is lower semicontinuous and(c, -) is
upper semicontinuous, there exists a saddle point anchtikeandmin are exchangeable (Barbu

and Precupanu (2012) [9]). The solution of minimizing:, S) is:

1 1
¢=argmin(c,S) = c, — —VLy— — Y s, (3.23)
g

Oékv

Substitute® back into (3.22), we have the dual problem of (3.18) as:

1
max)(S) = —§I|st|@<+ <akckz_VLk:aZSv> (3.24)

K
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Following the proof in Yuan et al. (2011) [99], we can showtth&S) is convex and Lipschitz
continuous. The differential is;ce” wheree € RE? is a vector of ones. Hence, (3.24) can be
solved by existing gradient methods. We use the accelegasatient descent method in Liu et al.
(2009) [56].

3.3 Estimating Large Graphs by Greedy Search Algorithm

The above algorithm is efficient on small graplis & 20). It usually terminates within 20
iterations in our experiments. However, the issue of estirgan complete model is the exponential
number off“’s and the same amount of groups involved in objective (3.123 intractable when
the graph becomes large. The hierarchical assumption an&lthsso penalty lend themselves

naturally to a greedy search algorithm:

1. Start from the set of main effects dg = {f*,--- , fX}. Suppose all higher order interac-

tions are zero.

2. In stepi, remove the nodes that are notdn from the lattice in Figure 3.1. Obtain a sparse

estimation of the functions id; by algorithm (1). Denote the resulting sparse 4gt

3. LetA;.; = A.. Keep adding the higher order interactions intp ; if all its subsets of

interactions are included id;. And also add the nodes into the lattice in Figure 3.1.

Iterate ste® and3 until convergence. The algorithm is similar to the activersethod in Schmidt
and Murphy (2010) [75]. It has multiple runs of Algorithm 1 eéaforce the hierarchical assump-
tion. It is not guaranteed to converge to the global optimiNonetheless, our empirical experi-

ments show its ability to scale to large graphs.

3.4 Parameter Tuning

In the regularization problems, choosing a good tuningmpatar X is a crucial part in fitting
the model. Some model selection criteria could be used tosd#w, such as Akaike informa-
tion criterion (AIC)(Akaike (1973) [1]) and Bayesian infoation criterion (BIC) (Schwarz (1978)
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[78]). These criteria requires the estimation of the degfdeeedom, which is not trivial for non-
Gaussian data penalized with structure penalty. In Efr@®42 [21], the generalized degree of

freedom is defined as

df =Y con( £, 9(0)) (3.25)
=1

wherefi = f(Xi) is the estimated conditional log odds ratios evaluatedanThe alternative is
the cross validation procedure based on the predictive ragaare error. In Gaussian datagif
is known, the Stein’s unbiased risk estimator (SURE) (S{&881) [81]) can be used. Whenis
unknown, generalized cross validation (GCV) was proposésilub et al. (1979) [28] and Craven
and Wahba (1979) [16]. The minimizer of the GCV score is a gestdnator of the minimizer of
the predictive mean square error. Other references abewsyimptotic properties of GCV are Li
(1985) [50], Li (1986) [51], and Li (1987) [52].

In the non-Gaussian exponential family, Xiang and Wahb&§1997] proposed generalized
approximate cross validation (GACV) to obtain thas a minimizer of the comparative Kullback-
Leibler (CKL) distance, which serves as a proxy of the KL aligte between the true regression
function f* and the estimated functioﬁ. The goal of GACV is to minimize the KL distance,
instead of selecting the “true” model. The consequenceas @ACV tends to be conservative
in the screening and therefore includes noisy patterns.eshl. (2008) [79] proposed B-type
GACV (BGACV), which is aimed to balance the KL divergence dhd penalty of selecting a
noise pattern.

In this section, we will derive the GACV and BGACYV tuning enita for learning graph struc-
ture with SLasso penalty in general non-parametric sedtitigthe end, we will give the approxi-
mation of the degrees of freedom of SLasso for AIC and BlCrigmiriteria.

Suppose we have observations(Y (i), X (i)), fori = 1,--- ;n. Denote the grand design

matrix as

p=(payr - D)’ (3.26)
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whereD(i) is aK x K - p matrix

SXE)T 0 0
ppy=| O OO R (3.27)
0 0 62X (i))T

where¢” (X (7)) is ap dimensional vector of basis functions evaluated\ofi) for w € (), i.e.

¢ (X (1) = (@7 (X (@), -, 67 (X(@)", -+, o5 (X(0)")" (3.28)

Letfbe the vector of evaluations gfon then observations, Then, we hafe: Dc wherecis
the dimensional model parameter, afd- j is determined by the number of the basis functions.
Denote Sy = S“(X(i)), where S is defined in Equation (2.9). Then the normalization
factor of thei-th data is denoted a@s = b(f(X(i))) = log(1+ 3 expS¥), and writeh =
(b1, -+ ,b,)T. See Section 2.2.1 for more details.

The mean of the augmented respopé) in the MVB model is ak” dimensional vector

p(i) = (' (@), (0), o ()" (3.29)
= EY(@)[X (), f]

where

abz KE X SZH
1o (i) = Ely* (i) | X(3), f] = o 2 ;:pebp (3.30)

Denotef, the minimizer of Equation (3.5) with tuning parameferdenotef, . the minimizer
of Equation (3.5) with tuning parameterand small perturbatiom on ); and denotefi_"] the
minimizer of Equation (3.5) withi-th data point omitted. Lefy, f3 ., f. | be the corresponding
evaluation offy, fi ., fAH] on the observations respectively, with model parametet, ., c&_i].

The CKL distance between the true model and the estimateeInsod

n

CKL(Y) = 3 [~(0)" fu(a(i)) + b(fr(2(0)] (3:31)

i=1
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As a good estimator dfKL(\), the leaving-out-one cross validation function is

1 n

— OBS() zy T[ta@) - 17w 0)
— OBS(\) + EyT (fA _ ) (3.32)
where
OBS(\ %zn; ()T fr(z(i)) + b(fr(2(0)))] = %(—y’ff} + 1Tz§) (3.33)

The GACV method provides a good approximatior(cff\ — ﬂ_'}> for fast computation. The
key idea is to identify the - K x n- & influence matrixH (Xiang and Wahba (1996) [97] and Ma
(2010) [58] Chapter 3) which implies

fre—fr=He (3.34)

wherese is the perturbation opy. We suppose the perturbation is very small such that thezeom-
patterns in the estimated model will not change. We will\ekethe formulation of the influence
matrix H for the GACV score.

We first state the Leaving-out-one Lemma which is first disedsn Craven and Wahba (1979)

[16] and extended to multivariate case in Ma (2010) [58].

Lemma 3.7. Leaving-out-one Lemma
Replace the-th observed responsg(i) by a new responsy. Suppose, 4, )7] be the mini-

mizer of

>~ Lo () + (VT FX ) +(FXE))) + AT () (3.35)

ki

Thenh [i, ik (1)) = /7", wherey (1)) = E| Y|, 7]
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The K x K covariance matrix of theth augmented response under the estimated distribution

W(i) = var(Y(i) | X(2), fx) (3.36)

where thea, 3)-th element ofV/ (i) is:

: b
W<Z>Oé,,3 = af"‘(afﬁ)T (337)
1
= (oo b2 expb; - Z expSf—ZexpSf-ZexpSf
(eXp 2) weToNTg wETy weTp
- = b, Y exp S| —pt(i)- 4 (0)
XD 0i weTwNTp

RememberA = {v € p(Q)|||fT|| = 0}¢ is the cover of the non-zero patternsdnLet c* be
a sub-vector ot with all the components it4, i.e. ¢* = (¢).ea. Foranyv € A, let I be a
|A| - p x |A| - p diagonal matrix whose-th diagonalp x p block is a identity matrix ifv € T,.
Then, thev-th group penalty/, (f) can be written as:

=po [ D 114130, = poll Iz cMlxcs (3.38)
weTy

Note I;! is symmetric and - I7} = I#, direct calculation yields the derivative and Hessian

of the penalty term:

0J I# Y 4cA
7 _ Py (3.39)
aCA ; ||]£‘JC'A||K
B (IR Sl IR Ak, — TS ac) - (T2, Xac)") 3.40
Aa AT Z J Z ||]ACA||3 ( . )
dctde vEA vEA Ty K4

where.J, is the second order derivative df.

Let D be the matrix composed by the columns/dfvhose index is inA.
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The analysis of the first order Taylor expansiongcé}(cﬁe, Y + €) leads to the formulation of

H. The Taylor approximation is

oI

0= ﬁ(cﬁev y + E) (341)
31' 821' 821'
=~ ﬁ(cfvy) + W(Cfay)(cﬁe — C;\Ll) —+ W(Cﬁl’y)e
= Gegear @)~ )+ gyl Ve
Note
aQI)\ a 2L 82j
dcAgeAT N + 3.42
DeAdeAT (3, Y) 9eAGAT DeADAT ( )
= WD A o,
" veA
and,
0*T, " 1.
W(cm}) =—-D (3.43)
Therefore
321 -1 821'
fe—d = (@ _ T A
hen (acAacAT s y)) Aoy A Y)e (3.44)
-1
_ <[)Twl~) +An Z]%L) De
veA

Remembere is a small perturbation op; ﬁ = [)q4 is the estimated function value with tun-

ing parameten; andﬁe = Dcﬁe is the estimated function value with the perturbation. Efane,

the influence matrix{ is

H= D([)TWD ¥ )\nvEZApvjv) Tt (3.45)

The (i, j)-th K x K submatrix ofH is

H(i.j) = D) (D"WD + AnY_p,.J, ) i) (3.46)
veA
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Note the following two approximations

A = A ~ H ) (1576) = V) (3.47)
5 0) = i)~ W (A7) - (X))

The approximation of thé'V score in Equation (3.32) is
ACV(X\) = OBS(A Zy (I — H(i,))W (@) " H(i,i)(Y(E) — pali)) (3.48)

LetQ(i) =1 —H(i,i)W (i) fori =1,...,n, define the generalized average matrix (Gao et al.
(2001) [25]), denoted a9, of {Q(i),i = 1,...,n} as follows

o y

B 5 ...

