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ABSTRACT

In discrete undirected graphical models, the conditional independence of the node labelsY is

specified by the graph structure. We study the case where there is another input random vectorX

(e.g. observed features) such that the distributionP (Y | X) is determined by functions ofX that

characterize the (higher-order) interactions among theY ’s. The main contribution is to learn the

graph structure and the functions conditioned onX at the same time.

Parameterizing the graphical models with potential functions might lead to overparameteri-

zation. We prove that the discrete undirected graphical models with featureX are equivalent to

the multivariate discrete models. The reparameterizationof the potential functions in graphical

models by conditional log odds ratios of the latter offers advantages in the representation of the

conditional independence structure. And the two parameterizations are proved to be equivalent.

In addition, the spaces of conditional log odds ratios can bechosen flexibly. They could be lin-

ear functional spaces (parametric), or separable Reproducing Kernel Hilbert Spaces determined by

kernels (non-parametric).

To obtain a sparse estimation of the graph structure, we impose a Structure Lasso (SLasso)

penalty on groups of the conditional log odds ratios to learnthe graph structure. These groups

with overlaps are designed to enforce hierarchical function selection. An efficient gradient descent

algorithm is given to estimate the complete model. The global convergence of the algorithm is

guaranteed. And a greedy approach is applied when the graph is large. The BGACV tuning method

is derived to select the tuning parameter. It achieves satisfactory numerical results in simulation

studies.
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The asymptotic analysis shows that the SLasso method is consistent in terms of estimating

the graph structure. The consistency properties hold for both the parametric models and the non-

parametric models. The experiments show that the SLasso method is able to recover the graph

structure with increasing sample size. It also outperformsother methods in the simulation studies.
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Chapter 1

Overview

In undirected graphical models (UGMs), a graph is defined asG = (Ω, E), whereΩ =

{1, · · · ,K} is the set of nodes andE ⊆ Ω × Ω is the set of edges between the nodes. In fact,Ω is

associated to a multivariate response variableY = (Y1, · · · , YK)T , andE specifies the conditional

independence structure among the components. The UGMs havebeen widely used in computer

vision, natural language processing and other applications. For example, the Conditional Random

Fields (CRFs) (Lafferty et al. (2001) [48]) and the extensions, e.g., dynamic CRF (Sutton et al.

(2007) [82]), are well known in Natural Language Processingcommunity. The CRFs achieve great

success by modeling the effects of featuresX on the labels (responses)Y of the nodes. There are

also numerous applications of the UGMs to computer vision (Szeliski et al. (2007) [83], Schnitzs-

pan et al. (2009) [77]), image processing (Schmidt et al. (2008) [76]), social networks (Banerjee

et al. (2008) [8]), and so on.

Graphical Models facilitate the prediction ofY by modeling the relations between its com-

ponents. Multi-task learning (Caruana (1997) [15]) is related to Graphical Models in this sense.

The difference is that the multi-task learning is not focused on higher order interactions on the

responses. In the Multi-task learning setting, a set of observations are given for each of theT

tasks. In many cases, these tasks will share the same set of features. The general assumption is

that there are certain relations between the tasks. Therefore, modeling theT tasks at the same time

and considering the relations will be a better choice than treating each task independently. For ex-

ample, learning speech recognition models for different speakers could be treated as a multi-task

learning problem, since the commonality between differentspeakers could be utilized to improve
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the performance. Another example is identifying differentbut related objects in computer vision

(Torralba et al. (2004) [85]).

Evgeniou et al. (2005) [22] considered the embedding of the features into another space and

proposed to learn at the same time theT task functions that are in Reproducing Kernel Hilbert

Spaces (RKHS). The algorithm works for the linear task functions with linear embedding. Ar-

gyriou et al. (2008) [3] proposed a framework to learn sparserepresentations shared across mul-

tiple tasks. The objective function is non-convex because it trys to learn the feature map and the

regression parameters at the same time. They proved that thenon-convex problem is equivalent to

a convex problem and provided the corresponding iterative alternating algorithm. This method is

also related to multiple kernel learning (Bach et al. (2004)[7]). Caponnetto et al. (2008) [13] stud-

ied the theoretical conditions under which every continuous function in a RKHS can be uniformly

approximated in the multi-task settings.

The UGMs are powerful in modeling the joint distribution ofY conditioned on input variables

X. The graph structure specifies the conditional independence among the nodes. In many ap-

plications, the graph is pre-determined by certain domain knowledge. For example, Duan et al.

(2008) [20] proposed a collective model for labeling music signals with fully connected graph,

which they called collective conditional random fields. They have50 labels in10 semantic cat-

egories such as genre (blues, rap, . . . ), instrument (guitar, piano, . . . ), production (studio, live),

rhythm(strong, weak, middle), and etc. It is possible that some links should not appear, e.g., pro-

duction and instrument. Estimating the parameters with these interactions included will possibly

lead to overfitting. It is important to learn the graph structure and the functions associated with the

structure at the same time.

Many prior works have focused on the graphical structure learning without conditioning on

X. For instance, Meinshausen and Bühlmann (2006) [63] and Peng et al. (2009) [67] studied the

sparse covariance estimation of the Gaussian Markov RandomFields (Speed and Kiiveri (1986)

[80]). The covariance matrix fully determines the independence structure in the Gaussian dis-

tribution, and thus, specifies the linkage. But it is not the case for non-elliptical distributions,

such as the distribution of the multivariate discrete random variables. Ravikumar et al. (2010)
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[71] and Xue et al. (2010) [98] discussed consistent structure selection of Ising models based

on thel1-regularized logistic regression, while Höfling and Tibshirani (2009) [33] proposed using

pseudo-likelihood withl1 penalty for estimating sparse Ising models. Ising models are special

cases of discrete UGMs with only pairwise interactions, and(usually) without features. We focuse

on the discrete UGMs with both higher order interactions andfeatures. It is important to note that

the graph structure may change conditioned on differentX ’s, thus our approach may lead to better

estimations and interpretation.

In addressing the problem of structure learning with features, Liu et al. (2010) [55] assumed

thatY is Gaussian distributed givenX, and they partitioned the space ofX into bins. We do not

assume any special structures ofX ’s in this work but focus onY which is multivariate discrete

when conditioned onX. Schmidt et al. (2008) [76] proposed a framework to jointly learn the

pairwise CRFs and the parameters with block-l1 regularization. Bradley and Guestrin (2010) [11]

learned tree CRF that recovers a max spanning tree of a complete graph based on heuristic pairwise

link scores. These methods utilize only pairwise information to scale to large graphs. The closest

work is Schmidt and Murphy (2010) [75], which examined the higher-order graphical structure

learning problem without considering features. They used an active set method to learn higher

order interactions in a greedy manner. Their model is over-parameterized, and the hierarchical

assumption is sufficient but not necessary for conditional independence in the graph. Buchmann

et al. (2012) [12] proposed a structure learning method of binary UGMs without features based

on spectral parameterization. This parameterization is equivalent to the multivariate Bernoulli

parameterization discussed in Section 2.2. They compared different parameterizations and showed

that the spectral parameterization is one of the best performing parameterizations.

To the best of our knowledge, no previous work addressed the issue of graph structure learning

of all orders while conditioning on input features. The advantage is the combination of the graph

structure learning and the flexible choice of the functionalspaces onX. Our contributions include

a reparemeterization of the UGMs with bivariate outcomes bythe multivariate Bernoulli (MVB)

models. It can be easily extended to general discrete UGMs asshown in Section 2.3. The set of

conditional log odds ratios in the MVB models are complete torepresent the effects of features
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on responses and their interactions at all levels. The sparsity in the set of functions are sufficient

and necessary for the conditional independence in the graph, i.e., two nodes are conditionally

independent if and only if all the interactions that containthese two nodes are constant zero; and

the higher order interaction among a subset of nodes means none of the variables is separable from

the others in the joint distribution.

To obtain a sparse graph structure, we impose Structure Lasso (SLasso) penalty on groups

of the conditional log odds ratios with overlaps. SLasso canbe viewed as the group lasso with

overlaps. The group lasso that is proposed in Yuan and Lin (2006) [100] leads to the selection of

variables in groups. They showed that it is consistent when the groups are exclusive and cover the

whole set. Jacob et al. (2009) [35] considered the penalty ongroups with arbitrary overlaps. Zhao

et al. (2009) [103] set up the general framework for hierarchical variable selection with overlapping

groups, which we adopt here for the functions. Our groups aredesigned to enforce the sparsity

on the set of functions and shrink higher order interactionssimilar to the hierarchical inclusion

restriction in Schmidt and Murphy (2010) [75]. We give a proximal linearization algorithm that

efficiently learns the complete model, where the normalization factor is calculated by the junction

tree algorithm (Koller and Friedman (2009) [44]). The global convergence is guaranteed (Wright

(2010) [96]). It can be used in applications where the numberof responses is small, such as the

Census Bureau data in Section 5.2. It can also be applied to model the relations of multiple clinical

responses (hypertension, diabetes, etc.) and how they are affected by the person’s genetic and

environmental variables (smoking, income, etc). We then propose a greedy search algorithm to

scale our method to large graphs as the number of parameters grows exponentially. This algorithm

can scale to large graphs (100 nodes or more) by a greedy type search from main effects to higher

order interactions.

In addition, we allow the conditional log odds ratios of the joint distribution be functions in

any separable Reproducing Kernel Hilbert Spaces. In this way, we extend the linear models to

the non-parametric models. For the non-parametric regression in exponential families, Lin and

Zhang (2006) [53] proposed the component selection and smoothing operator (COSSO) method

for model selection and estimation. They proposed iterative alternating algorithm for learning the
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model parameters and the dummy variables that determines the sparsity in the model. Although

optimizing over the two sets of parameters is not convex, they showed it is equivalent to a con-

vex optimization problem. They also showed the rate of COSSOestimators converging to the

true model in terms of thel2 norm of the function values on the observations. Other references

about the asymptotic results of non-parametric models include but not restricted to Bach (2008)

[6], Radchenko and James (2010) [69], Ravikumar et al. (2009) [70], Meier et al. (2009) [62],

Huang et al. (2010) [34], and Koltchinskii and Yuan (2010) [45]. Our contribution is to give the

sufficient and necessary conditions for the model selectionconsistency of SLasso with parametric

and non-parametric models. Due to the special design of the structure penalty, the SLasso method

is consistent in terms of graphs structure estimation. Thatis, if the true model satisfies the hier-

archical structure assumption, the SLasso method is consistent in estimating the set of non-zero

conditional log odds ratios. If not, the SLasso method will recover a superset of the non-zero con-

ditional log odds ratios in the true model. The superset willstill give the same graph structure, so

the result will still preserve the conditional independence structure.

The thesis is organized as follows: Chapter 2 introduces theGraphical Models, multivariate

Bernoulli model and its generalizations, multivariate discrete model. We show that Graphical

Models are equivalent to the multivariate discrete models.Chapter 3 discussed the SLasso method

and the structure penalty. We provided the gradient descentalgorithm for learning the model.

We derive the GACV and BGACV score to select the tuning parameter. Chapter 4 discusses the

asymptotic results for parametric and non-parametric models. The experiments are discussed in

Chapter 5. Chapter 6 gives the concluding remarks.

The notations in this paper are summarized in Table 1.1. Without special notice,‖ · ‖n denotes

the Euclideanln norm if n = 1, 2, · · · ; ‖ · ‖H denotes the norm in the spaceH; ‖ · ‖K denotes the

norm induced by the kernelK; ‖ · ‖J denotes the conjugate norm with respect toJ if J is itself a

norm (or a penalty) as defined in Definition 4.17.
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Table 1.1 Notations

Symbol Description

‖ · ‖ Euclideanl2 norm

n Sample size

p Number of covariates

K Number of Response/Output

Y K dimensional Response/Output

X Covariates/Feature/Input,n× p matrix

Ω Set of{1, 2, . . . ,K}
℘(Ω) Power set ofΩ except the empty set

ω, κ, v Element of℘(Ω) used for indexing

yω(i) yω(i) =
∏

k∈ω yk(i)

Y(i) Augmented responses(y1(i), . . . , yΩ(i)) whereyω(i) =
∏

k∈ω yk(i)

c Model parameters

p̃ Dimension ofcω. It is (p+ 1) in linear models

K̃ Number offω’s. It is |℘(Ω)| if there is no restriction on the model

Tv Tv = {ω|v ⊆ ω} is the subgraph rooted atv containing all its descendants

fTv fTv = (fω), ω ∈ Tv, wherefω is the conditional log odds ratio

J (f) Penalty onf

Iλ The objective with tuning parameterλ

pv Weight for penalty on structureTv

sv, rv Subgradient ofλJ(fTv) of thevth group

Sω(y;x) Sω(y;x) =
∑

κ∈T ω yκfκ
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Chapter 2

Graphical Models and Multivariate Discrete Distribution

In this chapter, we will discuss the distribution of a multivariate discrete random vector which

has higher order interactions. We will show that the formulation of the multivariate discrete distri-

bution is equivalent to the discrete Undirected Graphical Models. And the former is more suitable

for learning the graph structure.

2.1 Discrete Undirected Graphical Models

In Undirected Graphical Models (UGMs), a graph is defined asG = (Ω, E), whereΩ =

{1, · · · ,K} is the set of nodes andE ⊆ Ω × Ω is the set of edges between the nodes. A UGM

is also called a Markov Random Field (Kindermann et al. (1980) [40]) because of its Markov

properties we will discuss later.

Suppose the multivariate response vector associated with the nodes isY = (Y1, · · · , YK)T , and

suppose there is ap dimensional predictive variableX which can be viewed as common features

shared by theK response variables. We call a UGM with discrete response variables as a discrete

UGM.