Q=0 —Nlpgtry-ec" = ° (3.49)
vy d

wheree is the unit vector of lengtti and

5 1 1
T Q) T nalg—1)

Let A be the generalized average{df (i,i),i = 1,--- ,n}, the GACV score is

[eTQ(i)e — tr(Q(z’))] (3.50)

GACV()\):OBS()\)JF%Z (T B (V) — (i) (3.51)

The degrees of freedom of multivariate Bernoulli data isegatty difficult to obtain. But we

can have a good approximation from GACV (Shi et al. (2008])[@8

ZJJ ()" QT H(Y(i) — p(i)) (3.52)

So the BGACYV score can be defined as

1logn
n

BGACV(\) = OBS(\) + — an YO'Q T H V(i) — pli) (3.53)
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For the model selection criteria AIC and BIC, Ma (2010) [58&¢e 53) showed that the degree

of freedom can be approximated by
df = tr(WH) (3.54)
Therefore, the AIC and BIC criteria are provided as follows

AIC(N) = OBS(\) + %tr(WH) (3.55)

11
BIC(\) = OBS(\) + — e

tr(WH) (3.56)
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Chapter 4

Asymptotic Results

In this chapter, we consider the model selection consigtehgraph structure learning. The
problem is described in Equation (3.2). Suppose the set wfzeoo conditional log odds ratios
is P in the true model, we will prove that SLasso can identify tlower of P. The cover of
P follows the hierarchical inclusion assumption. Thus, Soawill eventually recover the same
graph structure as in the true model. We derive the necessahsufficient conditions for the
consistency of SLasso in terms of graph structure learningne — oo.

Sparse penalties have been widely used in the model selgmtidlems and in high dimen-
sional data. Here, we by no means intend to give a compreleeresiiew of the asymptotic results
of the model selection methods, but only discuss the mostaat literatures.

The asymptotic properties of Lasso (Tibshirani (1996) J8#ve been studied in many ref-
erences. Knight and Fu (2000) [42] showed that the Lassoeagpimator of a linear regression
problem is/n-consistent for a Gaussian random variable with the meangbiiie true model
parameters, and the variance controlled by the noise anddkign matrix. But this estimation

consistency does not lead to the sparsistency, which means
P(P=P)—1 (4.1)

whereP is the set of estimated non-zero patterns. In this chap®ewill use non-zero patterns
and non-zero conditional log odds ratios interchangeably.

Zhao and Yu (2006) [102] gave the Irrepresentable Conditorsign consistency, which is
a stronger version of the sparsistency, of the Lasso typmatstrs. Roughly speaking, if the

covariances between the predictor variables in the trueeirand those not in the true model are
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small, the Lasso can select the true model wher> co. We will follow this idea to show the
SLasso method is sparsistent under some regularity conditi

The structure penalty in SLasso can be viewed as an exteokiba overlapping Group Lasso
on functions in certain Reproducing Kernel Hilbert SpacBEse Group Lasso has been proposed
in Yuan and Lin (2006) [100]. The advantage is that the Groagsio will select the variables in
groups, which predetermined by certain domain knowledge abd Zhang (2009) [54] extended
the L, consistent results from Lasso (Meinshausen and Yu (2004) {6 Group Lasso. Bach
(2008) [6] derived the necessary and sufficient conditiangie model selection consistency of
Group Lasso. The results apply to both the linear regressimhthe non-parametric regression
of Gaussian data where the functions are in separable RKHS&Ichenko and James (2010)
[69] studied the variable selection in the nonlinear Gaussegression models of up to second
order interactions. Their results showed the sparsisteridpe model with overlapped group
lasso penalty. Jenatton et al. (2011) [36] gave the genardétine for constructing the sparsity-
inducing norms for specific requirements based on the qupilg among the group penalties.
For the Gaussian data, they derived the necessary and enffocinditions for the model selection
consistency. Since the groups have overlaps, the methdsbisansistent in terms of the cover of
the non-zero patterns. Percival (2012) [68] derived thergwptic distribution of linear regression
with overlapping group lasso penalty. They also presertedihite sample bounds on prediction
and estimation.

The asymptotic results about non-Gaussian exponentidliésnare not trivial to obtain be-
cause of the complexity of the loss function. Meier et al.080[61] extended the Group Lasso
to logistic regression models. Their consistency restts\@d that the squared distance between
the conditional log odds ratio of the fitted model and thathe&f true model goes t® in proba-
bility. Van De Geer (2008) [86] proved that under certainulegity conditions, the excess risk of
the estimator is bounded above with probability that godsearponentially fast and the estimator
will converge to the true parameters. Rocha et al. (2009) pr@vided the asymptotic distribu-

tion for the Lasso type estimators with the logistic regi@sdoss and the hinge loss for SVM.
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And they derived the necessary and sufficient conditionsparsistency based on the asymptotic
distribution of the estimator.

The asymptotic properties with nonlinear models have aésnlstudied in many references.
As mentioned before, Bach (2008) [6] and Radchenko and J&20é9) [69] studied the consis-
tency results for nonlinear regression problems. Additivedels are popular in non-parametric
regression problems (Hastie and Tibshirani (1990) [31hviRumar et al. (2009) [70] proposed
sparse additive models for high dimensional non-parametgression. The penalty can be viewed
as the summation of the functional norms. They showed tli@afsir is sparsistent with increasing
number of orthogonal basis functions. Meier et al. (2002) fFroposed the sparsity-smoothness
penalty for non-parametric additive models. The penaltyeanh function contains both tlig
norm of the function values and the quadratic smoothnesalfyermhey showed the asymptotic
optimality of the estimator with increasing number of bdsisctions. Huang et al. (2010) [34]
applied adaptive Group Lasso to select non-zero compoiretiie non-parametric additive mod-
els. They showed the estimation consistency in terms abrm, and sparsistency for adaptive
Group Lasso penalty. Koltchinskii and Yuan (2010) [45] dissed the asymptotic properties in the
general multiple kernel learning setting. The target is tnimize the empirical risk penalized on
the function norms. They established the oracle ineqaalidr the excess risk of the estimators
in Reproducing Kernel Hilbert Spaces. The inequalitie$ biwdd with large probability gave the
diminishing bound for the excess risk as the number of olagemns goes to infinity.

In this chapter, we will focus on the consistency of the Shasgthod in terms of graph
structure learning in parametric and non-parametric ragsti We will provide the necessary and

sufficient conditions for the consistency.

4.1 Consistency of Graph Structure Learning of Linear Modeb

In this section, we show that the model with the linear caoddl log odds ratios will consis-
tently estimate the graph structure under certain conustidVe assume the random design where
Z; = (Y;, X;),i=1,--- ,narerandom variables. We suppdsec Y, X; € X, andP is the prob-

ability measure ofY x X. In real applications, we havé = R* andX = RR?. Let the conditional
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log odds ratios be the same as defined in Equation (3.11)¢863::2)
p
x) =cj + Z cjx;
j=1

wherec” = (¢g, ..., )" € RP is a vector of lengthp = p + 1 andc = (¢*)uepo) € RE7 js the

) p
concatenated vector of all parameters of lenithj.
To make the notations consistent throughout this chaptemilt use f to denote the model

parameters if it does not lead to ambiguity.

Definition 4.1. Let 7 = {T,|v € p(2)} be a partition (with overlaps) of2, as a collection of
groupsT,. LetP = {v € p(Q) | || f*|| # 0|} be the set of indices of non-zero patterns. The cover

of P with respect to the partitio is:

Azcover(P)z( U Tv> = ( U Tv) (4.2)

v:T,NP=0 v:|| fTv||=0

= U wep®@lwco

il 7710
={v € pQ|I /[l =0}

Note the last equality holds due to the specialty of the habiaal structure of7. Write the

complement ol as.A° = 2\ \A. The following notations are useful in the later derivason

Ta={TIT, N A# 0} = {T[|I f"| # 0} (4.3)

= (F)wear V= f“’Z T (4.4)

La(f*) = LIaf);  Tal f““ > Ju(Iaf) (4.5)
vEP(Q)

wherel 4 is a diagonal matrix whoseth diagonal block is @ x p identity matrix ifi € A.

Here we will give an example of the cover. In Figure £1= AU BU C; A, B,C are the
groups; the true positive patterns arefm Then, the cover ofP with respect to the groups is

AU (B\ C) (all the red region).



42

Note that from the above definitiow € A,v C w = w € T,,T, € TA. Also note that
the graph induced bf and.A are the same. This means that if the estimated non-zerapatte
are consistent tol, the estimation is consistent in terms of graph structuree gonclusion of the

following corollary follows Theorem 3.3 and the definitiohtbe cover in Equation (4.2).

Corollary 4.2. Let’P be the non-zero patterns in the SLasso estimation of Equégi). Then

cover(P) = P almost surely.
Proof. The corollary follows directly from Theorem 3.3 and the difom of the cover. O

We are interested in developing the theory that shows ti@atsid non-zero patterns (or equiv-
alently, their coverA) converge to the true coved. Let L(Y; f(X)) be the loss function as
defined in Equation (3.3), and dendtg(f) = L(Y; f(X)). Supposef* is the true model pa-
rameter, such thatf*)” = 0if v ¢ P. In the exponential familyf* = argmin; E;-[L2(f)], and
VE [Lz (f*)] =E[VLg(f*)] =0, sincef* is optimal.

Assume the loss function has the following properties:
1. Ep|L(Y; f(X))| < oo forany f € RE7
2. L is convex and twice-continuously differentiable in the@®tcomponent, and

Ep [VL(Y; f5(X)VLY; f*(X))7] < 00 (4.6)

3. The risk functionR(f) = Ep[L(Y; f(X))] is twice differentiable atf* and its Hessian

matrix
H(f) = V’Ep[L(Y; f(X))] (4.7)
is strictly positive definite af™*.

It is obvious that the loss function takes the form of the tiggdog-likelihood of the exponen-
tial family satisfies the above properties.
To show the model consistency of the SLasso method, we vatldierive the asymptotic dis-

tribution of the estimated parametefs, and then lead to the necessary and sufficient conditions



Figure 4.1 Cover of the positive patterns
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similarly to the irrepresentible condition in Zhao and YO@®) [102] and Rocha et al. (2009) [72].

The following lemma presents the asymptotic distributidrich is the key to the later proofs.