The Markov property formulates the conditional independence structure of a UGM: given three

sets of nodesA,B,C in Ω, A andB are independent givenC if all the paths from a node inA to

a node inB will go throughC. Define a clique to be a fully connect subgraph ofG, and define a

maximal clique to be a clique which is not properly containedin any other cliques. The Markov

property leads to the conclusion that any two nodes not in a clique are conditionally independent
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given others. This property gives a reasonable decomposition of the graphG according to the

cliques.

One formulation of the joint distribution of discreteY = (Y1, . . . , YK)T conditioned onX is

parameterized by a set of potential functions on a set of partitions (Bishop (2006) [10] Chapter 8)

P (Y1 = y1, . . . , YK = yK |X) =
1

Z(X)

∏

C∈C
ΦC(yC ;X) (2.1)

whereZ(X) is a normalization factor that ensuresP (·) is a well defined probability measure

Z(X) =
∑

y

∏

C∈C
ΦC(yC ;X) (2.2)

The distribution in Equation (2.1) is factorized accordingto C, which is usually the set of

cliques in the graph.ΦC(X) is a potential function ofX on C, indexed by the realization of

YC = yC = (yi)i∈C , that is

ΦC(X) =
∑

yC

I(YC = yC)ΦC(yC ;X) (2.3)

whereI(·) is the indicator function. And we only considerΦC ≥ 0 to make sure the probability

will always≥ 0.

For the purpose of efficient computation,C is often chosen to be the set of maximal cliques.

Different representations by non-maximal cliques can be converted to maximal cliques represen-

tation by reformulation of the potential functions (Wainwright and Jordan (2008) [94] Chapter 2).

SoC does not have to be the set of cliques implied by the graph structure, as long as it is sufficient

to represent the joint distribution. For example, the most general and trivial choice for any given

graph isC = {Ω}. In this case, we cannot infer the conditional independencefrom the formulation

in Equation (2.1). There are2K potential functions for any given graph, even a sparse one. This

number is much more than that in a maximal cliques representations for a sparse graph. This is

because choosingC as{Ω} is over-parameterized. And a lot of those potential functions are trivial

in the sense of being constant functions. In this case, the conditional independence between the

response variables is implicitly formulated by the form of the potential functions.



9

Example 2.1. In Figure 2.1(a), we have a triangle clique{Y1, Y2, Y3} indicate a third order in-

teraction. Y4 is independent with other nodes. Additionally, there is a pairwise interaction be-

tweenY3 andY4. Y4 is conditionally independent withY1 or Y2 givenY3. C in Figure 2.1(a) is

{{1, 2, 3}, {3, 4}}.

In Figure 2.1(b),Y5, Y6 are another set of interacted random variables which are independent

of other 4 nodes. In this case,{Y2, Y4} are conditionally independent givenY3, so are{Y1, Y4}.

C = {{1, 2, 3}, {3, 4}, {5, 6}}.

In Figure 2.1(c),Y5, Y6, Y7, Y8 form a 4-node clique that are independent toY1, Y2, Y3 andY4.

C = {{1, 2, 3}, {3, 4}, {5, 6, 7, 8}}.

In Figure 2.1(d),Y5, · · · , Y8 form a 4-node clique.Y9, Y10 are connected to the clique through

Y7. C = {{1, 2, 3}, {3, 4}, {4, 5}, {5, 6, 7, 8}, {7, 9}, {9, 10}}.

2.2 Multivariate Bernoulli Distribution

The Graphical Model representation in Equation (2.1) is powerful in formulating the joint dis-

tribution of the multivariate discrete random variables ifthe graph structure is known in advance.

It greatly reduces the number of parameters. But if the graphis unknown in advance, estimat-

ing the potential functions on all possible cliques tends tobe over-parameterized (Schmidt and

Murphy (2010) [75]). Furthermore, forcinglog ΦC(yC ;X) = 0 is sufficient for the conditional

independence among the nodes but not necessary (see Section2.2.3). Therefore, we introduce

another parameterization to learn the joint distribution when the conditional independence (graph

structure) is not known.

In this section, we consider the multivariate Bernoulli (MVB) random variables, i.e.Yk = 0 or

1. The general results of multivariate discrete random variables are provided in Section 2.3.

2.2.1 Multivariate Bernoulli Distribution formulation

The multivariate Bernoulli (MVB) model ofK random variables is equivalent to Equation (2.1)

with binary nodes (see Theorem 2.3). It has2K − 1 natural parameters (Whittaker (1990) [95]) if



10

(a) Graph 1 (b) Graph 2

(c) Graph 3

(d) Graph 4

Figure 2.1 Graphical model examples.
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the graph is fully connected. The distribution of the MVB model is

P (Y1 = y1, . . . , YK = yk|X) = exp
{

YTf(X) − b(f(X))
}

(2.4)

= exp
{

y1f
1(X) + · · · + yKf

K(X)

+ y1y2f
1,2(X) + · · · + yK−1yKf

K−1,K

+ · · ·

+ y1 . . . yKf
1,...,K(X) − b(f(X))

}

Here, we use the following notations. LetΩ = {1, . . . ,K} be the set of the nodes in the graph.

Denote℘(Ω) the power set ofΩ leaving out the empty set{∅} to index the components from main

effects to higher order interactions in the model. There are|℘(Ω)| = 2K − 1 components (fω ’s)

in (2.4) as free parameters. Letω denotes a set in℘(Ω), defineY = (y1, · · · , yω, · · · , yΩ) be the

augmented response with

yω =
∏

i∈ω

yi (2.5)

Given the predictive variableX, f = (f1, . . . , fω, . . . , fΩ) is a vector of functions ofX, called

conditional log odds ratios (Gao et al. (2001) [25]). It is also referred to as natural parameters in

the exponential family (McCullagh and Nelder (1989) [60]).We will call f1, · · · , fK main effects,

andf1,2, · · · , f1,··· ,K the interactions between the response variables.

From the distribution of a MVB random variable,fω(x) is equivalent to

fω(x) = logOR(Yi, i ∈ ω|Yj = 0, j /∈ ω;X = x) (2.6)

Here, the odds ratios are calculated recursively as

OR(Yi|X = x) =
P (Yi = 1|X = x)

1 − P (Yi = 1|X = x)
, (2.7)

OR(Yi, i ∈ ω ∪ {k}|X = x) =
OR(Yi, i ∈ ω|Yk = 1, X = x)

OR(Yi, i ∈ ω|Yk = 0, X = x)
, with k /∈ ω (2.8)

The following two notations are useful in optimization and parameter tuning

Sω(y;x) =
∑

κ⊆ω

yκfκ(x); Sω(x) =
∑

κ⊆ω

fκ(x); (2.9)
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Then the normalization factor is

exp(b(f(x))) = 1 +
∑

ω∈℘(Ω)

exp(Sω(x)) (2.10)

In practice, theexp(b(f(x))) is calculated by the junction tree algorithm (Koller and Friedman

(2009) [44] Chapter 10) to avoid enumerating2K possible values ofY , which is intractable in large

graphs.

We assumefω is in a separable Reproducing Kernel Hilbert Space (RKHS)Hω with kernelKω

(Wahba (1990) [90]). The details are discussed in Section 2.4. We focus on estimating the set of

fω(x) with featurex where the sparsity in the set specifies the graph structure.

2.2.2 Relations to Binary Undirected Graphical Models

We present the following lemma and theorem which show the equivalence between the binary

UGM in Equation (2.1) and the MVB model in Equation (2.4):

Lemma 2.2. In a MVB model, define the odd-even partition of the power set of ω as: ℘o(ω) =

{κ ⊆ ω | |κ| = |ω| − k,wherek is odd}, and℘e(ω) = {κ ⊆ ω | |κ| = |ω| − k, wherek is even}.

Note|℘o(ω)| = |℘e(ω)| = 2|ω|−1. The following properties hold:

exp(Sω(X)) =
P (Yi = 1, i ∈ ω,andYj = 0, j ∈ Ω\ω|X)

P (Yi = 0, i ∈ Ω|X)
(2.11)

fω(X) = log

∏

κ∈℘e(ω) P (Yi = 1, i ∈ κ;Yj = 0, j ∈ Ω\κ|X)
∏

κ∈℘o(ω) P (Yi = 1, i ∈ κ;Yj = 0, j ∈ Ω\κ|X)
(2.12)

b(f(X)) = log
Z(X)

∏

C∈C ΦC(0;X)
(2.13)

Proof. This lemma follows from the formulation of MVB in Equation (2.4) and the definition of

odds ratios in Equation (2.6).

Theorem 2.3. A UGM of the general form (2.1) with binary nodes is equivalent to a MVB model

of (2.4). In addition, the followings are equivalent:

1. There is no|C|-order interaction in{Yi, i ∈ C};
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2. There is no cliqueC ⊆ Ω in the graph;

3. fω = 0 for all ω such thatC ⊆ ω.

Proof. The proof is given in Appendix A.1.

The |C|-order interaction in{Yi, i ∈ C} is defined as:{Yi, i ∈ C} are not separable in the

joint distribution. Theorem 2.3 states that there is a cliqueC in the graph, if and only if there is

ω ⊇ C, fω 6= 0 in the MVB model. The advantage of modeling by MVB is that the sparsity in

fω’s is sufficient and necessary for the conditional independence in the graph, thus fully specifying

the graph structure. Specially,Yi, Yj are conditionally independent if and only iffω = 0 for any

ω such that{i, j} ⊆ ω. This showed the interaction is non-zero if all the nodes involved are not

pairwisely conditionally independent.

2.2.3 Examples in Bivariate Case

For a graph withK nodes, suppose we chooseC = {Ω}, the parameters in binary UGM are

{Φω | ω ⊆ Ω}, whereΦω = ΦΩ(Yi = 1, i ∈ ω,andYj = 0, j ∈ Ω − ω) is the potential function.

We usually restrictΦ∅ = 1 to make the model identifiable. So there are2K − 1 free parameters.

Similarly, there are also2K − 1 free parameters in MVB model (f1, . . . , fΩ)

WhenK = 2, Ω = {1, 2}, C = {Ω}, write py1y2
= P (Y1 = y1, Y2 = y2|X) for simlicity, the

distribution ofY givenX is:

P (Y1 = y2, Y2 = y2|X) = py1y2

11 p
y1(1−y2)
10 p

(1−y1)y2

01 p
(1−y1)(1−y2)
00 (2.14)

= exp

{

y1 log
p10

p00
+ y2 log

p01

p00
+ y1y2 log

p11p00

p10p01
+ log(p00)

}

The MVB formulation of the distribution is (fω denotesfω(X) for simplicity):

P (Y1 = y2, Y2 = y2|X) = exp
{

y1f
1 + y2f

2 + y1y2f
1,2 (2.15)

− log
[

exp(f1) + exp(f2) + exp(f1 + f2 + f1,2)
] }
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Write ΦΩ(Y1 = y2, Y2 = y2;X) asΦy1y2
for simplicity, then the distribution with UGM param-

eterization is

P (Y1 = y2, Y2 = y2|X) =
1

Z(X)
Φy1y2

(X) (2.16)

Comparing Equation (2.14), (2.15) and (2.16), and applyingthe results in Lemma 2.2, we know

p00 =
1

Z
Φ00, p01 =

1

Z
Φ01, p10 =

1

Z
Φ10, p11 =

1

Z
Φ11

f1 = log(p10), f2 = log(p01), f1,2 = log
p11p00

p10p01

And the relations between UGM and MVB are

f1 = log
Φ10

Φ00

,

f2 = log
Φ01

Φ00

,

f1,2 = log
Φ11 · Φ00

Φ01 · Φ10

Note, the independence betweenY1 andY2 implies:

f1,2 = 0 or log
Φ11 · Φ00

Φ01 · Φ10
= 0

Therefore,f1,2 being zero in the bivariate MVB model is sufficient and necessary for the con-

ditional independence in the model. On the other hand,log ΦC ≡ 0 is a sufficient condition but not

necessary.

2.3 Multivariate Discrete Distribution

The distribution of a general multivariate discrete randomvector whereYk ∈ {0, · · · ,m − 1}
can be extended from Equation (2.4).

Proposition 2.4. LetV = {1, . . . ,m− 1}, yω = (yi)i∈ω, then

P (Y1 = y1, · · · , YK = yK |X) = exp
{

Ω
∑

ω=1

∑

v∈V |ω|

I(yω = v)fω
v − b(f)

}

(2.17)

whereI is an indicator function andV n = V × · · · × V is the Cartesian product ofn V ’s. Each

fω is a (m− 1)|ω| dimensional vector.
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Note

(m− 1)





K

1



+ (m− 1)2





K

2



+ · · · + (m− 1)K





K

K



 = mK − 1 (2.18)

Thus, the number of free parameters in Equation (2.17) is equal to the number in Equation (2.1).

And similarly, the multivariate discrete distribution formulation is equivalent to UGM whose re-

sponse variables taking value inV = {0, 1, · · · ,m− 1}.

2.4 Multivariate functions in Reproducing Kernel Hilbert S paces

The Reproducing Kernel Hilbert Space (Aronszajn (1950) [4]) H is a Hilbert space of func-

tions onX for which all the evaluation functionals are bounded and linear. It is associated with

a unique Kernel functionK which is positive definite in the sense that for anyn = 1, 2, · · · ,
x(1), · · · , x(n) ∈ X anda1, · · · , an ∈ R,

∑n

i,j=1 aiajK(x(i), x(j)) ≥ 0. K(x, ·) is the Reisz

representer of the evaluation functional such that〈K(x, ·), f〉H = f(x), for any f ∈ H. More

details about the related theorems and choices ofK can be referred to Wahba (1990) [90].

The extension to the general Reproducing Kernel Hilbert Spaces of multivariate functions is

discussed in Wahba (1992) [91]. Micchelli and Pontil (2005)[65] gave another general extension

to Hilbert space valued functions. They showed the representer theorem holds and provided prac-

tical discussions about the regularization problems, as well as the form of Kernels. Another good

reference to vector valued Reproducing Kernel Hilbert Space can be found in Carmeli et al. (2006)

[14].

Let f be aM dimensional vector valued function onX, that isf(x) = (f1(x), · · · , fM (x))T ∈
RM . Let u, v index theu-th andv-th components off(x); M = {1, · · · ,M}. Let K be an

positive definite function on{M × X} × {M × X} in the sense that for anyn = 1, 2, · · · ,
x(1), · · · , x(n) ∈ X, andaui ∈ R for u = 1, · · · ,M, i = 1, · · · , n

M
∑

u,v=1

n
∑

i,j=1

auiavjK(u, x(i); v, x(j)) ≥ 0 (2.19)
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For any fixedv, x, we define theM dimensional vector function as

Kv,x(·) =

















K(1, ·; v, x)
K(2, ·; v, x)

. . .

K(M, ·; v, x)

















(2.20)

Then, the RKHSHK associated with kernelK is defined as the closure of all the countable

linear combinations of Equation (2.20) in the form off(x) =
∑n

i=1

∑M

v=1 cviKv,x(i)(x). Kv,x is

the Reisz representer of the evaluation functional such that 〈f,Kv,x〉HK
= f v(x).

The famous Kimerdolf and Wahba representer theorem (Kimeldorf and Wahba (1971) [39]) can

be extended to the multivariate case in Wahba (1992) [91]. Let yv(i) denote thev-th component

of the i-th response. Suppose the observation is Gaussian data suchthat yv(i) = f v(x(i)) +

ǫv(i), whereǫ(i), i = 1, · · · , n are iid multivariate Gaussian random variableN(0, σ2IM). The

minimizer of the following objective function

min
f∈HK

n
∑

i=1

M
∑

v=1

(yv(i) − f v(x(i))) + λ‖f‖2
HK

(2.21)

has the form of

f̂(x) =

n
∑

i=1

M
∑

v=1

ĉviKv,xi
(x) (2.22)

We assume in the MVB distribution,f is in a Reproducing Kernel Hilbert Space (RKHS)HK

with kernelK. Since we do not assume any special connection between any pair of conditional

log odds ratios, we will supposef v ∈ Hv which is only associated with a reproducing kernelKv.

It is equivalent to assumeK(u, ·; v, ·) = 0 for anyu 6= v in the general representation. In this case,

‖f‖2
HK

=
∑M

v=1 ‖f v‖2
Hk

.
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Chapter 3

Structure Lasso Model for Graph Learning

3.1 Structure Lasso

3.1.1 Structure Penalty

In many applications, the assumption is that the graph has very few large cliques. It is nat-

ual to build up higher order interactions if (at least some) of the lower order interactions exist.

One example is the forward search strategy in multivariate adaptive regression splines (MARS,

Friedman (1991) [24]). In terms of graph structure learning, we are mainly interested in the set

of maximal cliquesC which determines the conditional independence structure of the graph. Any

C ∈ C contains the cliques of its subset with smaller size. It leads us to include a higher order

interaction only when all its lower order interactions are included. Although, with careful choice

of the potential functionΦC on the maximal cliqueC, we might obtain a MVB distribution where

some lower order interactions are zero givenfC is non-zero in the model. For example,f1,2,3 6= 0

but f1,2 = 0 in the true mode. This situation is highly related to the parameterization of the joint

distribution, but it does not affect the conditional independence structure of the graph. Later on,

the theoretical studies show that this hierarchical restriction will lead to the estimation consistency

in graph structure learning. Schmidt and Murphy (2010) [75]applied the same hierarchical inclu-

sion restriction in structure learning with the graphical model parameterization (Equation (2.1)).

Radchenko and James (2010) [69] also suggested to include the main effects ahead of the pairwise

interaction terms in high dimensional settings for linear regression.

Our model is to fit the graphical model by its multivariate Bernoulli parameterization. We

consider the conditional distribution of the nodes (Y ) given the predictive variables (X). The
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sparsity in the set of conditional log odds ratios is sufficient and necessary for the conditional

independence in the graph. Our model are very flexible thatfω(x) can be in an arbitrary separable

RKHS.

Let Y (i) = (Y1(i), . . . , YK(i)), X(i) = (X1(i), . . . , Xp(i)) be theith observation. The aug-

mented representation of the multivariate response is:

Y(i) = (y1(i), . . . , yω(i), . . . , yΩ(i))T (3.1)

The joint distribution in Equation (2.4) contains̃K = |℘(Ω)| = 2K − 1 conditional log odds

ratios in the complete model. Suppose the input variableX ∈ X ⊂ Rp, the model has̃p = p · K̃
free parameters. In cases where there are no predictive variables, e.g., Ḧofling and Tibshirani

(2009) [33] and Ravikumar et al. (2010) [71], the complete MVB distribution has̃p = 2K − 1 free

parameters. We first consider learning the full model whenK is small, and later propose a greedy

search algorithm to scale to large graphs.

To obtain a sparse estimation of the conditional log odds ratios, we follow the framework of

penalized likelihood method (Good and Gaskins (1971) [29])

min
f∈HK

Iλ(f) = L(f) + λJ (f) =
1

n

n
∑

i=1

(

− Y(i)Tf(x(i)) + b(f)
)

+ λJ (f) (3.2)

Here, the loss function is the negative log likelihood of theobservationZ = (X,Y )

L(Y ; f(X)) = −YTf(X) + b (f(X)) (3.3)

and denoteLZ(f) = L(Y ; f(X)). Then,L(f) = 1
n

∑n

i=1 LZi
(f) is the negative log likelihood

that evaluate the goodness-of-fit.J (·) is the penalty that enforce the smoothness and sparsity of

the vector valued functionf . And λ is the tuning parameter, which controls the trade-off between

L andJ .

Our objective is to obtain a sparse estimation of the cliquesin the graph through the sparsity of

the components in the vector-valued functionf . Take the pairwise links for example. No link be-

tweenYs, Yt in the graphical model means they are conditionally independent given other nodes, or

equivalently,fω = 0 for all ω ⊇ {s, t} (Theorem 2.3). For example, in Figure (2.1(b)),Y1, Y4 are
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conditionally independent meansf1,4, f1,2,4,, f1,3,4, f1,2,3,4 are all zero. This objective is similar to

the sparse covariance matrix estimation in Gaussian MarkovRandom Fields for neighborhood se-

lection with lasso (Meinshausen and Bühlmann (2006) [63]). The sparse penaltyJ (·) is designed

to construct such a graph with sparse cliques. However, our model will deal with higher order co-

variance structures that do not exist in Gaussian data. In addition, we not only consider the graph

structure of responsesY alone, but also the effects of predictive variablesX onY .

To satisfy this intuition, the penalty is designed to shrinkhigher order interactions in a hierar-

chical manner. The hierarchical assumption is that if thereis no interaction on cliqueC, thenfω

should be zero, for allω ⊇ C. We consider the Structure Lasso (SLasso) penalty to shrinksuchfω

toward zero. It is guided by a lattice like Figure (3.1). The lattice hasK̃ nodes:1, . . . , ω, . . . ,Ω.

There is an edge fromω1 to ω2 if and only if ω1 ⊂ ω2 and|ω1| + 1 = |ω2|. Jenatton et al. (2011)

[36] discussed how to define the groups to achieve different non-zero patterns in a structured way.

Let Tv = {ω ∈ ℘(Ω)|v ⊆ ω} be the subgraph rooted atv in the lattice, including all the

descendants ofv. T = {T1, . . . , TΩ} categorize all the functions into groups with overlaps. Denote

fTv be the vector of functions that concatenates all the components of f in Tv such thatfTv =

(fω)ω∈Tv
. Based on the discussion of the extension of RKHS theorems tovector valued functions

in Section 2.4, we knowfTv ∈ HTv
which is a RKHS associated with kernelKTv

. AndKTv
is the

original kernelK restricted on the index setTv. The Structure Lasso (SLasso) penalty on groupTv

is:

Jv(f) = pv‖fTv‖HTv
= pv

√

∑

ω∈Tv

‖fω‖2
Hω

wherepv is the weight for the penalty onTv. pv is empirically chosen as1
|Tv | , since we do not hope

to penalize too much on the components that appear in many groups. And the complete penalty

function is

J (f) =
∑

v∈℘(Ω)

Jv(f) =
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

(3.4)
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Figure 3.1 Hierarchical lattice for penalty
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Then, the objective is:

min
f

Iλ(f) = L(f) + λ
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

(3.5)

The following example helps illustratef, Tv and the objective function.

Example 3.1. If K = 3, the vector-valued function is:f = (f1, f2, f3, f1,2, f1,3, f2,3, f1,2,3). The

group at node1 in the lattice (Figure (3.1) ) isfT1 = (f1, f1,2, f1,3, f1,2,3) and the objective is

min
f∈HK

L(f) + λ
(

p1

√

‖f1‖2 + ‖f1,2‖2 + ‖f1,3‖2 + ‖f1,2,3‖2

+p2

√

‖f2‖2 + ‖f1,2‖2 + ‖f2,3‖2 + ‖f1,2,3‖2

+p3

√

‖f3‖2 + ‖f1,3‖2 + ‖f2,3‖2 + ‖f1,2,3‖2 (3.6)

+p1,2

√

‖f1,2‖2 + ‖f1,2,3‖2 + p1,3

√

‖f1,3‖2 + ‖f1,2,3‖2

+p2,3

√

‖f2,3‖2 + ‖f1,2,3‖2 + p1,2,3

√

‖f1,2,3‖2
)

In non-parametric smoothing regression problems, Lin and Zhang (2006) [53] first proposed

the penalty on the sum of RKHS norms instead of the squared norms to select the functional

components in Smoothing Spline ANOVA model (Wahba et al. (1995) [92]). The RKHS norm

‖fTv‖HTv
is nonsmooth atfTv = 0, which leads to the sparse estimation of the components. When

fTv 6= 0, the norm penalty will enforce the smoothness of the function. The penalty on the norm of

a function in a RKHS can be viewed as a penalty on a group of model parameters, if the RKHS is

finite dimensional. Yuan and Lin (2006) [100] proposed GroupLasso for the parametric regression

with similar philosophy. The structure penalty has the sameeffect, except we are dealing with

vector-valued functions and we group the components of the functions with overlaps.

The negative log likelihoodL(Y ; f(X)) of the MVB distribution ensures the loss functional

LZ(·) : HK → R is strictly convex and continuously twice differentiable.Since it does not cause

problems for understanding the next theorem, we postpone the discussion of the differentials and

other functional operations onHK in Section 4.3.1, where we are dealing with the asymptotic

results. The following theorem is the extension of the Kimerdolf and Wahba representer theorem

to vector valued functions and structure penalty.
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Theorem 3.2. If the loss functionL(f) is convex and continuously twice differentiable, and the

penalty functionJ (f) is a norm onHK , then the objective in Equation (3.5) is convex, and there

exists a minimizer of Equation (3.5). Letf̂ be such minimizer, and assume the kernelK is diagonal

in the sense thatK(u, ·; v, ·) = 0 for anyu, v ∈ ℘(Ω) if u 6= v, then theω-th component of̂f is

f̂ v ∈ span{Kv,X(i)(·), i = 1, · · ·n}. That is,f̂ v(·) =
∑n

i=1 c
v
iKv,X(i)(·), for some real valuedcvi .

Proof. See Appendix A.2.

The representer theorem ensures that the solution of the non-parametric functional optimization

in Equation (3.5) is in a finite dimensional space. This is a crucial property for the feasibility of

solving the objective function.

In addition, the following theorem shows that SLasso methodachieves the hierarchical inclu-

sion restriction we impose on the graphical model. That is, by minimizing the objective (3.5),̂fω1

will enter the model beforêfω2 if ω1 ⊂ ω2. Or equivalently, iff̂ω1 is zero, there will be no higher

order interactions onω2 ⊃ ω1. It is an extension of Theorem 1 in Zhao et al. (2009) [103].

The reason can be easily perceived in the following example.f̂1,2 = 0 only occurs when

f̂T{1,2} = 0. Otherwise,‖fT{1,2}‖HT{1,2}
is not at the singular point, and thus the probability of

f̂1,2 = 0 is almost zero. However, if̂f1,2,3 = 0, we will still have the penalty onf1,2 which may or

may not shrink it to zero.

Theorem 3.3.Letω1, ω2 ∈ ℘(Ω) andω1 ⊂ ω2. If f̂ is the minimizer of (3.5) given the observations,

then0 ∈ ∂Iλ(f̂) which is the subgradient ofIλ at f̂ . In addition,f̂ω2 = 0 almost surely iff̂ω1 = 0.

Proof. The proof is given in Appendix A.3.

3.1.2 Pattern Selection by SLasso/COSSO Penalty

The structure penalty will satisfy the hierarchical inclusion assumption in the estimated model.

In some real applications, it might be preferred to allow higher order interactions exist even some or

none of its lower order ones are in the model. But SLasso cannot yield sparsity within the groups.