Lemma 4.3. Suppose\, is a sequence of positive values which satisfies— 0 and \,,/n —
o asn — oo. Let f* denote the true model parameter§, = arg min; Iy, (f), H(f*) =

V2E [Lz(f*)]. Then,

Ain (Fu=17) L 6 = argminw(5) = %5TH( £+ [T+ T (48)
wherey4 is defined in Equationd(4) whenf = f*.
Proof. See Appendix A.4. O

Before getting to the necessary and sufficient conditiorth@kparsistency of SLasso model,
we define the conjugate norm with respect to pendityLet f € RE?, 7 as defined before, define

the conjugatg7-norm as

[fllz= max  (f,g) (4.9)

geRKP 7 (g)<1
We can thinkf as a linear operator that maps frddf ? onto R asf(g) = (f,g). Then, the
norm|| f|| 7 is the conjugate norm defined on the linear operator witheeisjo the penalty function

J.

Theorem 4.4. Necessary condition
Let\,, f*and H(f*) as defined in Lemma 4.3{ defined in Equation4.2). LetH 44 be the
sub-matrix ofH (f*) where the rows ind and the columns itd of H are selected. Lekl 44 be

defined similarly. IfA is estimated consistently, that (A, = A) — 1 asn — oo, where

Ay =P, = {w|f # 0}, thenHHACAHAA_l'VAHJAC < 1.
Proof. Leté, = f, — f*, thens, & 5. From Lemma 4.3, the assumptiéti.Ac = A°) — 1 leads
to §4° = 0. The KKT condition of Equation (4.8) is

Huad*+~44=0 (4.10)

Huead + ) s, =0 (4.11)
ve A
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wheres, is defined slightly different from Equation (3.19) as

s € RM |Is]| < py,s* = 0if w ¢ T} (4.12)

Sy € Sv = {S = (Sw)wEAC

From equation 4.10, we gét' = — H .4~ '~+4, therefore:
HacaHaa 7' =D s (4.13)
vEAC
For any fA° € R
—Tae () = = Y T(fY) < (50 1Y) <) L) = Tae (1Y) (4.14)
veAC veAC

The inequality holds when for eache A°

I fA°
Sy = pvﬁ (4.15)
wherelr, is a diagonal matrix whoseth diagonal element isif ¢ € 7,. So,
(HpcaHan™ 'y )] < Tac(f) (4.16)
This leads to the conclusion that
HHAcAHAA—l,VAHJAC <1 (4.17)
U

Before moving to the theorem of sufficient condition, we praghe lemma about the SLasso es-

timation on the restricted problem oh

Lemma 4.5. Let f;j‘ be the solution of the following problem restricted.dn

ff = arg minEA(fA) + )\nJA(fA) (4.18)

FAERIAI

wherel 4 and.7 4 are defined in Equatior(5). LetP, 4 = {v|||f*|| # 0} andA,.4 = cover(P,4),

then

fA 4 and P <AnA = A) -1 (4.19)
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Proof. See Appendix A.5. O

Theorem 4.6. Sufficient condition

Let \,, f* and H(f*) as defined in Lemma 4.3. }IFHACAHAA‘WAHJAC < 1, then A is
consistently estimated in the sense thagt,, = A) — 1asn — oo, whered,, = P,, = {v|||f']| #
0}.

Proof. We prove the result based on the primal dual witness teclenidnich were used in Raviku-
mar et al. (2009) [70] and Wainwright (2009) [93].

Let f;j‘ be the solution of the restricted problem as defined in Equai.18), and pa(f;;‘
with zeros onA¢ to obtain f,. From Lemma 4.5fA % (4 andP (AM = A) — 1. Thus,
to prove the conclusion, we need to show tfiasatisfies the optimality condition of objective in
Equation (3.5).

For largen, 4 is well defined as

A= (4)pea  Wherey® = f Py (4.20)

vCw HfT’lL—‘U

gl

andyA & A4,

The optimality condition o4 is already satisfied due to the definitionfgf
(VL)) + 2 =0 (4.21)
It remains to show that there exist as defined in Equation (4.12) such that

(vz(f@)Ac A s, =0 (4.22)

veEAC

that is,||(V£(fn)>Ac||JAc <1.
Letd, = f, — f* % = 0. Note

VE(f) = 5 3 VLa(f)

[ enar

= D, + Hyd, + 0,([|0,]]) (4.23)

+ + 0, ([19u])

1 — .
= V2L (f)on
n =1
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As we have shown in Lemma 4.8,, %> 0 andH,, & H(f*).

SincefA” = f*A° = (, we have from the above equation that
(VL) , = Handit +0,(1) (4.24)
(VE(f) = Hacadid +0,(1) (4.25)
From Equation (4.24) we have
Op = —AnHaa '3 + 0,(1) (4.26)
Then, the following equality holds becau®é 2> 4
(VE(F) . = —MHacataa™ v + 0,(1) (4.27)
Therefore, for anyf° € RM°l, the following inequality holds by the sufficient condition
(4 (VL)) ] = Ml HacatLaa™ )] + 0(1) (4.28)
< AT (fA°)  for largen

This completes the proof. O

4.2 Sparsistency of SLasso on Pattern Selection

Friedman et al. (2010) [23] proposed the sparse group lagsoi@n with the combination of
thel; andl; norm as the penalty for the parametric linear regressionahdle extended the idea

to multivariate Bernoulli data as presented in Section23.The objective is

I(f) = L(f) + A (J(f)JrA ) fm) (4.29)

wep()

Zou and Hastie (2005) [104] proposed the Elastic Net thathioes two different types of
penalties. Yuan and Lin (2007) [101] showed the regulardgditions for Elastic Net to consis-
tently estimate the non-zero patterns in linear modelsaddYu (2010) [37] studied the model
selection property of Elastic Net in general settings whleeenumber of non-zero parameters and
that of the sample size all go to infinity. Here, we study tharsistency property of SLasso on

pattern selection.
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Theorem 4.7.Necessary condition
Let \,, f* and H(f*) defined similarly,” and A defined in Equation42) whenf = f*.

Let Hpp be the sub-matrix off (f*) where the rowsP and columnsP of H are selected. Let

~

Hppp, Hyep be defined similarly. If is estimated consistently, that B(P, = P) — 1 as
n — oo, whereP, = {w|f* # 0}, then
| HappHpp~ (77 + Asign(f7))[| . < A
| Haep Hpp™" (77 + Asign(£7)) ||jAc+;\l1 <1

Theorem 4.8. Sufficient condition
Let),, f*and H(f*) defined similarly. If

|HavppHpp ™" (77 + Asign(f7)) ||, < A
||H_AC7DHP77_1 (’YP + E‘SIgn(f*,P)) HJAC+5J1 <l

thenP is consistently estimated in the sense th&P, = P) — 1 asn — 1, whereP, =

{ulll f211 # 03

Proof. The proof of the above two theorems are similar to those ptesgdn the previous section.

We only need to note the following KKT conditions of the oltjee.

Hppd? +~F 4 Asign(67) = 0 (4.30)
Happ0” + 4P 4 Asigntpp = 0 (4.31)
Haepd” + ) sy + Mae =0 (4.32)

veEAC

wheret 4 is the subgradient df f4|;.
Note [[t4]|; < 1; v\ = 0. Applying the techinques to the above KKT conditions will

complete the proof.
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4.3 Consistency of Graph Structure Learning with Non-paranetric Model
4.3.1 Fréchet derivative

We will review the Fechet derivative in functional space in this section. Mcetaids can be
found in Akerkar (1999) [2].

Definition 4.9. Fréchet derivative
LetX,Y be Banach spaced] C X be an open subset &, andF : U — Y a map. The
Fréchet derivative of” at z, VF(zy), is a linear map fronX to Y if and only if

i NE@o +96) = Flag) = VE(x0)(9)]
1m
5€X, 5] —0 10]|

=0 (4.33)

If F'is a continuous map, theYiF' is a continuous linear map. Lét(X,Y) be the space of
linear operators that map elementsXofo Y. Then,VF'(z,) € L(X,Y),andVF : U — L(X,Y).

We now define the second ordeigehet derivative.

Definition 4.10. Higher order Fréchet derivative

LetX,Y be Banach spaced] C X be an open subset &f; and I : U — Y a map. If the
Fréchet derivativé/ F' is continuous and differentiable at, we write the second order derivative
of F atx, asV2F(x), which is the Fechet derivative oV F'.

m-th order Fréechet derivative can be defined similarly far= 3,4, - - -.

If V2F(x) exists on for anyr € U, we denote the second order derivative\&d : U :—
L(X,L(X,Y)). SinceL(X,L(X,Y)) andL(X x X, Y) are isomorphicV2F(z,) can be treated as
a bilinear operatorX x X — Y.

We summarize the Taylor's theorem extended to Banach spessdon Theorem 2.5 in Ak-
erkar (1999) [2].

Proposition 4.11. Taylor’s theorem on Banach space
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LetX, Y are Banach space$] C X open;{z + 7|0 <7 <1} CU; F: U — Y bem-times

differentiable and the derivatives up to the ordemotontinuous. Then,

F(x+6) =F(x) + VF(z)(d) + %VQF(CC)((;, 5) (4.34)

TR %V’”F(x}(&, -+, 0) 4 o(||6]7)

Definition 4.12. Partial Fréchet derivative
Let X, X5, Y be Banach spaced/; C X;, be an open subset &f; for i = 1,2. LetX =
Xy xXo, U =U; xUsy;and F : U — Y be differentiable. For anyz,, x5) € U, define the partial

map ofF’ on the first part ;) as

sz . Ul —-Y (435)

F:Ez(xl) = F(xla 172)
The partial Fiéchet derivative of” on the first part a{ x4, =) is defined as

VlF(xl,xQ) . Xl —Y (436)
ViF(21,22)(61) = VFy,(21)(01)
The partial Fiéchet derivative on the second pavt; F', can be defined similarly. Also, the second

order partial Fréchet derivative, e.gV?, F, can be defined according to the definition of higher

order derivative and partial derivative.

If ' is a continuous map, it is continuously differentiable(af, z2), if and only if F' is
partially differentiable and the partial derivatives aostinuous maps. And we have the following

relation:
VF(ZL‘l, 172)((51, (52) = V1F<J]1, 1‘2)(51) + VQF(ZL’l, x2)(52) (437)

Now, we will present the final result that is useful in the taterivations. It is the chain rule of
Fréchet derivative from the Theorem 2.1 in Akerkar (1999) [2].
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Proposition 4.13. Chain rule

LetX,Y,Z be Banach space$] C X,V C Y opensubsets. Let : U — Y, G :V — Z be
continuous maps, such that{U) C V. Lety, = F(x,), suppose the Echet derivative§/ F'(z)
andVG(yo) exist. TherG o F' is Fréchet differentiable at, and

V(G o F)(xo) = VG(yo) 0 VF (o) (4.38)

4.3.2 Differential Calculus of the Loss Functions

We first define the loss function

L:ZxF =R (4.39)
(Z,f) = L(Z; f)

whereF is the domain of the second elementiofin the linear casef = RE?.
Assumel satisfies the following properties (similar to the assumptn Section 4.1 but on the

F domain instead of the domain of model parameters in thericese).
1. Ep||L(Z; f)|| < oo for eachf € F.