Friedman et al. (2010) [23] considered the sparse group lasso criterion with the combination ofl1
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andl2 norm as the penalty for parametric linear regression modelY (i) = X(i)Tβ + ǫ(i)

J(β) = λ1‖β‖1 + λ2

G
∑

g=1

‖βg‖2 (3.7)

whereβ is model parameter,G is a partition of the components inβ without overlaps, andβg =

(βj)j∈g. They proposed to solve the optimization problem by coordinate descent procedure.

Yuan et al. (2011) [99] studied the problem of overlapping group lasso problem with the penalty

of the same formulation as in Equation (3.7), except that they allow the groups overlap with each

other. They proposed a fast algorithm based on gradient descent methods which solve the convex

dual problem to obtain the proximal operator of the originaloptimization problem.

To extend the idea of sparse group lasso to the vector valued functional space, we consider the

following SLasso /COSSO penalty

J (f) = J S(f) + λ̄J C(f) (3.8)

=
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

+ λ̄
∑

v∈℘(Ω)

‖f v‖Hv

whereJ S(f) is the structure penalty defined in Equation (3.4) andJ C(f) is the COSSO type

penalty function presented in Lin and Zhang (2006) [53].λ̄ is another tuning parameter that con-

trols the trade-off between the two sparse penalties. It is easy to verify thatJ (f) is also a norm on

HK , then the representer theorem in Theorem 3.2 holds.

In linear models, to select the features within each conditional log odds ratio, we propose the

following feature selection objective

J (f) = J S(f) + J L(f) (3.9)

=
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

+ λ̄
∑

v∈℘(Ω)

‖cv‖1

wherecv is the vector of paramters inf v. This objective can be used to select features in multivari-

ate Bernoulli data where not all of the predictive variablesare related to the response.
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3.2 Estimating the Complete Model for Small Graphs

In this section, we discuss the parameter estimation where theωth RKHSHω is composed of a

constant functions space and a non-constant RKHS:Hω = Hω,0⊕Hω,1. We takeHω0 = {1}, which

refers to the constant function space. AndHω,1 could be a linear function space (Example 3.4), a

B-Spline function space (Example 3.5), or a general RKHS.

Example 3.4.SupposeX = [−1, 1]p, Hω,1 = {x1}⊕ · · ·⊕{xp} is a RKHS of linear functions. We

denote{xj} as a space of linear functions onj-th component ofx, and assume theL2 inner product

on{xj}: 〈f, g〉{xj} =
∫

[−1,1]
fg. For example, the functions in{xj} has the form ofcxj. It is easy to

obtain the following results: the associated kernel isKω,{xj}(s, t) = 3
2
st; the functionfω

j ∈ {xj}
must be in the span of the basis functions obtained fromKω,{xj}: f

ω
1 ∈ span{Kω,{xj}(·, x(i)), i =

1, · · · , n} for somen andx(1), · · · , x(n) ∈ R. So it has the form of

fω
j (x) =

3

2

n
∑

i=1

bixi · x = cωj x (3.10)

for someb1, · · · , bn ∈ R, andc1 =
∑n

i=1 bix(i). Thus,‖fω
1 ‖2

Hω,1
= 2

3
(cω1 )2.

The function in{1} is a constant:fω
0 = cω0 ; the associated kernel with{1} isKω,{1}(s, t) = 1

2
,

‖f‖2
Hω0

= 2(cω0 )2.

Theorefore, by specificly choosingKω, i.e. Kω =
∑p

j=0 θω,pKωp = 1
2
Kω0 + 3

2

∑p

j=1Kω,{xj},

the functionfω ∈ Hω has the form of

fω(x) = cω0 +

p
∑

j=1

cωj xj (3.11)

Its norm is‖fω‖Hω = ‖cω‖, where‖ · ‖ stands for Euclideanl2 norm. Here, we denotecω =

(cω0 , . . . , c
ω
p )T ∈ R

p+1 as a vector of lengthp + 1 andc = (cω)ω∈℘(Ω) ∈ R
K̃·p̃ is the concatenated

vector of all parameters, wherẽp = (p+ 1). LetcTv = (cω)ω∈Tv
be a(p+ 1) · |T v| vector, then the

objective (3.5) is now

min
c∈RK̃·p̃

Iλ(c) = L(c) + λ
∑

v

pv

√

∑

ω∈Tv

‖fω‖2
Hω

(3.12)

= L(c) + λ
∑

v

pv‖cTv‖
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andTv is the subgraph rooted atv defined in the previous section.

Example 3.5.B-spline basis functions are used in many applictions, e.g.high dimensional additive

modeling (Meier et al. (2009) [62] and Huang et al. (2010) [34] ). The details about B-spline

basis functions can be found in Appendix A.8 and in De Boor (1986) [18].

SupposeX = [−1, 1]p, Hω,1 is a B-Spline function space, with reasonable amount of basis

functions. And we also assume theL2 norm onHω. Eachfω(x) ∈ Hω has the form of

fω(x) = cω0 +

D
∑

j=1

gω
j (xj) (3.13)

wheregω
j (xj) =

∑D

k=1 c
ω
jkBk(xj) is spanned by the B-spline basis functions{Bk(·)}k=1,··· ,D; D is

the number of basis functions, and it is determined by the number of knots. See Section A.8 for

more details.

LetBω
j be aD ×D matrix whosek, l-th element is(Bω

j )k,l =
∫

[−1,1]
gk(x)gl(x)dx; andBω =

diag(1, Bω
1 , · · · , Bω

p ) be the blockwise diagonal matrix. Then, the norm onHω is

‖fω‖2
Hω

= ‖cω0‖2 +

p
∑

j=1

(cωj )TBω
j c

ω
j = (cω)TBωcω := ‖cω‖Kω

(3.14)

Here, we denotecω = (cω0 , c
ω
11, · · · , cω1D, · · · , cωpD) as the finite dimensional parameter inR

pD+1

for ω-th component off ; c = (cω)ω∈℘(Ω) ∈ RK̃·p̃ is the concatenated vector of all parameters,

wherep̃ = pD + 1. DenotecTv = (cω)ω∈Tv
be a(pD + 1) · |T v| vector. We will obtain a similar

objective function as in Equation (3.12)

min
c∈RK̃·p̃

Iλ(c) = L(c) + λ
∑

v

pv

√

∑

ω∈Tv

‖fω‖2
Hω

(3.15)

= L(c) + λ
∑

v

pv‖cTv‖KTv

where‖cTv‖KTv
= ‖fTv‖HTv

=
∑

ω∈Tv
‖cω‖Kω

.

3.2.1 Gradient Method by Proximal Linearization

Many applications do not involve a large amount of responses, e.g., the Census Bureau data

in our experiment. In these applications, the deep understandings of the higher order interaction
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structure are preferrable. So it is desirable to learn the complete model when the graph is small.

In this section, we propose a method to optimize Equation (3.5) in the general form of a complete

model.

In solving the optimizaition problem, each conditonal log odds ratiofω is in a finite dimen-

sional function space spanned by the kernel function evaluated on then oberservations:x(1), · · · , x(n) ∈
R

p. This is enusred by the representer theorem. It is natural toview fω as a vector of parameters

cω ∈ Rp̃. p̃ = p + 1 for linear case;̃p = pD + 1 for the B-spline case; andp = n for a general

RKHS case. Denote the basis functions are
{

φω
j | j = 1, · · · , p̃

}

, andφω be thep̃ dimensional

vector of the basis functions, then the form offω can be written as

fω = (φω)T c =

p̃
∑

j=1

cωj φ
ω
j (·) (3.16)

Here, we useΣω to denote thẽp × p̃ kernel matrix, which is determined by the observations

in an infinite dimensional RKHS, i.e., thej, k-th element ofΣω is Kω(x(j), x(k)); or which is

determined by the basis functions, i.e.,
〈

φω
j , φ

ω
k

〉

Hω
, for any j, k = 1, · · · , p̃. Without special

notice, we usecω instead offω, and the norm ofcω is ‖cω‖Kω
= ‖fω‖Hω

= (cω)T Σωc
ω, and

the inner product onRp̃ with respect to the kernel matrixKω is 〈cω, dω〉Kω
= (cω)T Σωd

ω for any

cω, dω ∈ Rp̃.

The definition ofΣω can be extended fromω-th component toK̃ · p̃ × K̃ · p̃ kernel matrixΣ

of the vector valued function space, which is blockwise diagonal. The(u, v)-th block ofΣ is 0 if

u 6= v; the(v, v)-th block isΣv. Similarly, 〈·, ·〉K , and‖ · ‖K can be defined.

Lin and Zhang (2006) [53] proposed an equivalent formulation of the COSSO objective to

solve the functional optimization problem with RKHS norms which are nonsmooth at the singular

point. The equivalent formulation of Equation (3.5) is

min
f∈HK ,γv≥0

L(f) + λ1

∑

v∈℘(Ω)

1

γv

(
∑

ω∈Tv

‖fω‖2
Hω

) + λ2

∑

v∈℘(Ω)

γv (3.17)

In the equivalent formulation,γv is the dummy variable. The procedure is to iteratively fix

γ to get an optimal solution off , and then fixf to obtain a solution ofγ. It is efficient for the

quadratic loss function on Gaussian data, but the alternating optimization might not scale well in



27

our case. In stead, we estimate the complete model with all interaction levels by iteratively solving

the following proximal linearization problem similar to Wright (2010) [96]. Other references use

the proximal method include Mairal et al. (2010) [59]. We will develop the formulation for the

general RKHS cases.

min
c∈RK̃·p̃

Lk + 〈∇Lk, c− ck〉HK
+
αk

2
‖c− ck‖2

HK
+ λJ (c) (3.18)

In Equation (3.18), letφ be the concatenated vector of all basis functions;Lk = L(φT ck);

∇Lk = ∇L(φT ck); andαk is a positive scalar chosen adaptively atkth step. Without causing

ambiguity, we denoteck as the value ofc at kth step. Algorithm 1 summarized the framework of

solving (3.5).

Following the analysis in Wright (2010) [96], we can show that the proximal linearization

algorithm will converge for the negative log-likelihood loss function with the SLasso penalty.

Proposition 3.6. Let the objective function be defined in Equation (3.5), withL be the negative

log-likelihood of the MVB distribution, andJ be the SLasso penalty. Suppose the scaling factor

αk is chosen as described. Then, the sequence{ck} generated by Algorithm 1 will converge to the

global minimum ofI, and the convergence rate is Q-Quadratic.

See Nocedal and Wright (1999) [66] page 29 for the definition of the convergence rate.

3.2.2 Dual of the Proximal Linearization Problem

Since the framework of gradient descent method works for solving the SLasso problem, it

remains to solve the proximal linearization subproblem in Equation (3.18). Although we can view

it as solving a local problem of group lasso with overlaps, itis by no means trivial due to the

non-smoothness at the singular point, which is complicatedby the overlaps.

In recent years, several papers have addressed the problem of solving group lasso with overlaps.

Jacob et al. (2009) [35] duplicated the design matrix columns that appear in group overlaps, then

solved the problem as group lasso without overlaps. Kim and Xing (2010) [38] reparameterized

the group norm with additional dummy variables as did in Lin and Zhang (2006) [53]. They

alternatively optimized the model parameters and the dummyones at each step. As stated before,
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Algorithm 1 Proximal Linearization Algorithm
Input: c0, α0, αmin, αmax, ζ > 1, tol > 0, observations(y(1), x(1)), · · · , (y(n), x(n))

Output: ck

repeat

Chooseαk ∈ [αmin, αmax]

Solve Eq (3.18) fordk = c− ck

while δk = Iλ(φ
T ck) − Iλ(φ

T (ck + dk)) < ‖dk‖3
HK

do

// Insufficient decrease

Setαk = max(αmin, ζαk)

Solve Eq (3.18) fordk

end while

Setαk+1 = αk/ζ

Setck+1 = ck + dk

until δk < tol
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this method might not scale well in multivariate Bernoulli data with SLasso penalty. Instead, we

will solve (3.18) by its smooth and convex dual problem in Yuan et al. (2011) [99] and Mairal et al.

(2010) [59].

To solve the following objective of the proximal linearization problem in Equation (3.18), we

solve its dual problem as suggested in Yuan et al. (2011) [99]. LetAc = {v ∈ ℘(Ω)|‖cTv‖ = 0},

andA = ℘(Ω) \ Ac be the complement. Definesv for everyv ∈ ℘(Ω) as

sv ∈ Sv = {s = (sω)ω∈℘(Ω) | s ∈ R
K̃·p̃, ‖s‖K ≤ λpv, s

ω = 0 if ω /∈ Tv} (3.19)

Then the subgradient of (3.18) is:

K · ∇L+ αkK(c− ck) +
∑

v∈Ac

sv +
∑

u∈A
ru (3.20)

wheresv is the subgradient ofλpv‖cTv‖KTv
for v ∈ Ac andru is the subgradient foru ∈ A:

ru = arg maxsu∈S〈su, c〉K , for u ∈ A (3.21)

The subgradientsv is in a unit ball of certain subspace ofR
K̃·p̃ for the linear case. These

subspaces are not orthogonal to each other. Thus,sv’s are not separable, and closed form solution

of (3.18) cannot be obtained. We solve the proximal subproblem (3.18) by its smoothing and

convex dual problem as suggested by Yuan et al. (2011) [99]. Note (3.18) is equivalent to

min
c∈RK̃·p̃

max
S∈S

ψ(c, S) = 〈∇Lk, c− ck〉K +
αk

2
‖c− ck‖2

K +
∑

v∈℘(Ω)

〈sv, c〉K (3.22)

whereS is aK̃ · p̃× |℘(Ω)| matrix whose columns aresv. S = {S|S = (s1, . . . , sv, . . . , sΩ), sv ∈
Sv for v ∈ ℘(Ω)} is the feasible region ofS. Sinceψ(·, S) is lower semicontinuous andψ(c, ·) is

upper semicontinuous, there exists a saddle point and themax andmin are exchangeable (Barbu

and Precupanu (2012) [9]). The solution of minimizingψ(c, S) is:

c̃ = arg mincψ(c, S) = ck −
1

αk

∇Lk −
1

αk

∑

v

sv (3.23)

Substitutẽc back into (3.22), we have the dual problem of (3.18) as:

max
S∈S

η(S) = −1

2
‖
∑

v

sv‖2
K +

〈

αkck −∇Lk,
∑

v

sv

〉

K

(3.24)
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Following the proof in Yuan et al. (2011) [99], we can show that η(S) is convex and Lipschitz

continuous. The differential isαkc̃e
T wheree ∈ RK̃·p̃ is a vector of ones. Hence, (3.24) can be

solved by existing gradient methods. We use the acceleratedgradient descent method in Liu et al.

(2009) [56].

3.3 Estimating Large Graphs by Greedy Search Algorithm

The above algorithm is efficient on small graphs (K < 20). It usually terminates within 20

iterations in our experiments. However, the issue of estimating a complete model is the exponential

number offω ’s and the same amount of groups involved in objective (3.12). It is intractable when

the graph becomes large. The hierarchical assumption and the SLasso penalty lend themselves

naturally to a greedy search algorithm:

1. Start from the set of main effects asA0 = {f1, · · · , fK}. Suppose all higher order interac-

tions are zero.

2. In stepi, remove the nodes that are not inAi from the lattice in Figure 3.1. Obtain a sparse

estimation of the functions inAi by algorithm (1). Denote the resulting sparse setA′
i.

3. LetAi+1 = A′
i. Keep adding the higher order interactions intoAi+1 if all its subsets of

interactions are included inA′
i. And also add the nodes into the lattice in Figure 3.1.

Iterate step2 and3 until convergence. The algorithm is similar to the active set method in Schmidt

and Murphy (2010) [75]. It has multiple runs of Algorithm 1 toenforce the hierarchical assump-

tion. It is not guaranteed to converge to the global optimum.Nonetheless, our empirical experi-

ments show its ability to scale to large graphs.

3.4 Parameter Tuning

In the regularization problems, choosing a good tuning parameterλ is a crucial part in fitting

the model. Some model selection criteria could be used to chooseλ, such as Akaike informa-

tion criterion (AIC)(Akaike (1973) [1]) and Bayesian information criterion (BIC) (Schwarz (1978)
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[78]). These criteria requires the estimation of the degreeof freedom, which is not trivial for non-

Gaussian data penalized with structure penalty. In Efron (2004) [21], the generalized degree of

freedom is defined as

d̂f =
n
∑

i=1

cov
(

f̂i,Y(i)
)

(3.25)

wheref̂i = f̂(Xi) is the estimated conditional log odds ratios evaluated onXi. The alternative is

the cross validation procedure based on the predictive meansquare error. In Gaussian data, ifσ

is known, the Stein’s unbiased risk estimator (SURE) (Stein(1981) [81]) can be used. Whenσ is

unknown, generalized cross validation (GCV) was proposed in Golub et al. (1979) [28] and Craven

and Wahba (1979) [16]. The minimizer of the GCV score is a goodestimator of the minimizer of

the predictive mean square error. Other references about the asymptotic properties of GCV are Li

(1985) [50], Li (1986) [51], and Li (1987) [52].

In the non-Gaussian exponential family, Xiang and Wahba (1996) [97] proposed generalized

approximate cross validation (GACV) to obtain theλ as a minimizer of the comparative Kullback-

Leibler (CKL) distance, which serves as a proxy of the KL distance between the true regression

function f∗ and the estimated function̂f . The goal of GACV is to minimize the KL distance,

instead of selecting the “true” model. The consequence is that GACV tends to be conservative

in the screening and therefore includes noisy patterns. Shiet al. (2008) [79] proposed B-type

GACV (BGACV), which is aimed to balance the KL divergence andthe penalty of selecting a

noise pattern.

In this section, we will derive the GACV and BGACV tuning criteria for learning graph struc-

ture with SLasso penalty in general non-parametric settings. In the end, we will give the approxi-

mation of the degrees of freedom of SLasso for AIC and BIC tuning criteria.

Suppose we haven observations,(Y (i), X(i)), for i = 1, · · · , n. Denote the grand design

matrix as

D =
(

D(1)T · · · D(n)T

)T

(3.26)
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whereD(i) is aK̃ × K̃ · p̃ matrix

D(i) =

















φ1(X(i))T 0 · · · 0

0 φ2(X(i))T · · · 0
...

...
. ..

...

0 0 · · · φΩ(X(i))T

















(3.27)

whereφω(X(i)) is a p̃ dimensional vector of basis functions evaluated onX(i) for ω ∈ ℘(Ω), i.e.

φω(X(i)) = (φω
1 (X(i))T , · · · , φω

j (X(i))T , · · · , φω
p̃ (X(i))T )T (3.28)

Let ~f be the vector of evaluations off on then observations, Then, we have~f = Dc wherec is

the p̃ dimensional model parameter, and̃K · p̃ is determined by the number of the basis functions.

DenoteSω
i = Sω(X(i)), whereSω is defined in Equation (2.9). Then the normalization

factor of thei-th data is denoted asbi = b(f(X(i))) = log (1 +
∑

ω expSω
i ), and write~b =

(b1, · · · , bn)T . See Section 2.2.1 for more details.

The mean of the augmented responseY(i) in the MVB model is aK̃ dimensional vector

µ(i) = (µ1(i), · · · , µω(i), · · · , µΩ(i))T (3.29)

= E[Y(i)|X(i), f ]

where

µω(i) = E[yω(i) | X(i), f ] =
∂bi
∂fω

=

∑

κ∈Tω
expSκ

i

exp bi
(3.30)

Denotefλ the minimizer of Equation (3.5) with tuning parameterλ; denotefλ,ǫ the minimizer

of Equation (3.5) with tuning parameterλ and small perturbationǫ on Y; and denotef [−i]
λ the

minimizer of Equation (3.5) withi-th data point omitted. Let~fλ, ~fλ,ǫ, ~f
[−·]
λ be the corresponding

evaluation offλ, fλ,ǫ, f
[−i]
λ on the observations respectively, with model parametercλ, cλ,ǫ, c

[−i]
λ .

The CKL distance between the true model and the estimated model is

CKL(λ) =
1

n

n
∑

i=1

[

−µ(i)Tfλ(x(i)) + b(fλ(x(i)))
]

(3.31)
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As a good estimator ofCKL(λ), the leaving-out-one cross validation function is

CV (λ) =
1

n

n
∑

i=1

[

−Y(i)Tf
[−i]
λ (x(i)) + b(fλ(x(i)))

]

= OBS(λ) +
1

n

n
∑

i=1

Y(i)T
[

fλ(x(i)) − f
[−i]
λ (x(i))

]

= OBS(λ) +
1

n
YT
(

~fλ − ~f
[−·]
λ

)

(3.32)

where

OBS(λ) =
1

n

n
∑

i=1

[

−Y(i)Tfλ(x(i)) + b(fλ(x(i)))
]

=
1

n

(

−YT ~fλ + 1T~b
)

(3.33)

The GACV method provides a good approximation of
(

~fλ − ~f
[−·]
λ

)

for fast computation. The

key idea is to identify then · K̃×n · K̃ influence matrixH (Xiang and Wahba (1996) [97] and Ma

(2010) [58] Chapter 3) which implies

~fλ,ǫ − ~fλ = Hǫ (3.34)

whereǫ is the perturbation onY. We suppose the perturbation is very small such that the non-zero

patterns in the estimated model will not change. We will derive the formulation of the influence

matrixH for the GACV score.

We first state the Leaving-out-one Lemma which is first discussed in Craven and Wahba (1979)

[16] and extended to multivariate case in Ma (2010) [58].

Lemma 3.7. Leaving-out-one Lemma

Replace thei-th observed responseY(i) by a new responsẽY. Supposehλ[i, Ỹ ] be the mini-

mizer of

∑

k 6=i

LZi
(f) +

(

−ỸTf(X(i)) + b(f(X(i)))
)

+ λJ (f) (3.35)

Thenhλ[i, µ
[−i]
λ (i)] = f

[−i]
λ , whereµ[−i]

λ (i)] = E

[

Y|X, f [−i]
λ

]
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TheK̃ × K̃ covariance matrix of thei-th augmented response under the estimated distribution

is

W (i) = var(Y(i) | X(i), fλ) (3.36)

where the(α, β)-th element ofW (i) is:

W (i)α,β =
∂2bi

∂fα(∂fβ)T
(3.37)

=
1

(exp bi)2



exp bi ·
∑

ω∈Tα∩Tβ

expSω
i −

∑

ω∈Tα

expSω
i ·
∑

ω∈Tβ

expSω
i





=
1

exp bi





∑

ω∈Tα∩Tβ

expSω
i



− µα(i) · µβ(i)

Remember,A = {v ∈ ℘(Ω)|‖fTv‖ = 0}c is the cover of the non-zero patterns inc. Let cA be

a sub-vector ofc with all the components inA, i.e. cA = (cω)ω∈A. For anyv ∈ A, let IATv
be a

|A| · p̃ × |A| · p̃ diagonal matrix whoseω-th diagonalp̃ × p̃ block is a identity matrix ifω ∈ Tv.

Then, thev-th group penaltyJv(f) can be written as:

Jv(f) = pv

√

∑

ω∈Tv

‖fω‖2
Hω

= pv‖IATv
cA‖KA

(3.38)

NoteIATv
is symmetric andIATv

· IATv
= IATv

, direct calculation yields the derivative and Hessian

of the penalty term:

∂J

∂cA
=
∑

v∈A
pv

IATv
ΣAc

A

‖IATv
cA‖KA

(3.39)

∂2J

∂cA∂cAT
=
∑

v∈A
J̈v =

∑

v∈A
pv

(

IATv
ΣA‖IATv

cA‖2
KA

− (IATv
ΣAc) · (IATv

ΣAc)T
)

‖IATv
cA‖3

KA

(3.40)

whereJ̈v is the second order derivative ofJv.

Let D̃ be the matrix composed by the columns ofD whose index is inA.



35

The analysis of the first order Taylor expansion of∂Iλ

∂cA
(cAλ,ǫ

,Y + ǫ) leads to the formulation of

H. The Taylor approximation is

0 =
∂Iλ
∂cA

(cAλ,ǫ
,Y + ǫ) (3.41)

≈ ∂Iλ

∂cA
(cAλ ,Y) +

∂2Iλ

∂cA∂cAT
(cAλ ,Y)(cAλ,ǫ

− cAλ ) +
∂2Iλ

∂cA(∂Y)T
(cAλ ,Y)ǫ

=
∂2Iλ

∂cA∂cAT
(cAλ ,Y)(cAλ,ǫ

− cAλ ) +
∂2Iλ

∂cA(∂Y)T
(cAλ ,Y)ǫ

Note

∂2Iλ

∂cA∂cAT
(cAλ ,Y) =

∂2L
∂cA∂cAT

+ λ
∂2J

∂cA∂cAT
(3.42)

=
1

n
D̃TWD̃ + λ

∑

v∈A
pvJ̈v

and,

∂2Iλ

∂cA(∂Y)T
(cAλ ,Y) = −1

n
D̃ (3.43)

Therefore

cAλ,ǫ
− cAλ = −

(

∂2Iλ

∂cA∂cAT
(cAλ ,Y)

)−1
∂2Iλ

∂cA(∂Y)T
(cAλ ,Y)ǫ (3.44)

=

(

D̃TWD̃ + λn
∑

v∈A
pvJ̈v

)−1

D̃ǫ

Remember,ǫ is a small perturbation onY; ~fλ = D̃cAλ is the estimated function value with tun-

ing parameterλ; and~fλ,ǫ = D̃cAλ,ǫ
is the estimated function value with the perturbation. Therefore,

the influence matrixH is

H = D̃
(

D̃TWD̃ + λn
∑

v∈A
pvJ̈v

)−1

D̃T (3.45)

The(i, j)-th K̃ × K̃ submatrix ofH is

H(i, j) = D̃(i)T
(

D̃TWD̃ + λn
∑

v∈A
pvJ̈v

)−1

D̃(j) (3.46)
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Note the following two approximations

f
[−i]
λ (X(i)) − fλ(X(i)) ≈ H(i, i)

(

µ
[−i]
λ (i) − Y(i)

)

(3.47)

µ
[−i]
λ (i) − µλ(i) ≈ W (i)

(

f
[−i]
λ (X(i)) − fλ(X(i))

)

The approximation of theCV score in Equation (3.32) is

ACV (λ) = OBS(λ) +
1

n

n
∑

i=1

Y(i)T (I −H(i, i)W (i))−1H(i, i)(Y(i) − µλ(i)) (3.48)

LetQ(i) = I −H(i, i)W (i) for i = 1, . . . , n, define the generalized average matrix (Gao et al.

(2001) [25]), denoted as̄Q, of {Q(i), i = 1, . . . , n} as follows

Q̄ = (δ − γ)Iq×q + γ · eeT =

















δ γ · · · γ

γ δ · · · γ
...

...
. . .

...