2. L is convex and twice-continuously differentiable in the@®t component.

Ep||V;L(Z; )| < 0 (4.40)

3. The risk functionR(f) = Ep[L(Z; f)] is twice differentiable af* and its Hessian is posi-

tive definite atf™*:

H(f)=V3Ep[L(Z; f)] (4.41)

Suppose we have the random design and each observatipr=qY;, X;), fori = 1,--- n.
Y; € Y, X; € X are random vectors. L&t = Y x X, andP be the probability measure ¢h Let
C(Z,R) be the space of continuous and bounded functiors C(Z, R) : Z — R, whereR is a

Banach space.
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Definition 4.14. LetZ, R, C(Z,R), Hx as defined before. The expectation operdipt and the

loss operatorl. , are defined as follows.

Ep:C(Z,R)— R (4.42)
Ep(g9) =Ep(9(2))
Ly:Hxg—TR (4.43)

Lz(f) = L(Z: f)
In addition, define the Hessian operator
H:Hg — L(Hg x Hg, R X R) (4.44)
H(f)=V*(EpoLy)(f)
And the risk operator

R:Hg >R (4.45)
R(f) = Epo L(f)

It is obvious thatl, is convex and twice-continuously &het-differentiable. Sinck(f)
C(Z,R), EpoL)(f) = Ep[L(Z; f)] based on the definition df». Note for any linear functional
F,we haveVF(f)(g) = F(g). And sinceE is a linear operator, we have

VEp[L(Z; )] = V(Ep o L())(f) (4.46)
= VEp(L()(f)) o VL(f)
= EpoVLy(f)
Similarly, for the second order derivative,

V2 (Ep o Ly)(f) = Epo V2L (f) (4.47)

Let f* be the true model. From the properties of the loss functiénal is easy to show that

M(f*) = Ep||VLz(f*)|* < oo and H(f*) is strictly positive definite in the sense that for any
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91,92 € Hi, H(f*)(g1,92) is positive definite ifR x R. Note H(f*) € L(Hg, L(Hk,R)), its
range is dense aniaf = [|[H(f*)(f)]] > |H(f*)(g)|| > 0 foranyg € Hg thatg # 0 and
|lgll < 1. Since a linear operatdr is invertible if and only if its range is dense and boundednfro
below (Halmos (1998) [30]), we know ( f*) is invertible.

To understand the inverse of the bounded bilinear operdigi*), we denoted as the Reisz
representer of{(f*) which is a bounded linear operator froiix onto itself. That is, for any
fr9 € Hi, H(f*)(f,9) = (Af, 9)y,.- LELG = H(f*)(f,-) which is a bounded linear operator
from Hx ontoRR, andn the Reize representer 6fsuch thatz = (1, -)HK. Thenf = A~ ng ==
H(f*)~'(G). In a spectial case whet = (v, -),, , H(f*)7'((v,)3,) = A"y

The proofs in the following section needs the strong law cddanumbers in Banach space.
See Ledoux and Talagrand (1991) [49] for more details. Tleergm requires{, be a sepa-
rable Hilbert space, or equivalently, requirgsbe square integrable, by Mercer-Hilbert-Schmidt

theorem.

4.3.3 Consistency Results for Reproducing Kernel Hilbert face

To show the sparsistency results in Reproducing KerneldtilBpace, we need the general
version of Lemma 4.3. Lemma 4.16 will give the asymptotidribsition of the estimated function
f.. Before that, we will present the following lemma about tlenergence of a sequence of
Hilbert space valued random variables as the estimatesexfuesce of essentially strictly convex
objective functionals.

Let (£, &, P) be a probability spacé{, be a Reproducing Kernel Hilbert Space with kernel
K. W,,n=1,2--- andWW are random functionals defined éh x £ to R. We usually denote
W (9,-) or W(9) for the random functionalkV' (-, e) for e € £ as a realized functional 6H . We
are interested in the convergence of the approximatioh of arg minge,,, W(J) by a sequence

dn = argming.,, W, (d). For more about the random functions and the convergenatisesefer
to Korf and Wets (2001) [46] and Vogel and Lachout (2003) [88Id the references therein.

Lemma4.15.LetW,, n = 1,2,--- andWW be random functions defined &ty, x £ to R. Suppose

W, andW are continuous and essentially strictly convexi@p. If IW,, point-wisely converges in



Table 4.1 Summary of the functional operators wiker= R

Operator Mapping

Ly(-) € C(Hg,R) Hix — R
Liy(f) € C(Z,R) Z R
VL(f) € C(Z,L(Hg,R)) Z — L(Hg,R)
EpoVLu(f) e L(Hk,R) Hx — R

Vpo VL (f) € L(Hg x Hg,R) | Hix x Hg — R
Epo V2L (f) € L(Hix x H,R) | Hix x Hg — R
H(-) e L(Hk x Hk,R) Hxk x Hxk = R
H(f)(-) € L(Hk,R) Hk — R
H7'() e L(L(Hk,R), Hk) L(Hk,R) — Hg
M(-) € L(Hkg x Hg,R) Hrx X Hk — R
R(-) € C(Hk,R) Hkg — R

54
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probability to1V, i.e., for anys € Hy, W, (8) 2 W(5), then,
arg min W, (9) 4, argmin W (6) (4.48)
dEHK 0€H K

Proof. See Appendix A.6. O

Lemma 4.16.Suppose,, is a sequence of positive values which satisfies- 0 and\,,/n — oo
asn — oo. Let f* denote the true model iHy, f, = arg min gy, Iy, (f), H(f*) is the Hessian

as defined before. Then,

) B = argmin W) = SH(F)G,0) + (74,64, + Tal*)  (4.49)
n 0EH K

with v defined in the following equation when= f*.

= (1 weas V=1 Hpri (4.50)

Hr,

vCw

Proof. See Appendix A.7. O

Before presenting the consistency results, we define theigate,7-norm on the linear oper-

ator from’H x ontoRR.

Definition 4.17. Let F' : Hx — R be a linear operator,7 is a norm onHy, the conjugate

J-norm is defined as

Fll, = F 451
1] 7 fenfff%)g“ (Nl (4.51)

The conjugate/ 4.-norm can be defined naturally.

Theorem 4.18.Necessary condition for RKHS
Let)\,, f* and H(f*) as defined in Lemma 4.18l, A, defined in Equation42) for f = f*
andf = fn respectively. LetH 44 and H 44 be the second order partial derivative bf;, at f*. If
A is estimated consistently, that B(A, = A) — 1 asn — oo, whereA,, = P, = {w|f* # 0},
. * *\—1 A < 1.
then||Haa(s) 0 Haa(/) " (4, )|, <1
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Proof. SinceH (f*) is a symmetric bilinear operator, we haVe (f*)(0,0) : Hx x Hx — R.
For anyg € Hyg,

VH(f*)(9,0)(g,9) = ViH(f")(0,0)(g) + V2H(f*)(5,6)(g) (4.52)
= H(f*)(g,0) + H(f")(0,9) = 2H(f*)(g,0)

We can viewH (f*) as an operator fromi{ x — R such that it maps anye Hx to H(f*)(9,9).
ThenVH(f*)(9,0) : Hx — R such that for any € Hx, VH(f*)(0,6)(g9) = 2H(f*)(g,9). In
addition, H(f*)(6) = H(f*)(d,-) can be viewed as an linear operator fréfi ontoR. And all
these definitions and results can be natually applied togtbersl order partial derivativeg 4 4( f*)
andH ac4(f*).

DenoteF, 4 = <7A, ->HA as a linear operator frorf , ontoR. The generalized KKT condition

(Luenberger (1997) [57]) of Equation (4.49) is

Haa(f*)(64) + Fya =0 (4.53)
Huea(f)(04) + ) 5,=0 (4.54)
veEAC

In the above equation,, is an operator fron 4 to R defined below:

Sy € SU :{S = (Sw)wEAC | s € L(HACaR)u (455)
|5(67)| < pollI7, (67|12, fOr any 6™ € Hyue, ands® = 0if w ¢ T,}
wherelr, : Ha — He is a linear operator such that for aye H e, (I, () = 0if w ¢ To;

and(Ir,(f))” = f@ifweT,.
SinceH 44(f*) € L(H,L(H,R)) is invertible, we havé* = H 44(f*)~'(F,4). Then,

Huea(f*) o Haa(f*) " (Fya) + Y 5, =0 (4.56)

veEAC
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The following inequality completes the proof:

[Haca(f*) 0 Haa(F) (Fo) (F) = 1D sul )] (4.57)

vEAC

< Z ysv(fAc)

vEAC

< S pullIn () lr, = Tac(F)

veAC

holds for anyf4° € H 4. O

Theorem 4.19. Sufficient condition for RKHS
Let\,, f*andH (f*) as definedin Lemma4.16.H|HAcA(f*) o Haa(f*)™! <<7A, ->HA> HJ
AC

1, then A is consistently estimated in the sense thatl, = A) — 1 asn — oo, where
Ay =Po = {0lllf2] # 0}

A\

Proof. We prove the result similarly as we did in the linear case.

Let f;f be the solution of the restricted problem as defined in Equg#.18), and pagf;L4 with
constant zero functions ad¢ to obtain f,. From Lemma 4.54, % A. And applying similar
techinques, we havé;‘ 2, fA. Thus, to prove the conclusion, we need to show fhaatisfies
the optimality condition of objective in Equation (3.5).

For largen, 44 is well defined similarly to Equation (4.50)

A cw AW Fw Po
7 = (3%)uea Whereq” = firy - —t— (4.58)
e v,

andy* 2 44,

The optimality condition ond is already satisfied due to the definitionfof which implies

(VL) + 20 (34 )y, = 0 (4.59)

It remains to show that there exist's as defined in Equation (4.55) such that

(vc(fn))Ac A S s, =0 (4.60)

veAC
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That is, we need to show

H (Vﬁ(fn)>Ac g < An (4.61)
LEtgn - fn - f* ﬁ) 0. Note
i=1
1 o n . A
= [5 > VL ()| + % > V2L (f)(0n) | + 0p([I9nl])
=1 i=1
= Dy + Hu(0n) + 0p(1[04]l) (4.62)

As we have shown in Lemma 4.1B,, % 0 andH,, £ H(f*).