γ γ · · · δ

















(3.49)

wheree is the unit vector of length̃K and

δ =
1

nq
∑n

i=1 tr(Q(i))
, γ =

1

nq(q − 1)

[

eTQ(i)e− tr(Q(i))
]

(3.50)

Let H̄ be the generalized average of{H(i, i), i = 1, · · · , n}, the GACV score is

GACV (λ) = OBS(λ) +
1

n

n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i) − µλ(i)
)

(3.51)

The degrees of freedom of multivariate Bernoulli data is generally difficult to obtain. But we

can have a good approximation from GACV (Shi et al. (2008) [79]) as

d̂f(λ) =
n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i) − µ(i)
)

(3.52)

So the BGACV score can be defined as

BGACV (λ) = OBS(λ) +
1

n

log n

2

n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i) − µ(i)
)

(3.53)
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For the model selection criteria AIC and BIC, Ma (2010) [58] (page 53) showed that the degree

of freedom can be approximated by

d̂f = tr(WH) (3.54)

Therefore, the AIC and BIC criteria are provided as follows

AIC(λ) = OBS(λ) +
1

n
tr(WH) (3.55)

BIC(λ) = OBS(λ) +
1

n

log n

2
tr(WH) (3.56)
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Chapter 4

Asymptotic Results

In this chapter, we consider the model selection consistency of graph structure learning. The

problem is described in Equation (3.2). Suppose the set of non-zero conditional log odds ratios

is P in the true model, we will prove that SLasso can identify the cover of P. The cover of

P follows the hierarchical inclusion assumption. Thus, SLasso will eventually recover the same

graph structure as in the true model. We derive the necessaryand sufficient conditions for the

consistency of SLasso in terms of graph structure learning whenn→ ∞.

Sparse penalties have been widely used in the model selection problems and in high dimen-

sional data. Here, we by no means intend to give a comprehensive review of the asymptotic results

of the model selection methods, but only discuss the most relevant literatures.

The asymptotic properties of Lasso (Tibshirani (1996) [84]) have been studied in many ref-

erences. Knight and Fu (2000) [42] showed that the Lasso typeestimator of a linear regression

problem is
√
n-consistent for a Gaussian random variable with the mean being the true model

parameters, and the variance controlled by the noise and thedesign matrix. But this estimation

consistency does not lead to the sparsistency, which means

P (P̂ = P) → 1 (4.1)

whereP̂ is the set of estimated non-zero patterns. In this chapter, we will use non-zero patterns

and non-zero conditional log odds ratios interchangeably.

Zhao and Yu (2006) [102] gave the Irrepresentable Conditionfor sign consistency, which is

a stronger version of the sparsistency, of the Lasso type estimators. Roughly speaking, if the

covariances between the predictor variables in the true model and those not in the true model are
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small, the Lasso can select the true model whenn → ∞. We will follow this idea to show the

SLasso method is sparsistent under some regularity conditions.

The structure penalty in SLasso can be viewed as an extensionof the overlapping Group Lasso

on functions in certain Reproducing Kernel Hilbert Spaces.The Group Lasso has been proposed

in Yuan and Lin (2006) [100]. The advantage is that the Group Lasso will select the variables in

groups, which predetermined by certain domain knowledge. Liu and Zhang (2009) [54] extended

theL2 consistent results from Lasso (Meinshausen and Yu (2009) [64]) to Group Lasso. Bach

(2008) [6] derived the necessary and sufficient conditions for the model selection consistency of

Group Lasso. The results apply to both the linear regressionand the non-parametric regression

of Gaussian data where the functions are in separable RKHS’s. Radchenko and James (2010)

[69] studied the variable selection in the nonlinear Gaussian regression models of up to second

order interactions. Their results showed the sparsistencyof the model with overlapped group

lasso penalty. Jenatton et al. (2011) [36] gave the general guideline for constructing the sparsity-

inducing norms for specific requirements based on the overlapping among the group penalties.

For the Gaussian data, they derived the necessary and sufficient conditions for the model selection

consistency. Since the groups have overlaps, the method is also consistent in terms of the cover of

the non-zero patterns. Percival (2012) [68] derived the asymptotic distribution of linear regression

with overlapping group lasso penalty. They also presented the finite sample bounds on prediction

and estimation.

The asymptotic results about non-Gaussian exponential families are not trivial to obtain be-

cause of the complexity of the loss function. Meier et al. (2008) [61] extended the Group Lasso

to logistic regression models. Their consistency results showed that the squared distance between

the conditional log odds ratio of the fitted model and that of the true model goes to0 in proba-

bility. Van De Geer (2008) [86] proved that under certain regularity conditions, the excess risk of

the estimator is bounded above with probability that goes to1 exponentially fast and the estimator

will converge to the true parameters. Rocha et al. (2009) [72] provided the asymptotic distribu-

tion for the Lasso type estimators with the logistic regression loss and the hinge loss for SVM.
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And they derived the necessary and sufficient conditions forsparsistency based on the asymptotic

distribution of the estimator.

The asymptotic properties with nonlinear models have also been studied in many references.

As mentioned before, Bach (2008) [6] and Radchenko and James(2010) [69] studied the consis-

tency results for nonlinear regression problems. Additivemodels are popular in non-parametric

regression problems (Hastie and Tibshirani (1990) [31]). Ravikumar et al. (2009) [70] proposed

sparse additive models for high dimensional non-parametric regression. The penalty can be viewed

as the summation of the functional norms. They showed the estimator is sparsistent with increasing

number of orthogonal basis functions. Meier et al. (2009) [62] proposed the sparsity-smoothness

penalty for non-parametric additive models. The penalty oneach function contains both thel2

norm of the function values and the quadratic smoothness penalty. They showed the asymptotic

optimality of the estimator with increasing number of basisfunctions. Huang et al. (2010) [34]

applied adaptive Group Lasso to select non-zero componentsin the non-parametric additive mod-

els. They showed the estimation consistency in terms ofl2 norm, and sparsistency for adaptive

Group Lasso penalty. Koltchinskii and Yuan (2010) [45] discussed the asymptotic properties in the

general multiple kernel learning setting. The target is to minimize the empirical risk penalized on

the function norms. They established the oracle inequalities for the excess risk of the estimators

in Reproducing Kernel Hilbert Spaces. The inequalities that hold with large probability gave the

diminishing bound for the excess risk as the number of observations goes to infinity.

In this chapter, we will focus on the consistency of the SLasso method in terms of graph

structure learning in parametric and non-parametric settings. We will provide the necessary and

sufficient conditions for the consistency.

4.1 Consistency of Graph Structure Learning of Linear Models

In this section, we show that the model with the linear conditional log odds ratios will consis-

tently estimate the graph structure under certain conditions. We assume the random design where

Zi = (Yi, Xi), i = 1, · · · , n are random variables. We supposeYi ∈ Y,Xi ∈ X, andP is the prob-

ability measure onY × X. In real applications, we haveY = R
K andX = R

p. Let the conditional
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log odds ratios be the same as defined in Equation (3.11)(Section 3.2)

fω(x) = cω0 +

p
∑

j=1

cωj xj

wherecω = (cω0 , . . . , c
ω
p )T ∈ Rp̃ is a vector of length̃p = p + 1 andc = (cω)ω∈℘(Ω) ∈ RK̃·p̃ is the

concatenated vector of all parameters of lengthK̃ · p̃.
To make the notations consistent throughout this chapter, we will usef to denote the model

parametersc if it does not lead to ambiguity.

Definition 4.1. Let T = {Tv|v ∈ ℘(Ω)} be a partition (with overlaps) ofΩ, as a collection of

groupsTv. LetP = {v ∈ ℘(Ω) | ‖f v‖ 6= 0|} be the set of indices of non-zero patterns. The cover

ofP with respect to the partitionT is:

A = cover(P) =

(

⋃

v:Tv∩P=∅
Tv

)

c

=





⋃

v:‖fTv‖=0

Tv





c

(4.2)

=
⋃

v:‖fv‖6=0

{ω ∈ ℘(Ω) | ω ⊆ v}

= {v ∈ ℘(Ω)|‖fTv‖ = 0}c

Note the last equality holds due to the specialty of the hierarchical structure ofT . Write the

complement ofA asAc = Ω \ A. The following notations are useful in the later derivations

TA = {Tv|Tv ∩ A 6= ∅} = {Tv|‖fTv‖ 6= 0} (4.3)

γA = (γω)ω∈A, γω = fω
∑

v⊆ω

pv

‖fTv‖ (4.4)

LA(fA) = L(IAf); JA(fA) =
∑

v∈℘(Ω)

Jv(IAf) (4.5)

whereIA is a diagonal matrix whosei-th diagonal block is ãp× p̃ identity matrix ifi ∈ A.

Here we will give an example of the cover. In Figure 4.1,Ω = A ∪ B ∪ C; A,B,C are the

groups; the true positive patterns are inP . Then, the cover ofP with respect to the groups is

A ∪ (B \ C) (all the red region).
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Note that from the above definition,∀ω ∈ A, v ⊆ ω ⇒ ω ∈ Tv, Tv ∈ T A. Also note that

the graph induced byP andA are the same. This means that if the estimated non-zero patterns

are consistent toA, the estimation is consistent in terms of graph structure. The conclusion of the

following corollary follows Theorem 3.3 and the definition of the cover in Equation (4.2).

Corollary 4.2. Let P̂ be the non-zero patterns in the SLasso estimation of Equation (3.5). Then

cover(P̂) = P̂ almost surely.

Proof. The corollary follows directly from Theorem 3.3 and the definition of the cover.

We are interested in developing the theory that shows the estimated non-zero patterns (or equiv-

alently, their coverÂ) converge to the true coverA. Let L(Y ; f(X)) be the loss function as

defined in Equation (3.3), and denoteLZ(f) = L(Y ; f(X)). Supposef∗ is the true model pa-

rameter, such that(f∗)v = 0 if v /∈ P. In the exponential family,f∗ = arg minf Ef∗ [LZ(f)], and

∇E [LZi
(f∗)] = E [∇LZi

(f∗)] = 0, sincef∗ is optimal.

Assume the loss function has the following properties:

1. EP |L(Y ; f(X))| <∞ for anyf ∈ RK̃·p̃

2. L is convex and twice-continuously differentiable in the second component, and

EP

[

∇L(Y ; f∗(X))∇L(Y ; f∗(X))T
]

<∞ (4.6)

3. The risk functionR(f) = EP [L(Y ; f(X))] is twice differentiable atf∗ and its Hessian

matrix

H(f) = ∇2
EP [L(Y ; f(X))] (4.7)

is strictly positive definite atf∗.

It is obvious that the loss function takes the form of the negative log-likelihood of the exponen-

tial family satisfies the above properties.

To show the model consistency of the SLasso method, we will first derive the asymptotic dis-

tribution of the estimated parameterŝfn, and then lead to the necessary and sufficient conditions
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Figure 4.1 Cover of the positive patterns
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similarly to the irrepresentible condition in Zhao and Yu (2006) [102] and Rocha et al. (2009) [72].

The following lemma presents the asymptotic distribution which is the key to the later proofs.

Lemma 4.3. Supposeλn is a sequence of positive values which satisfiesλn → 0 andλn

√
n →

∞ as n → ∞. Let f∗ denote the true model parameters,f̂n = arg minf Iλn
(f), H(f∗) =

∇2E [LZ(f∗)]. Then,

1

λn

(

f̂n − f∗
)

d−→ δ̂ = arg min
δ

W (δ) =
1

2
δTH(f∗)δ +

[

(γA)T δA + J (δA
c

)
]

(4.8)

whereγA is defined in Equation (4.4) whenf = f∗.

Proof. See Appendix A.4.

Before getting to the necessary and sufficient conditions ofthe sparsistency of SLasso model,

we define the conjugate norm with respect to penaltyJ . Letf ∈ R
K̃·p̃, J as defined before, define

the conjugateJ -norm as

‖f‖J = max
g∈RK̃·p̃,J (g)≤1

〈f, g〉 (4.9)

We can thinkf as a linear operator that maps fromRK̃·p̃ ontoR asf(g) = 〈f, g〉. Then, the

norm‖f‖J is the conjugate norm defined on the linear operator with respect to the penalty function

J .

Theorem 4.4.Necessary condition:

Let λn, f∗ andH(f∗) as defined in Lemma 4.3,A defined in Equation (4.2). LetHAA be the

sub-matrix ofH(f∗) where the rows inA and the columns inA of H are selected. LetHAcA be

defined similarly. IfA is estimated consistently, that is,P(Ân = A) → 1 as n → ∞, where

Ân = P̂n = {ω|f̂ω
n 6= 0}, then

∥

∥HAcAHAA
−1γA

∥

∥

JAc

≤ 1.

Proof. Let δ̂n = f̂n − f∗, thenδ̂n
d−→ δ̂. From Lemma 4.3, the assumptionP (Âc

n = Ac) → 1 leads

to δ̂A
c

= 0. The KKT condition of Equation (4.8) is

HAAδ̂
A + γA = 0 (4.10)

HAcAδ̂
A +

∑

v∈Ac

sv = 0 (4.11)
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wheresv is defined slightly different from Equation (3.19) as

sv ∈ Sv = {s = (sω)ω∈Ac | s ∈ R
|Ac|, ‖s‖ ≤ pv, s

ω = 0 if ω /∈ Tv} (4.12)

From equation 4.10, we getδ̂A = −HAA
−1γA, therefore:

HAcAHAA
−1γA =

∑

v∈Ac

sv (4.13)

For anyfAc ∈ R|Ac|

−JAc(fAc

) = −
∑

v∈Ac

Jv(f
Ac

) ≤ 〈sv, f
Ac〉 ≤

∑

v∈Ac

Jv(f
Ac

) = JAc(fAc

) (4.14)

The inequality holds when for eachv ∈ Ac

sv = pv

ITv
fAc

‖ITv
fAc‖ (4.15)

whereITv
is a diagonal matrix whosei-th diagonal element is1 if i ∈ Tv. So,

|〈HAcAHAA
−1γA, fAc〉| ≤ JAc(fAc

) (4.16)

This leads to the conclusion that

∥

∥HAcAHAA
−1γA

∥

∥

JAc

≤ 1 (4.17)

Before moving to the theorem of sufficient condition, we present the lemma about the SLasso es-

timation on the restricted problem onA.

Lemma 4.5. Let f̂A
n be the solution of the following problem restricted onA:

f̂A
n = arg min

fA∈R|A|

LA(fA) + λnJA(fA) (4.18)

whereLA andJA are defined in Equation (4.5). LetP̂nA = {v|‖f̂ v
n‖ 6= 0} andÂnA = cover(P̂nA),

then

f̂A
n

p−→ f∗A and P

(

ÂnA = A
)

→ 1 (4.19)
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Proof. See Appendix A.5.

Theorem 4.6.Sufficient condition:

Let λn, f∗ andH(f∗) as defined in Lemma 4.3. If
∥

∥HAcAHAA
−1γA

∥

∥

JAc

< 1, thenA is

consistently estimated in the sense thatP(Ân = A) → 1 asn→ ∞, whereÂn = P̂n = {v|‖f̂ v
n‖ 6=

0}.

Proof. We prove the result based on the primal dual witness technique which were used in Raviku-

mar et al. (2009) [70] and Wainwright (2009) [93].

Let f̂A
n be the solution of the restricted problem as defined in Equation (4.18), and pad̂fA

n

with zeros onAc to obtainf̂n. From Lemma 4.5,̂fA
n

p−→ f∗A andP

(

ÂnA = A
)

→ 1. Thus,

to prove the conclusion, we need to show thatf̂n satisfies the optimality condition of objective in

Equation (3.5).

For largen, γ̂A is well defined as

γ̂A = (γ̂ω)ω∈A whereγ̂ω = f̂ω
n

∑

v⊆ω

pv

‖f̂Tv
n ‖

(4.20)

andγ̂A
p−→ γA.

The optimality condition onA is already satisfied due to the definition off̂n

(

∇L(f̂n)
)

A
+ λnγ̂

A = 0 (4.21)

It remains to show that there existsv as defined in Equation (4.12) such that
(

∇L(f̂n)
)

Ac

+ λn

∑

v∈Ac

sv = 0 (4.22)

that is,‖
(

∇L(f̂n)
)

Ac

‖JAc
< 1.

Let δ̂n = f̂n − f∗ p−→ = 0. Note

∇L(f̂n) =
1

n

n
∑

i=1

∇LZi
(f̂n)

=

[

1

n

n
∑

i=1

∇LZi
(f∗)

]

+

[

1

n

n
∑

i=1

∇2LZi
(f∗)δ̂n

]

+ op(‖δ̂n‖)

= Dn +Hnδ̂n + op(‖δ̂n‖) (4.23)
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As we have shown in Lemma 4.3,Dn
p−→ 0 andHn

p−→ H(f∗).

Sincef̂Ac

n = f∗Ac

= 0, we have from the above equation that
(

∇L(f̂n)
)

A
= HAAδ̂

A
n + op(1) (4.24)

(

∇L(f̂n)
)

Ac

= HAcAδ̂
A
n + op(1) (4.25)

From Equation (4.24) we have

δ̂n = −λnHAA
−1γ̂A + op(1) (4.26)

Then, the following equality holds becauseγ̂A
p−→ γA

(

∇L(f̂n)
)

Ac

= −λnHAcAHAA
−1γA + op(1) (4.27)

Therefore, for anyfAc ∈ R|Ac|, the following inequality holds by the sufficient condition
∣

∣

∣

〈

fAc

,
(

∇L(f̂n)
)

Ac

〉∣

∣

∣
= λn|〈fAc

, HAcAHAA
−1γA〉| + op(1) (4.28)

< λnJAc(fAc

) for largen

This completes the proof.

4.2 Sparsistency of SLasso on Pattern Selection

Friedman et al. (2010) [23] proposed the sparse group lasso criterion with the combination of

thel1 andl2 norm as the penalty for the parametric linear regression model. We extended the idea

to multivariate Bernoulli data as presented in Section 3.1.2. The objective is

I(f) = L(f) + λn



J (f) + λ̄
∑

ω∈℘(Ω)

‖fω‖Hω



 (4.29)

Zou and Hastie (2005) [104] proposed the Elastic Net that combines two different types of

penalties. Yuan and Lin (2007) [101] showed the regularity conditions for Elastic Net to consis-

tently estimate the non-zero patterns in linear models. Jiaand Yu (2010) [37] studied the model

selection property of Elastic Net in general settings wherethe number of non-zero parameters and

that of the sample size all go to infinity. Here, we study the sparsistency property of SLasso on

pattern selection.
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Theorem 4.7.Necessary condition:

Let λn, f∗ andH(f∗) defined similarly,P andA defined in Equation (4.2) whenf = f∗.

Let HPP be the sub-matrix ofH(f∗) where the rowsP and columnsP of H are selected. Let

HA\P,P , HAcP be defined similarly. IfP is estimated consistently, that is,P(P̂n = P) → 1 as

n→ ∞, whereP̂n = {ω|f̂ω
n 6= 0}, then

∥

∥HA\P,PHPP
−1
(

γP + λ̄ sign(f∗P)
)∥

∥

∞ ≤ λ̄
∥

∥HAcPHPP
−1
(

γP + λ̄ sign(f∗P)
)∥

∥

JAc+λ̄l1
≤ 1

Theorem 4.8.Sufficient condition:

Letλn, f∗ andH(f∗) defined similarly. If

∥

∥HA\P,PHPP
−1
(

γP + λ̄ sign(f∗P)
)∥

∥

∞ < λ̄
∥

∥HAcPHPP
−1
(

γP + λ̄ sign(f∗P)
)∥

∥

JAc+λ̄l1
< 1

thenP is consistently estimated in the sense thatP(P̂n = P) → 1 as n → 1, whereP̂n =

{v|‖f̂ v
n‖ 6= 0}.

Proof. The proof of the above two theorems are similar to those presented in the previous section.

We only need to note the following KKT conditions of the objective.

HPP δ̂
P + γP + λ̄ sign(δ̂P) = 0 (4.30)

HA\P,P δ̂
P + γA\P + λ̄ sign tA\P = 0 (4.31)

HAcP δ̂
P +

∑

v∈Ac

sv + λ̄tAc = 0 (4.32)

wheretA is the subgradient of‖fA‖1.

Note ‖tA‖1 ≤ 1; γA\P = 0. Applying the techinques to the above KKT conditions will

complete the proof.
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4.3 Consistency of Graph Structure Learning with Non-parametric Model

4.3.1 Fŕechet derivative

We will review the Fŕechet derivative in functional space in this section. More details can be

found in Akerkar (1999) [2].

Definition 4.9. Fréchet derivative

Let X,Y be Banach spaces;U ⊆ X be an open subset ofX, andF : U → Y a map. The

Fréchet derivative ofF at x0, ∇F (x0), is a linear map fromX to Y if and only if

lim
δ∈X,‖δ‖→0

‖F (x0 + δ) − F (x0) −∇F (x0)(δ)‖
‖δ‖ = 0 (4.33)

If F is a continuous map, then∇F is a continuous linear map. LetL(X,Y) be the space of

linear operators that map elements ofX to Y. Then,∇F (x0) ∈ L(X,Y), and∇F : U → L(X,Y).

We now define the second order Fréchet derivative.

Definition 4.10. Higher order Fréchet derivative

Let X,Y be Banach spaces;U ⊆ X be an open subset ofX; andF : U → Y a map. If the

Fréchet derivative∇F is continuous and differentiable atx0, we write the second order derivative

of F at x0 as∇2F (x0), which is the Fŕechet derivative of∇F .

m-th order Fŕechet derivative can be defined similarly form = 3, 4, · · · .

If ∇2F (x) exists on for anyx ∈ U , we denote the second order derivative as∇2F : U :→
L(X,L(X,Y)). SinceL(X,L(X,Y)) andL(X×X,Y) are isomorphic,∇2F (x0) can be treated as

a bilinear operator:X × X → Y.

We summarize the Taylor’s theorem extended to Banach space based on Theorem 2.5 in Ak-

erkar (1999) [2].

Proposition 4.11.Taylor’s theorem on Banach space



50

LetX,Y are Banach spaces;U ⊆ X open;{x+ τδ|0 ≤ τ ≤ 1} ⊆ U ; F : U → Y bem-times

differentiable and the derivatives up to the order ofm continuous. Then,

F (x+ δ) =F (x) + ∇F (x)(δ) +
1

2
∇2F (x)(δ, δ) (4.34)

+ · · · + 1

p!
∇mF (x)(δ, · · · , δ) + o(‖δ‖p)

Definition 4.12. Partial Fr échet derivative

Let X1,X2,Y be Banach spaces;Ui ⊆ Xi, be an open subset ofXi for i = 1, 2. Let X =

X1 ×X2, U = U1 ×U2; andF : U → Y be differentiable. For any(x1, x2) ∈ U , define the partial

map ofF on the first part (x1) as

Fx2
: U1 → Y (4.35)

Fx2
(x1) = F (x1, x2)

The partial Fŕechet derivative ofF on the first part at(x1, x2) is defined as

∇1F (x1, x2) : X1 → Y (4.36)

∇1F (x1, x2)(δ1) = ∇Fx2
(x1)(δ1)

The partial Fŕechet derivative on the second part,∇2F , can be defined similarly. Also, the second

order partial Fréchet derivative, e.g.,∇2
11F , can be defined according to the definition of higher

order derivative and partial derivative.

If F is a continuous map, it is continuously differentiable at(x1, x2), if and only if F is

partially differentiable and the partial derivatives are continuous maps. And we have the following

relation:

∇F (x1, x2)(δ1, δ2) = ∇1F (x1, x2)(δ1) + ∇2F (x1, x2)(δ2) (4.37)

Now, we will present the final result that is useful in the later derivations. It is the chain rule of

Fréchet derivative from the Theorem 2.1 in Akerkar (1999) [2].
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Proposition 4.13.Chain rule

Let X,Y,Z be Banach spaces,U ⊆ X, V ⊆ Y open subsets. LetF : U → Y, G : V → Z be

continuous maps, such thatF (U) ⊆ V . Lety0 = F (x0), suppose the Fréchet derivatives∇F (x0)

and∇G(y0) exist. ThenG ◦ F is Fréchet differentiable atx0 and

∇(G ◦ F )(x0) = ∇G(y0) ◦ ∇F (x0) (4.38)

4.3.2 Differential Calculus of the Loss Functions

We first define the loss function

L : Z × F → R (4.39)

(Z, f) → L(Z; f)

whereF is the domain of the second element ofL. In the linear case,F = R
K̃·p̃.

AssumeL satisfies the following properties (similar to the assumption in Section 4.1 but on the

F domain instead of the domain of model parameters in the linear case).

1. EP‖L(Z; f)‖ <∞ for eachf ∈ F.

2. L is convex and twice-continuously differentiable in the second component.

EP‖∇fL(Z; f∗)‖2 <∞ (4.40)

3. The risk function,R(f) = EP [L(Z; f)] is twice differentiable atf∗ and its Hessian is posi-

tive definite atf∗:

H(f) = ∇2
ffEP [L(Z; f)] (4.41)

Suppose we have the random design and each observation isZi = (Yi, Xi), for i = 1, · · · , n.

Yi ∈ Y, Xi ∈ X are random vectors. LetZ = Y × X, andP be the probability measure onZ. Let

C(Z,R) be the space of continuous and bounded functionsF ∈ C(Z,R) : Z → R, whereR is a

Banach space.
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Definition 4.14. Let Z,R, C(Z,R), HK as defined before. The expectation operatorEP , and the

loss operatorLZ are defined as follows.

EP : C(Z,R) → R (4.42)

EP (g) = EP (g(Z))

LZ : HK → R (4.43)

LZ(f) = L(Z; f)

In addition, define the Hessian operator

H : HK → L(HK ×HK ,R×R) (4.44)

H(f) = ∇2(EP ◦ L(·))(f)

And the risk operator

R : HK → R (4.45)

R(f) = EP ◦ L(·)(f)

It is obvious thatLZ is convex and twice-continuously Fréchet-differentiable. SinceL(·)(f) ∈
C(Z,R),EP ◦L(·)(f) = EP [L(Z; f)] based on the definition ofEP . Note for any linear functional

F , we have∇F (f)(g) = F (g). And sinceEP is a linear operator, we have

∇EP [L(Z; f)] = ∇(Ep ◦ L(·))(f) (4.46)

= ∇EP (L(·)(f)) ◦ ∇L(·)(f)

= EP ◦ ∇L(·)(f)

Similarly, for the second order derivative,

∇2(EP ◦ L(·))(f) = EP ◦ ∇2L(·)(f) (4.47)

Let f∗ be the true model. From the properties of the loss functionalL, it is easy to show that

M(f∗) = EP‖∇LZ(f∗)‖2 < ∞ andH(f∗) is strictly positive definite in the sense that for any
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g1, g2 ∈ HK , H(f∗)(g1, g2) is positive definite inR × R. NoteH(f∗) ∈ L(HK ,L(HK ,R)), its

range is dense andinf‖f‖=1 ‖H(f∗)(f)‖ ≥ ‖H(f∗)(g)‖ > 0 for any g ∈ HK that g 6= 0 and

‖g‖ ≤ 1. Since a linear operatorF is invertible if and only if its range is dense and bounded from

below (Halmos (1998) [30]), we knowH(f∗) is invertible.