SincefA” = f*A° = 0, we have from the above equation that
(VL) , = Haal7 )G + 0,1) (4.63)
(VElf) . = HaealF )G + 0,(1) (4.64)
From Equation (4.63) and Equation (4.59) we have
O = M Haa(f*) " (Fya) + 0,(1) (4.65)
where
Fya= ("), and Fab Fa= (74, (4.66)
Then, the following equality holds becausé 2 ~+4
(V/J(fn))Ac = A Hoaea(f*) 0 Haa(F) " (Fya) + 0p(1) (4.67)

Therefore, for anyfA° € H 4, the following inequality holds because of the sufficiemdio

tion

<fAC, Haea(f*) o Haun(f*)™" (<’YA, '>HA)> ‘ + 0p(1)

<fAC’ (VE(]E"D Ac >HAC

H a4
(4.68)

< AT (fA)  for largen

This completes the proof. O
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Chapter 5
Numerical Studies

5.1 Simulations
5.1.1 Simulation Settings

In the simulation, we create 6 graphs. The first four grapksdapicted in Figure 2.1. Graph
5 has 100 nodes where the first 8 nodes have the same strustinr€igure 2.1(c) and the others
are independent. Graph 6 also has 100 nodes where the firstd&8 have the same connection as
in Figure 2.1(d) and the others are independent.

We generate 100 independent datasets for each experimtbrth@isame setting, and evaluate
the performance based on the averaged results on the 108eimdient runs. Here is how the first
data set is generated:

The length of the feature vectqy, is set to0 or 5 in our experiment. Whep = 0, we are
considering the graphical models without input featuresr == 5, X = (X3,...,X;), each
fe(z) =g + Z?Zl cixy, forw € p(2). The true sets of the model parameters, are provided
in Appendix B. The featuresY;, are i.i.d uniform on [-1, 1].Y is sampled according to the
probability in Equation (2.4). Gibbs sampling is applied @aph 5 and 6.

We use BGACV (B-type generalized approximate cross vabdabACV) (Xiang and Wahba
(1996) [97], Shi et al. (2008) [79]) to choose the regular@a parameter\ for the complete
model (graphs 1-4). The performance of choosing the tunangrpeter by GACV is not presented
here because it is comparable to BGACV in terms of recoveifiegtrue non-zero patterns, but

with more false detections. We use BIC for greedy searchrigitgo in Graph 5 and 6 due to the
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computational consideration. The range)o chosen according to Koh et al. (2007) [43]. The

details of the tuning methods are discussed in Section 3.4.

5.1.2 Estimation Consistency of SLasso

We evaluate the graph structure estimation accuracy of bas® method, and compared it to
two closely related graph structure learning methodsflinlg and Tibshirani (2009) [33] proposed
using pseudo-likelihood witl; penalty for estimating sparse pairwise binary Markov medel
They only consider pairwise interactions, and there arenpatifeatures involved. The method is
published as an R package, BMNschmidt and Murphy (2010) [75] considered the problem of
learning higher-order graphical structure without featur They used the log-linear models and
overlapping penalties. Their code, LLM, is published o&linwe choose the tuning parameters

for BMN and LLM by cross validation.

5.1.2.1 Whenp =0

To make a fair comparison, we first Igt= 0, which corresponds to the graphical models
without input features.

In Table 5.1, we count, for each conditional log odds rafio, the number of runs out of 100
where f¢ is recovered |(¢“|| # 0). If a recoveredf* is in the true model, it is considered as
true positive, otherwise false positive. The sample size#)i¥). We list in the table the average
discovery rate on a selected subset of the non-zero conditlog odds ratios in the true model.
The last column is the average discovery rate of all the zattems in the true model. The main
effects are always detected correctly, thus, are not ligteithe table. LLM takes too long to
converge on Graph 5 and 6. So the corresponding results apawded.

According to Table 5.1, BMN, LLM, and SLasso achieve veryiEmresults on the sim-
plest graph (Graph 1). On Graph 3-6, SLasso is more effectompared to BMN and LLM.

BMN cannot detect higher order interactions because it oohsiders the pairwise interactions.

http://cran.r-project.org/web/packages/BMN/index.html
’http://www.di.ens.fr/~mschmidt/Software/thesis.html
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Table 5.1 The average discovery rate of a selected set obtvgero patterns whem= 0,

n = 1000. The last column, FP (False Positive), is the average desgaate of all the zero

patterns in the true model. Note, the numbers of the zerepetin the true model for the 6
graphs are 6, 51, 231, 994)%°, and10*° respectively.

Graph| Method | f1:2 #1323 34 f123 4578 5678 Fp
BMN |1.00 1.00 1.00 1.00 0 - - 025
1 |LLM |1.00 1.00 1.00 1.00 0.93 - - 096
Slasso| 1.00 1.00 1.00 1.00 1.00 - - 048
BMN |0.98 053 016 021 0 - - 0
2 |LLM |1.00 1.00 0.89 1.00 0.89 - - 761
SlLasso| 0.94 0.92 0.90 096 0.90 - - 094
BMN |0.72 0.75 024 034 0 0 0 001
3 |[LLM |1.00 1.00 1.00 1.00 050 070 0.13 11.96
Slasso| 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.68
BMN |0.81 096 0.99 0.01 0 0 0 0.2
4 |LLM [1.00 099 1.00 096 010 022 0  2.09
Slasso| 1.00 1.00 1.00 0.94 1.00 100 0.20 0.98
BMN |0.41 024 0.05 007 0 0 0 0091
° | Slasso| 099 099 098 097 095 092 0 397
. | BMN 029 078 071 0 O 0 0 001
Slasso| 1.00 0.95 1.00 0.99 094 082 0  3.58
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SLasso achieves relative better performance on true pesdte as well as false positive rate com-
pared to LLM.

Now, we evaluate the true positive rate and false positite o& recovering the conditional
log odds ratios in the model, with increasing sample sizeFigure (5.1) - (5.4), we show the
learning results in terms of true positive rate (TPR) anddgbositive rate (FPR) as sample size
increases from 100 to 1000. Subfigure (a) and (b) are measuaréte unit of the conditional log
odds ratios (some times are called patterns). Subfiguren@)@ are measured on the unit of
the cligues. There are 2, 3, 3, 6, 3, 6 cliques in the true nspdetpectively. We consider all
the possible cliques of any size in the graph. The total nuritba graph of K nodes i2” — 1.
We calculate the TPR on cliques by dividing the average divesanber of correctly discovered
cliques by the number of cliques in the graph. The FPR on eBgs calculated by dividing the
average overall number of false discovered cliques by thmbau of nonexistent cliques in the
graph. As we discussed in Chapter 2, the graph structure temddnditional independence is
determined by the cliques. And according to the asymptaotadyeis in Chapter 4, the estimation
of SLasso is consistent in terms of cliques. So, the resultsliques are important criteria for
evaluating the estimation consistency of a graph strudaaming method. Since BMN does not
consider interactions higher than second order, we willinolude its TPR/FPR on the unit of
cliques.

The experimental settings are the same as before. The trdelrparameters are listed in
Appendix B.1. In these figures, we can see that SLasso ashsatisfying performance in TPR
with FPR well controlled. With increasing sample size, tegmeate of SLasso is getting close to
the true graph structure.

In Graph 2, LLM outperforms SLasso in terms of pattern TPRhatcost of high pattern FPR.
As a result, more noisy cliques (possibly larger cliques)racovered by LLM, which causes the
worse performance of clique TPR and clique FPR compared &81.. SLasso outperforms LLM
in other scenarios.

BMN has good performance on simpler graphs (Graph 1 and 2weMer, it misses many

pairwise interactions when graphs are large and contaimehnigrder interactions.
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5.1.2.2 Whemp =5

Here, we let the input feature be a vector of 5 dimensions.ablel'5.2, BMN and LLM are
able to recover the pairwise interactions, but they canndtliigher order interactions effectively.
In addition, BMN and LLM will detect many false positive paths which are pairwise. This is
mainly because of the effects of input features. In contrf@kasso can effectively exploit the
features to achieve good performance as it did when there fieature.

The Figure (5.5) - (5.8) show the convergence of SLasso imashg the graph structure. It
achieves high TPR with FPR well controlled. LLM obtains higPR at the cost of high FPR.

5.1.3 SLasso with Feature Selection

In this section, we evaluate the performance of SLasso wilkufe selection. The objective is

in the following equation where the penalties are definedguodfion (3.9).

() = L)+ A D po [ D I3 +A D llelh (5.1)
vEP(N) weT, vEP(N)

The experiment is performed on Graph 3, with the same sstsdpefore. The true parameters
are the same as in Appendix B.2, except #tfatindcs are set as 0 for all, i.e. X; and X3 are
irrelevant variables. The second tuning paramatisrchosen to bé.06 based on empirical results.

For each sample size ranging from 100 to 1000, we carry ouirid¥pendent runs and average
the results. We count the correctly and incorrectly discesigparameters and compare them to the
true models. The true positive rate and false positive regkted in the figure. We can see that

with increasing sample size, SLasso recover the non-zeeeers more accurately.

5.1.4 Comparison with Ordinary Lasso

In this section, we compare the SLasso method with the orgllreesso for multivariate Bernoulli

data, which we call “Vanilla” in Equation (5.2). For each betsample size&)0, 200, - - - , 1000,
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Table 5.2 The average discovery rate of a selected set obtvg@ro patterns whem= 5,

n = 1000. The last column, FP (False Positive), is the average desgaate of all the zero

patterns in the true model. Note, the numbers of the zerepetin the true model for the 6
graphs are 6, 51, 231, 994)%°, and10*° respectively.

Graph Method f1,2 f1,3 f2,3 f3,4 f1’2’3 f5,7,8 f5,6,7,8 FP

BMN 1.00 1.00 0.97 013 O - - 2.00
1 LLM 1.00 1.00 1.00 0.97 1.00 - - 2.12
SLasso| 1.00 1.00 1.00 1.00 1.00 - - 0.04
BMN 0O 100 100 100 O - - 3.14
2 LLM 0.63 1.00 1.00 1.00 O - - 18.12
SLasso| 1.00 0.95 1.00 1.00 0.95 - - 0.96
BMN 1.00 099 100 100 O 0 0 1.57

3 LLM 1.00 1.00 1.00 1.00 0.09 0.76 0 17.17
SLasso| 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.35
BMN 1.00 1.00 1.00 1.00 O 0 0 9.10

4 LLM 1.00 1.00 1.00 1.00 O0.16 0 0 16.45
SLasso| 1.00 1.00 1.00 086 1.00 0.99 0.15 0.24

BMN 0.67 0.78 045 054 O 0 0 4.67
° SLasso| 0.99 0.99 0.98 097 0.80 0.71 0 1.97
BMN 0.72 0.85 064 054 O 0 0 6.17
° SLasso| 1.00 1.00 1.00 0.99 0.94 0.85 0 1.58
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are calculated on the unit of parameters. That is, we coentdinrectly and incorrectly
discovered parameters and compare them to the true models.
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we evaluate the methods on 100 separate runs and averagerfii@rance. In each run, we gen-
erate 2 datasets for the graph structure as in Figure (2-d&)(d)). One of the data set is used for
training and the other for testing.

The true set of the model parameters, j = 1,--- , 5, are shown in Appendix B.2. The fea-
tures,X;, are i.i.d uniform on [-1, 1]Y is sampled according to the probability in equation (2.4).

We evaluate the following 5 models

1.Vanilla : mfin Z\(f) )+ A Z ] (5.2)

2.5Lasso : mfin I\(f) = )+ A Z Do /Z <12, (5.3)
vEp w€Ty

3.SLasso — Refit : Refit the logistic regression on the subset selected by 8Lass (5.4)
4.Full : Fit the logistic regression without model selection (5.5)

5.Best : Use the true model parameters on test set (5.6)

We evaluate “BAC”(Balanced Accuracy, equals to (sensitivispecificity)/2) and “Log-likelihood
on the test set and average the results ovet @heuns for each of the sample size. The results are
plotted in Figure (5.10(a)), (5.11(a)) ,(5.12(a)), (54)3(and Figure (5.10(b)), (5.11(b)), (5.12(b)),
(5.13(b)).

In Figure (5.12(a)) and Figure (5.13(a)), “SLasso-Refitiiages almost the same performance
as “Best”. This is because with increasing sample size, §Statends to select the true non-zero
patterns, which makes the refitted models close to the trugefao Since “SLasso” is itself a the
model selection method, and thus provides biased estimatdhe model parameters with finite
sample size, the BAC performance is below “SLasso-Refit” ‘@ebt”. The “Vanilla” is below
“SLasso” and “Full”. One possible reason is using a singlang parameter in the “Vanilla”
model. In addition, the sparsity on the level of graph suteeis more important than the sparsity
on the level of model parameters. This might also be the redsat “Vanilla” is not as good as
other methods.

In Figure (5.12(b)) and Figure (5.13(b)), similar results abserved. “SLasso-Refit” achieves

almost the same performance as “Best” with increasing samsige. In terms of log-likelihood
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on the test set, “Vanilla” and “SLasso” achieve very closdgrenance, since they are both model
selection methods.

For Graph 1 and Graph 2 which have simpler structure compar&taph 3 and Graph 4, the
performance of “SLasso0” is not as good as “Vanilla” or “Fullh Figure (5.10(a)), 5.11(a), and
Figure 5.10(b), 5.11(b)). The reason may be the benifits tohasing the correct graph structure
for a simple graphical model is overwhelmed by the bias bnblny SLasso. But still, after re-
fitting on the non-zero patterns estimated by SLasso , “Si-&it” achieves almost the same

performance as “Best” with increasing sample size.

5.1.5 Consistency in Estimating the Cover of Non-zero Pattes

The grouping structure of the penalty in SLasso objectivefion in Equation (3.5) produces
the consistency property of estimating the cover of nom-patterns (see Section 4.1). If the true
graphical model has the hierarchical structure, the SLassthod will recover the same set of
non-zero patterns when sample size goes to infinity. Howeéwbie true graphical model does not
have the hierarchical structure, e.g. a fourth order imtiavas exists without some/all the lower
order interactions, the SLasso method can recover the seaph gtructure eventually, but with all
lower order interactions included.

In this section, we will show the consistency of the SLassthogkwhen the graph does not
have the hierarchical structure. We carry out the expertmen Graph 3 whep = 5. Only the
main effects ang“, w = {3, 4}, {1, 2,3}, {5,6, 7,8} are non-zero. The true model parameters we
use are listed below.

Graph 3, p=5
{1} {2} {3} {4} {5} {6} {7} {8}
-0.5000 0.7500  -0.5000 0.5000 1.0000 1.0000 -0.7500 0.5000
0.7500 0.5000 -0.5000 -0.7500 1.0000 -0.7500 -1.0000 -0.5000
-0.7500 0.5000 -0.5000 0.7500 -0.7500 -1.0000 -1.0000 -1.0000

-0.5000 1.0000 -1.0000 -0.7500 0.5000 -0.5000 1.0000 0.5000
-0.7500 0.5000 0.5000 -0.7500 -0.5000 -1.0000 0.5000 0.5000
-0.4000 -0.4000 -0.8000 -0.8000 -0.4000 -0.4000 -0.4000 -0.4000
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{3,4} {1,2,3+ {5,6,7,8}
-0.6000 0.6000 -0.3000
0.4500 0.4500 -0.4500
-0.3000 -0.6000 0.6000
0.3000  -0.3000 0.6000
-0.6000 -0.6000 -0.4500
2.0000 2.6000 3.6000

As we did in the previous section, we plot the performancevefriniethods in terms of balanced accuracy
and log-likelihood in Figure (5.14). It is worthy of notingdt “SLasso” is better than “Best” in terms of
balanced accuracy. It may be because training the “SLassdthalleviates the overfitting issue with the
above chosen model parameters. But in terms of log-likelih6SLasso” is not as good as other methods,
except for “Full” which tends to overfit in the setting. “SlsasRefit” is getting very close to “Best” in
both balanced accuracy and log-likelihood, when sample lsecomes large. This shows that when the
SLasso method recovers the true graph structure (in higbatibty when sample size is large), refitting
the model achieves very similar results as those achievdtinracle scenario.

Although SLasso discovers many lower order interactionsriggng to the three cliques in the hierar-
chical structure, it performs very well in terms of strueuearning. The TPR of SLasso recovering the

cliques is92.34%, with 1.54 false discovered cliques in one run on average, when thelsaize is 1000.

5.2 Case Study: Census Bureau County Data

We use the county data from U.S. Census Butdawalidate our method. We remove the counties
that have missing values and obtain 2668 entries in totaé dutcomes of this study are summarized in
Table 5.3. “Vote” Scammon et al. (2005) [74] is coded as 1 é&f Republican candidate won in the 2004
presidential election. To dichotomize the remaining oates, the national mean is selected as a threshold.
The data is standardized to mean 0 and variance 1. The fol¢pf@atures are included: Housing unit
change in percent from 2000-2006, percent of ethnic groppssent foreign born, percent people over

65, percent people under 18, percent people with a high $eueation, percent people with a bachelors

3http://www.c:ensus.govlstatab/www/ccdb.html
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Table 5.3 Selected response variables

Response Description Positive%
\ote 2004 votes for Republican presidential candidate | 81.11
Poverty | Poverty Rate 52.70
VCrime | Violent Crime Rate, eg. murder, robbery 23.09
PCrime | Property Crime Rate, eg. burglary 6.82
URate Unemployment Rate 51.35
PChange| Population change in percent from 2000 to 2006 | 64.96

degree; birth rate, death rate, per capita government eljoea in dollars. By adjusting, we observe new
interactions enter the model. The graph structura ef 0.1559 is shown in Figure 5.15(a). The results of
BMN (the tuning parameter is 0.015) is in Figure 5.15(b). Themployment rate plays an important role
as a hub as discovered by SLasso , but not by BMN.

We analyze the link between “Vote” and “PChange”. Thoughrttegginal correlation between them
(without X) is only 0.0389, which is the second lowest absolute pairwise correlatibe,link is firstly
recovered by SLasso . It has been suggested that there &dimadeonnectich This shows that after taking
features into account, the dependence structure of respanisbles may change and hidden relations could
be discovered. The main factors in this case are “percemtilgeusing unit change”X;) and “population
percentage of people over 65X¢). The part of the fitted model shown below suggests that asihgu
units increase, the counties are more likely to have bothipesesults for “Vote” and “PChange”. But this
tendency will be counteracted by the increase of people @ethe responses are less likely to take both

positive values.

fVote = 0.2013 - X7 +0.3475 - Xo + - - -
fPChange =1.4726 - X1 —0.3709 - X2 + -

fVeteFChange — (1358 . X1 — 0.0458 - Xo + - -

4http://www.ipsos-mori.com/researchpub|ications/msbarchive/2545/Analysis-PopuIation-change-tumbetelection.aspx
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PChange VCrime
6 (0.0130)

1(0.2539

7(0.0001)

Vote 7(0.0001 .
. 7 (0.0003) /5 (0.0244) PCrime
4(0.046 (0.0534)
2 (0.1392)
URate Poverty
(a) SLasso-Complete
PChange VCrime
3 (0.9761)

Vote 5(0.5317) DCrime

7(0.1589 2(0.7673)

1(1.1754)

URate Poverty

(b) BMN

Figure 5.15 Interactions of response variables in the GeBsweau data. The first number on the
edge is the order at which the link is recovered. The numbbracket is the function norm on the
clique and the absolute value of the elements in the corat@mirmatrix, respectively. We note
SLasso discovers at 7th step two third-order interactionelvare displayed by two circles in (a).
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Chapter 6
Concluding Remarks

The graphical models are very popular in modeling the refetiin a set of discrete random variables
Y. Itis more interesting to estimate the distributiontotonditioned on another set of predictive variables
X. When the graph structure is given, the parameterizatigh patential functions are effective in esti-
mating the model parameters. However, if we want to learrgthph structure and the functions &fthat
characterize the (higher-order) interactions amongilisethis method could lead to over-parameterization.

Our first contribution is the reparameterization of the rilsition of Y conditioned onX by multivari-
ate discrete distributions. The conditional log odds satiecompose the effect &f on Y to main effects
and interactions of all orders. We prove the multivariaszdkte distributions are equivalent to the graphical
models parameterized by potential functions. The mulitardiscrete model is easy to interpret the inter-
actions among the nodes, since we prove the equivalence aipirsity in the set of“’s to the sparsity
of the cliques in the graph. And the sparse estimation of ¢h@fsconditional log odds ratios leads to the
conditional independence in the graphical model.

We propose the SLasso method to learn the graph structuréstispecified by the conditional log
odds ratios defined on the predictive variablesThe advantage is the combination of the graph structure
learning and the flexible choice of the functional spacesforirhe method solves a maximum likelihood
problem penalized by a structure penalty. The penalty iggded on groups of the conditional log odds
ratios, following the hierarchical structure assumptiotn efficient gradient descent algorithm is given
to estimate the complete model. The global convergenceeoflporithm is guaranteed. And a greedy
approach is applied when the graph is large. The BGACV tumieghod is derived to select the tuning
parameter. It achieves satisfactory numerical resultgmuigtion studies.

In addition, we allow the log odds ratios of the joint distriton conditioned on the predictive vari-

ables be functions in any separable Reproducing KernekeHiBpaces. In this way, we extend the linear
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models to teh non-parametric models. The asymptotic aisasy®ws that the SLasso method with para-
metric models and non-parametric models is consistentrmg®f graph structure estimation, because of
the special design of the structure penalty. That is, if the thodel satisfies the hierarchical structure as-
sumption, the SLasso method is consistent in estimatingahef non-zero conditional log odds ratios. If
not, the SLasso method will recover a superset of the nom-amrditional log odds ratios in the true model.
The superset will still give the same graph structure, soeftemation will still preserve the conditional
independence structure.

This model can be applied to a variety of areas. One appicasito discover the relations of multiple
symptoms or clinical responses and how they are affectethdogmvironmental and genetic covariates of
the subjects. Smoking could be significant for many diseasdstheir interactions, but other covariates,
such as taking Vitamin might be only related to a subset ofgimeptoms.

We can apply this method on Facebook data if available in tierd. Say we havéS ads (or ads
categories), which will be clicked (1) or not (0) by the us€ks). The observations of the clicks will be
of multivariate Bernoulli distribution conditioned oK. The intuition is that those ads are related to each
other. But these relations will depend on the features ofuders, because different users have different
browsing patterns. We are also interested in the prediafanuser’s browsing behavior. In addition, we
want to make better use of the social network between thesusay., friends, families, or subscriptions.
This introduces another network, which is 6 and will be treated as known in the future work. The
relationships between the users will provide addition&rimation in the prediction, because friends are

likely to share similar interests.
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Appendix A: Technical Proofs

A.1 Proof of Theorem 2.3

Proof. Given UGM (2.1), the corresponding parameterization in MiviBdel is shown in Equation (2.12)
of Lemma 2.2.

The expression oéxp(S¥(x)) in Equation (2.11) follows from the definition of the condital log
odds ratios in (2.6).

Lety¢ be arealization ofc such thayg = {y5 | i € C'} wherey’ = 1if i € w andy;’ = 0 otherwise.
Let the odd-even partition of the power setotlefined as in Lemma 2.2. The conditional log odds ratios
in MVB model are:

Hnepg (w) HCGC e (yg"7 $)
[Lico. @) Heoee oyi; )

Z(x)
[oec @c(0;2)

Conversely, given the MVB model of (2.4), the cliques can bidnined by the nonzerf: clique

f(z) = log

and b(f) = log (A.1)

C exists ifC' = w and f“ # 0. Then the maximal cliques can be inferred from the grapicaire. And
suppose they ar€i, ..., C,,. Letw;, = C;,fori =1,...,m,ands; =0, k; = C;N(Ci—1U---UCY),i =

2,...,m. Then the parameterization is:
Dc,(yo,;x) = exp (S (y; ) — ™ (y;2)) and Z(z) = exp(b(f)) (A.2)

whereS“(y;z) = >, ., y"f*(z). Thus, UGM (2.1) with bivariate nodes is equivalent to MVBAR

In the latter part of the theoremi, = 2 and3 = 1 follow naturally from the Markov property of
graphical models. To sho® = 3, lety¢& be a realization ofjc such thaty¢g = (v):cc Whereyy’ = 1 if
i € wandy? = 0 otherwise. Notice that whenevem C' = ' N C, we haveyy, = yg’. For any possible
v=rNC, K € {k|lx =vUu, s.t.u C w—v} will satisfy the conditionx’ NC' = v. There arel“~*! such
' in total due to the choice af. Also, they appear in the nominator and denominator of Egnd2.12)

equally. So, forany € C,

[T @cweiz)= ] ®olye:) (A3)

w
REVY, .,y IS

It follows that f“ = 0 by (2.12). O



87

A.2 Proof of Theorem 3.2

Proof. The existence of the minimizer can be shown following theopad Theorem 1 in Lin and Zhang
(2006) [53]. Let the projection of onto span{K(z;,-),i = 1,...,n} C Hk beg, andh = f — g.
Note,||f|17,,. = lgll3;, + Ihl3,,. . andf(z;) = (K(xi,-), f) = (K(xs,-), g), then the objective function in
Equation (3.5) is

IS L@ A Y pe [ S el + S B, (A%
=1

vERP(N) weT, weT,

Therefore, we know the minimizer is kpan{ K (z;,-),i = 1,...,n}.

A.3 Proof of Theorem 3.3

Proof. We give the proof for the linear case. The convexityl pfs easy to check, sinck and.J(f7*) are
all convex inc. Suppose there is somg D w; S.t.é“2 # 0 andét = 0, by the groups constructed through
Figure 3.1,||¢T | = ||(éw)vgw|| # 0 for all v C w;. So the partial derivative of the objective (3.12) with

respect ta:* atc:

= A2 n e - (A9)
Thus, the probability of &> # 0} equals to the probability o{dw1 \Cwl_cwl = 0}, which is 0. O
A.4  Proof of Lemma 4.3
Proof. Let
Us6) = £ S (L (5 M)~ L 77), (A6)
=1
Vi(6) = A [T (F" 4 And) = T (f7)] (A7)
Noted,, ™ (f — f*) is the minimizer ofﬁUn(é) + ﬁVn(d). We will first show the convergence

of U, (9) andV,,(6).
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ForV,,(9), consider the cases wherec A first.

)\in |:Jv (f*Tv + )\n5T1,> _ Jv(f*Tv)} _ i_z [”f*Tv S — [

T
_ o 2() And™ [ And )7
S e R [P

«T AT T,
_)pv(f ) 0

, asn — oo (A.8)
[Fd
Forv € A°, we have
1 «T, 7.\ «T, T,
o [ (57 20T ) (5] = 07 (A.9)
Then, we get the convergence resultiéivn(é):
1 c
)\—%Vn(é) — (yYHT6A + T(64), ash, — oo (A.10)
ForU,(0), we have
1 1 1 . .
)\—QUn(fs) =2 . Z [Lz, (f* 4+ And) — Lz,(f%)] (A.11)
n n i=1
_ Ly iiwz.(f*) b o7 iiszz.(f*) 5+ 0, (1012
An/n NZD — ' 2n = ' P\ n

Let M(f*) = E[VLz(f*)VLz(f*)T]. By central limit theorem,ﬁ S UVLA(f) S W =
N(0,M(f*)), sinceE[VLz (f*)] = 0 andvar(VLgz,(f*)) = E[VL(Y; f*(X))VL(Y; f*(X))"] =
M(f*). So the first term converges @an probability as\,,/n — co whenn — occ.

NoteE [V2Lyz, (f*)] = VE[Lz,(f*)] = H(f*), we have
1 & g 0. .
- ;dTVQLZi( 98 225 §TH(F*)6 (A.12)

Then, we get the convergence resultg\éivn(d):
1
A2

n

U, (5) & %6TH( )6 (A.13)
Therefore,

Un(8) + Va(6) B W (5) = ;dTH( £6 + (PAT5A + T(6%) (A.14)
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Finally, sinceU,,(d) + V,,(9) is convex and¥ (4) has a unique minimum, it follows Geyer (1996) [27]
and that

= (fam£) = arg min(U, (6) + Vi (6)) (A15)

45 = arg min %(5TH(f*)5 + (v 6 + T (67)
é

More general version of the convergence in minimizationreardom functions on finite dimensional

Hilbert space can be found in Knight (1999) [41] and Rockafelnd Wets (1998) [73].

A.5 Proof of Lemma 4.5

Proof. We knowf,;4 is unique since the objective function in Equation (4.183tiengly convex. Using
the techniques when proving Lemma 4.3, tﬁeconsistent result of;;‘ for f*A which is similar to the
one implied in Equation (4.8) means thaf 2 f*A. This implies thatP (P C 75nA> — 1. Since
A = cover(P), we haveP (A C AnA> — 1. SinceP, 4 = A, 4 almost surely as shown in Lemma 4.2,

we havelP (A C 75n,4> — 1. 75n,4 C A is always true, s® (PnA = A) — 1. The conclusion of

Lemma 4.5 follows from Lemma 4.2. O

A.6 Proof of Lemma 4.15

Proof. First, Volle and Hiriart-Urruty (2011) [89] showed that a akdy lower-semicontinuous function
defined on a reflexive Banach space has a unique minimizerdibaly if it is essentially strictly convex.
Note, a RKHS is a reflexive Banach space. The properties oblfective function provides sufficient
conditions forl¥,, andW attaining a unique minimizer.

Note, a sequencgF;,, : Hx — R} is said to epi-converge t6' : Hx — R at f € Hy if for any
fn — f,liminf F,,(f,) > F(f) and3f, — f such thatimsup F,(f,) < F(f) (Dong and Wets (2000)
[19]). Vogel and Lachout (2003) [88] showed that the poiigerconvergence in probability for alle H i
implies thatF;, epi-converges td' in probability. We introduce the notion of epi-convergeroautilize
the general convergence results. More about the epi-cgemee in probability can be found in Geyer
(1994) [26], Hess (1996) [32], and Lachout (2006) [47]. Itverth noting that the continuity ofl/;,, W

and point-wise convergence df,, to W ensurelV/,, epi-converges tdV in probability.
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SinceW,, epi-converge tdV in probability, we can find another set of random elemé#fsand W’
which are identically distributed d%7,, andW, andW,, epi-converges td}" almost surely (Van Der Vaart
and Wellner (1996) [87]).

Letd!, = arg mingeyy, W/, andd’ = argminggqy, W'. SiNCeW,,(8) =4 W (8) andW (8) =4 W (9),
it is easy to see that, andé’ have the same distribution &s andé, which are the minimizers df/,, and
W, respectivelys!, =4 6, andd’ =4 9.

It follows Theorem 2.11 and Corollary 2.13 in Attouch (1988) that for F,,,n = 1,2,--- and F’
which are functionals defined on a separable Hilbert s@&adé F;, epi-converges td’ and F' has a unique
minimizer, thenarg min F,, — argmin F. SinceW),(-, e) epi-converges tdV’(-, ) for almost alle € &,
denoted), , = argmin W},(J,e) andd. = argmin W’'(5,e), thend!, , — 4. for aimost alle € &, which

implies that/, — &' almost surely. Thereforeyg mingy,, W,(6) % arg mingey,, W(5).

O

A.7 Proof of Lemma 4.16

Proof. Similarly, let
Un(6) = = 3" [, (FF + M) — L2, ()] (A16)
=1
Va(0) = A [J (fF + M) = T(f7)] (A.17)
Wa(d) = 5(Ual0) + Va(8) (A.18)
From the Taylor’s theorem in Banach space,

SEUN0) = 57 2oLz (74 M) = L () (A19)

i=1

1 [1& .
:A_n[ﬁ;w;zxf )| +

=S VL ()(6.9)
=1

62
o (1)

Becausd..(f) is a bounded continuous operatorfe Z, and f* is optimal for the risk operator, we
have for any € Hg
Ep[VLz (f*)(6)] = Ep o VL, (f)(0) (A.20)
= V(Epo L))(f")(9)

=0
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So the first termy= [L Y71} VLz,(f*)(6)] == 0 by the law of large numbers in Banach space
(Ledoux and Talagrand (1991) [49]).

For the second term,

EpV2Lz,(£*)(8,6) = V*(Ep o L)(f")(8,0)

(A.21)
= H(f")(9,9)
So the second terfs-- > | V2L (£)(6,6)] == SH(f*)(6,6). Therefore,
1 p 1
2Un(0) = SH()(6,0) (A.22)
ForV,,(9), consider the cases wherec A first.
xT, T, Ty |2

1 T T T Dy 2<f *5 And “>H + [[And 1%,

— | L ([ 20 ) = ()] = — = (A.23)

An [ ( ) ] A (L AT e + 1T Nl

*Tv’ 5T
pv<fT—>HK, S s oo
157 e
Forv € A°, we have
i *T, T\ T, T,
[ (777 4 2l ) = )] = (6™ (A.24)
So,
1 c
/\—%Vn(é) — (6%, +T(E), asn— oo (A.25)
Therefore,
1
Wa(0) = 15 [Un(3) + Va(6)
LN

SH(P)(60) + (74, 54),, + Ta(6%)

The conclusion of the lemma follows Lemma 4.15.



92

A.8 B-spline

Givenm knots,ty < t; < --- < t,,—1, the B-spline basis functions of degréeare defined recur-

sively De Boor (1978) [17]:

1; if e <t <tk

bro = ,fork=0,---,m—2
0; otherwise
t—t t —t
by = ——— b1 (t) + — by (8), fork =0, m—d—21=0,--- .d
tpyr — Tk thrie1 —

Let Br(-) = bgq(:), then{By,k = 0,--- ,m —d — 2} arem — d — 1 basis functions, which span the
functional spacé. The B-spline curve i is:

m—d—2

g(t) = Y cB(t) (A.26)

k=0
wherecy’s are the control points to be estimated. In our simulatitwdies, c;’'s are assumed to be one
dimensional scalers for simplicity.

Supposer € R?, we let eachf“(z) be inBy @ B, @ - - - & B,. Here,By is a space of constant functions

andB;,j =1---,pis aB-spline functional space on domaimgf Therefore,
p
fx) =g+ g5 () (A.27)
j=1

wheregy € B; are defined similarly as in (A.26)y7 (x;) = S ¢ Bi(z;), andD = m — d — lis the

number of basis functions.
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Appendix B: True Model Parameters in the Experiment

Here, we list the true model paramters we used in the expatsnene column for one conditional log
odds ratio. Without special notice, we use these paramtiagenerate the data in the experiments. For

p = 5, we list the6 paramters in one column in the ordey’, - - - , c¢, ¢, wherecy is the intercept.

Bl p=20

Graph 1, p =0
{1} {2} {3} {4} {1,2} {1,3} {2,3} {3,4}
-2.0000 -2.0000 -2.0000 -2.0000 1.2000 1.2000 1.2000 1.2000

{1,2,3}
1.2000

Graph 2, p =0
{1} {2} {3} {4} {5} {6} {1,2} {1,3}
-0.3778 -0.2667 -0.0444 -0.3778 0.0667 0.0667 0.2889  -0.0444

{2,3} {3,4} {5,6%} {1,2,3}
-0.2667 -0.4889  -0.4889 1.0000

Graph 3, p =0
{1} {2} {3} {4} {5} {6} {7} {8}
-0.2000 -0.2000  -0.2000 0.2000 -0.2000 -0.2000 -0.2000 -0.2000

{1,2} {1,3} {2,3} {3,4} {5,6} {5,7} {5,8} {6,7}
0.4000 0.4000 0.2000 0.5000 0.2000 0.3000 0.5000 0.6000

{6,8%} {7,8} {1,2,3%} {5,6,7} {5,6,8+ {5,7,8%} {6,7,8} {5,6,7,8}
0.5000 0.5000 0.3000 -0.2000 -0.2000 -0.2000 -0.2000 1.0000

Graph 4, p =0



{1}
-0.2000

{9}
-0.2000

{5,7%
0.6000

{5,6,7}
-0.3000

B2 p=5

{1}
-2.0000
-4.0000

4.0000
-3.0000
-2.0000

1.0000

{1,2,3}
-2.4000
-1.2000
-2.4000

1.8000
-1.2000

1.2000

{2}
-0.2000

{10}
-0.2000

{5,8}
0.3000

{5,6,8}
-0.2000

{2}
-3.0000
-3.0000

3.0000

4.0000
-3.0000

1.0000

{3}

-0.

2000

{1,2}

0.

6000

{6,7}

0.

{6,7,8}
-0.

4000

2000

{3}

.0000
.0000
.0000
.0000
.0000
.0000

{4}
-0.4000

{1,3}
0.2000

{6,8}
0.6000

{6,7,8}

-0.2000

{
-0

{
0

{
0

{5,6,7,8%}

1

Graph 1, p =

{4}
3.0000
3.0000
-2.0000
3.0000
2.0000
1.0000

{

1.

5}
.4000

2,3}
.4000

6,9}
.4000

.4000

5
1,2}

2000
.2000
.4000
.2000
.2000
.2000

{6}
-0.2000
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0.5000

{7,8%}
0.5000

{1,3}
-2.4000
-1.2000

2.4000
-2.4000
-1.2000

1.2000

{7}
-0.2000

{4,5}
0.6000

{9,10}
0.6000

{2,3}
1.8000
-1.2000
2.4000
1.2000
-1.2000
1.2000
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{8}
-0.2000

{5,6%}
0.3000

{1,2,3}
0.6000

{3,4}
-2.4000
-2.4000

2.4000

1.8000

2.4000

1.2000



{1}
-3.0000
-4.0000

4.0000
-2.0000

2.0000

1.0000

{2,3%}
2.4000
1.2000
-1.8000
-1.2000
-1.8000
1.2000

{1}
-0.5000
-0.5000
-0.5000

0.5000
-1.0000
-2.0000

{1,2}

0.6000
-0.3000
-0.6000

0.6000

{2}
-2.0000
3.0000
4.0000
4.0000
-4.0000
1.0000

{3,4}
1.2000
-1.2000
-1.8000
2.4000
2.4000
1.2000

{2}
-1.0000
-1.0000

1.0000

0.5000

1.0000
-2.0000

{1,3}
-0.3000

0.6000

0.6000
-0.3000

{3}
3.0000
2.0000
-2.0000
2.0000
-3.0000
1.0000

{5,6%}
1.2000
-1.8000
1.8000
1.8000
2.4000
1.2000

{3}
-1.0000
0.5000
1.0000
0.5000
0.7500
-2.0000

{2,3}
-0.6000
-0.3000
-0.3000
-0.3000

Graph 2, p =5

{4} {5}
3.0000 -2.0000
3.0000 4.0000
-4.0000 4.0000
2.0000 -2.0000
4.0000 4.0000
1.0000 1.0000

{1,2,3%}
-1.2000
-1.8000
-2.4000
-1.2000
-1.2000

1.2000

Graph 3, p =5

{4} {56}
-0.5000 -0.7500
0.7500  -1.0000
0.5000 -1.0000
-1.0000 0.5000
1.0000 0.5000
-2.0000 -2.0000

{3,4} {5,6}
0.3000 0.4500
0.4500 0.4500
0.3000 0.3000
0.3000 0.4500

{6}
3.0000
-2.0000
-3.0000
-3.0000
3.0000
1.0000

{6}
0.7500
-0.7500
-0.7500
0.5000
0.7500
-2.0000

{5,7}
-0.4500
-0.6000
0.4500
-0.3000

{1,2}
1.8000
1.8000
-1.2000
1.8000
1.2000
1.2000

{7}
-1.0000
-1.0000

0.7500
-0.7500
-0.5000
-2.0000

{5,8}
0.4500

-0.4500
0.4500

-0.3000
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{1,3}
-1.8000
1.8000
1.2000
1.2000
2.4000
1.2000

{8}
-0.7500
0.7500
0.5000
-0.5000
0.5000
-2.0000

{6,7}
-0.4500
-0.3000
-0.6000
0.4500



-0.6000
1.2000

{6,8}
0.3000
-0.6000
-0.4500
0.3000
-0.4500
1.2000

{1}
-0.5000
-1.0000

0.5000
-0.5000

0.7500
-1.5000

{9}
0.7500
-0.7500
-1.0000
0.5000
0.7500
-1.5000

{5,7%
-0.4500
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-0.4500
1.2000

{7,8}
0.4500
-0.4500
0.6000
-0.6000
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1.2000

{2}
-0.7500
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-1.0000
-0.5000

1.0000
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{103}

0.5000
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-1.0000
-0.5000
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0.4500
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-0.6000
1.2000

{1,2,3}

0.6000
-0.3000
0.6000
0.3000
0.3000
1.2000

{3}
0.5000
-0.7500
-1.0000
0.5000
1.0000
-1.5000

{1,2}
-0.6000
-0.6000
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