To understand the inverse of the bounded bilinear operatorH(f∗), we denoteA as the Reisz

representer ofH(f∗) which is a bounded linear operator fromHK onto itself. That is, for any

f, g ∈ HK , H(f∗)(f, g) = 〈Af, g〉HK
. LetG = H(f∗)(f, ·) which is a bounded linear operator

fromHK ontoR, andηG the Reize representer ofG such thatG = 〈ηG, ·〉HK
. Thenf = A−1ηG :=

H(f∗)−1(G). In a spectial case whenG = 〈γ, ·〉HK
,H(f∗)−1(〈γ, ·〉HK

) = A−1γ.

The proofs in the following section needs the strong law of large numbers in Banach space.

See Ledoux and Talagrand (1991) [49] for more details. The theorem requiresHK be a sepa-

rable Hilbert space, or equivalently, requiresK be square integrable, by Mercer-Hilbert-Schmidt

theorem.

4.3.3 Consistency Results for Reproducing Kernel Hilbert Space

To show the sparsistency results in Reproducing Kernel Hilbert Space, we need the general

version of Lemma 4.3. Lemma 4.16 will give the asymptotic distribution of the estimated function

f̂n. Before that, we will present the following lemma about the convergence of a sequence of

Hilbert space valued random variables as the estimates of a sequence of essentially strictly convex

objective functionals.

Let (E ,E , P ) be a probability space,HK be a Reproducing Kernel Hilbert Space with kernel

K. Wn, n = 1, 2, · · · andW are random functionals defined onH × E to R. We usually denote

W (δ, ·) orW (δ) for the random functional,W (·, e) for e ∈ E as a realized functional onHK . We

are interested in the convergence of the approximation ofδ̂ = arg minδ∈HK
W (δ) by a sequence

δ̂n = arg minδ∈HK
Wn(δ). For more about the random functions and the convergence results, refer

to Korf and Wets (2001) [46] and Vogel and Lachout (2003) [88], and the references therein.

Lemma 4.15.LetWn n = 1, 2, · · · andW be random functions defined onHK ×E to R. Suppose

Wn andW are continuous and essentially strictly convex onHK . If Wn point-wisely converges in



54

Table 4.1 Summary of the functional operators whenR = R

Operator Mapping

LZ(·) ∈ C(HK ,R) HK → R

L(·)(f) ∈ C(Z,R) Z → R

∇L(·)(f) ∈ C(Z,L(HK ,R)) Z → L(HK ,R)

EP ◦ ∇L(·)(f) ∈ L(HK ,R) HK → R

VP ◦ ∇L(·)(f) ∈ L(HK ×HK ,R) HK ×HK → R

EP ◦ ∇2L(·)(f) ∈ L(HK ×HK ,R) HK ×HK → R

H(·) ∈ L(HK ×HK ,R) HK ×HK → R

H(f)(·) ∈ L(HK ,R) HK → R

H−1(·) ∈ L(L(HK ,R),HK) L(HK ,R) → HK

M(·) ∈ L(HK ×HK ,R) HK ×HK → R

R(·) ∈ C(HK ,R) HK → R
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probability toW , i.e., for anyδ ∈ HK ,Wn(δ)
p−→ W (δ), then,

arg min
δ∈HK

Wn(δ)
d−→ arg min

δ∈HK

W (δ) (4.48)

Proof. See Appendix A.6.

Lemma 4.16.Supposeλn is a sequence of positive values which satisfiesλn → 0 andλn

√
n→ ∞

asn → ∞. Letf∗ denote the true model inHK , f̂n = arg minf∈HK
Iλn

(f),H(f∗) is the Hessian

as defined before. Then,

1

λn

(f̂n − f∗)
d−→ δ̂ = arg min

δ∈HK

W (δ) =
1

2
H(f∗)(δ, δ) +

〈

γA, δA
〉

HK
+ JAc(δA

c

) (4.49)

with γA defined in the following equation whenf = f∗.

γA = (γω)ω∈A, γω = fω
∑

v⊆ω

pv

‖fTv‖HTv

(4.50)

Proof. See Appendix A.7.

Before presenting the consistency results, we define the conjugateJ -norm on the linear oper-

ator fromHK ontoR.

Definition 4.17. Let F : HK → R be a linear operator,J is a norm onHK , the conjugate

J -norm is defined as

‖F‖J = max
f∈HK ,J (f)≤1

‖F (f)‖R (4.51)

The conjugateJAc-norm can be defined naturally.

Theorem 4.18.Necessary condition for RKHS

Let λn, f∗ andH(f∗) as defined in Lemma 4.16,A, Ân defined in Equation (4.2) for f = f∗

andf = f̂n respectively. LetHAA andHAcA be the second order partial derivative ofLZ at f∗. If

A is estimated consistently, that is,P(Ân = A) → 1 asn → ∞, whereÂn = P̂n = {ω|f̂ω
n 6= 0},

then
∥

∥

∥
HAcA(f∗) ◦HAA(f∗)−1

(

〈

γA, ·
〉

HA

)∥

∥

∥

JAc

≤ 1.
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Proof. SinceH(f∗) is a symmetric bilinear operator, we have∇H(f∗)(δ, δ) : HK × HK → R.

For anyg ∈ HK ,

∇H(f∗)(δ, δ)(g, g) = ∇1H(f∗)(δ, δ)(g) + ∇2H(f∗)(δ, δ)(g) (4.52)

= H(f∗)(g, δ) +H(f∗)(δ, g) = 2H(f∗)(g, δ)

We can viewH(f∗) as an operator fromHK → R such that it maps anyδ ∈ HK toH(f∗)(δ, δ).

Then∇H(f∗)(δ, δ) : HK → R such that for anyg ∈ HK , ∇H(f∗)(δ, δ)(g) = 2H(f∗)(g, δ). In

addition,H(f∗)(δ) = H(f∗)(δ, ·) can be viewed as an linear operator fromHK ontoR. And all

these definitions and results can be natually applied to the second order partial derivativesHAA(f∗)

andHAcA(f∗).

DenoteFγA =
〈

γA, ·
〉

HA
as a linear operator fromHA ontoR. The generalized KKT condition

(Luenberger (1997) [57]) of Equation (4.49) is

HAA(f∗)(δA) + FγA = 0 (4.53)

HAcA(f∗)(δA) +
∑

v∈Ac

sv = 0 (4.54)

In the above equation,sv is an operator fromHAc to R defined below:

sv ∈ Sv ={s = (sω)ω∈Ac | s ∈ L(HAc,R), (4.55)

|s(δAc

)| ≤ pv‖ITv
(δA

c

)‖HTv
for anyδA

c ∈ HAc , andsω = 0 if ω /∈ Tv}

whereITv
: HAc → HAc is a linear operator such that for anyf ∈ HAc, (ITv

(f))ω = 0 if ω /∈ Tv;

and(ITv
(f))ω = fω if ω ∈ Tv.

SinceHAA(f∗) ∈ L(H,L(H,R)) is invertible, we haveδA = HAA(f∗)−1(FγA). Then,

HAcA(f∗) ◦HAA(f∗)−1(FγA) +
∑

v∈Ac

sv = 0 (4.56)
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The following inequality completes the proof:

|HAcA(f∗) ◦HAA(f∗)−1(FγA)(fAc

)| = |
∑

v∈Ac

sv(f
Ac

)| (4.57)

≤
∑

v∈Ac

|sv(f
Ac

)|

≤
∑

v∈Ac

pv‖ITv
(fAc

)‖HTv
= JAc(fAc

)

holds for anyfAc ∈ HAc.

Theorem 4.19.Sufficient condition for RKHS

Letλn, f∗ andH(f∗) as defined in Lemma 4.16. If
∥

∥

∥
HAcA(f∗) ◦HAA(f∗)−1

(

〈

γA, ·
〉

HA

)∥

∥

∥

JAc

<

1, thenA is consistently estimated in the sense thatP(Ân = A) → 1 as n → ∞, where

Ân = P̂n = {v|‖f̂ v
n‖ 6= 0}.

Proof. We prove the result similarly as we did in the linear case.

Let f̂A
n be the solution of the restricted problem as defined in Equation (4.18), and pad̂fA

n with

constant zero functions onAc to obtainf̂n. From Lemma 4.5,Ân
p−→ A. And applying similar

techinques, we havêfA
n

p−→ fA. Thus, to prove the conclusion, we need to show thatf̂n satisfies

the optimality condition of objective in Equation (3.5).

For largen, γ̂A is well defined similarly to Equation (4.50)

γ̂A = (γ̂ω)ω∈A whereγ̂ω = f̂ω
n

∑

v⊆ω

pv

‖f̂Tv
n ‖HTv

(4.58)

andγ̂A
p−→ γA.

The optimality condition onA is already satisfied due to the definition off̂n, which implies

(

∇L(f̂n)
)

A
+ λn

〈

γ̂A, ·
〉

HA
= 0 (4.59)

It remains to show that there existsv ’s as defined in Equation (4.55) such that

(

∇L(f̂n)
)

Ac

+ λn

∑

v∈Ac

sv = 0 (4.60)
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That is, we need to show
∥

∥

∥

(

∇L(f̂n)
)

Ac

∥

∥

∥

JAc

< λn (4.61)

Let δ̂n = f̂n − f∗ p−→ 0. Note

∇L(f̂n) =
1

n

n
∑

i=1

∇LZi
(f̂n)

=

[

1

n

n
∑

i=1

∇LZi
(f∗)

]

+

[

1

n

n
∑

i=1

∇2LZi
(f∗)(δ̂n)

]

+ op(‖δ̂n‖)

= Dn +Hn(δ̂n) + op(‖δ̂n‖) (4.62)

As we have shown in Lemma 4.16,Dn
p−→ 0 andHn

p−→ H(f∗).

Sincef̂Ac

n = f∗Ac

= 0, we have from the above equation that
(

∇L(f̂n)
)

A
= HAA(f∗)(δ̂An ) + op(1) (4.63)

(

∇L(f̂n)
)

Ac

= HAcA(f∗)(δ̂An ) + op(1) (4.64)

From Equation (4.63) and Equation (4.59) we have

δ̂n = −λnHAA(f∗)−1(F̂γA) + op(1) (4.65)

where

F̂γA =
〈

γ̂A, ·
〉

HA
and F̂γA

p−→ FγA =
〈

γA, ·
〉

HA
(4.66)

Then, the following equality holds becauseγ̂A
p−→ γA

(

∇L(f̂n)
)

Ac

= −λnHAcA(f∗) ◦HAA(f∗)−1(FγA) + op(1) (4.67)

Therefore, for anyfAc ∈ HAc, the following inequality holds because of the sufficient condi-

tion
∣

∣

∣

∣

〈

fAc

,
(

∇L(f̂n)
)

Ac

〉

HAc

∣

∣

∣

∣

= λn

∣

∣

∣

∣

〈

fAc

, HAcA(f∗) ◦HAA(f∗)−1
(

〈

γA, ·
〉

HA

)〉

HAc

∣

∣

∣

∣

+ op(1)

(4.68)

< λnJAc(fAc

) for largen

This completes the proof.
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Chapter 5

Numerical Studies

5.1 Simulations

5.1.1 Simulation Settings

In the simulation, we create 6 graphs. The first four graphs are depicted in Figure 2.1. Graph

5 has 100 nodes where the first 8 nodes have the same structure as in Figure 2.1(c) and the others

are independent. Graph 6 also has 100 nodes where the first 10 nodes have the same connection as

in Figure 2.1(d) and the others are independent.

We generate 100 independent datasets for each experiment with the same setting, and evaluate

the performance based on the averaged results on the 100 independent runs. Here is how the first

data set is generated:

The length of the feature vector,p, is set to0 or 5 in our experiment. Whenp = 0, we are

considering the graphical models without input features. For p = 5, X = (X1, . . . , X5), each

fω(x) = cω0 +
∑5

j=1 c
ω
j xj, for ω ∈ ℘(Ω). The true sets of the model parameters,cωjk, are provided

in Appendix B. The features,Xj, are i.i.d uniform on [-1, 1].Y is sampled according to the

probability in Equation (2.4). Gibbs sampling is applied for Graph 5 and 6.

We use BGACV (B-type generalized approximate cross validation GACV) (Xiang and Wahba

(1996) [97], Shi et al. (2008) [79]) to choose the regularization parameterλ for the complete

model (graphs 1-4). The performance of choosing the tuning parameter by GACV is not presented

here because it is comparable to BGACV in terms of recoveringthe true non-zero patterns, but

with more false detections. We use BIC for greedy search algorithm in Graph 5 and 6 due to the
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computational consideration. The range ofλ is chosen according to Koh et al. (2007) [43]. The

details of the tuning methods are discussed in Section 3.4.

5.1.2 Estimation Consistency of SLasso

We evaluate the graph structure estimation accuracy of our SLasso method, and compared it to

two closely related graph structure learning methods. Höfling and Tibshirani (2009) [33] proposed

using pseudo-likelihood withl1 penalty for estimating sparse pairwise binary Markov models.

They only consider pairwise interactions, and there are no input features involved. The method is

published as an R package, BMN1. Schmidt and Murphy (2010) [75] considered the problem of

learning higher-order graphical structure without features. They used the log-linear models and

overlapping penalties. Their code, LLM, is published online2. We choose the tuning parameters

for BMN and LLM by cross validation.

5.1.2.1 Whenp = 0

To make a fair comparison, we first letp = 0, which corresponds to the graphical models

without input features.

In Table 5.1, we count, for each conditional log odds ratio,fω, the number of runs out of 100

wherefω is recovered (‖cω‖ 6= 0). If a recoveredfω is in the true model, it is considered as

true positive, otherwise false positive. The sample size is1000. We list in the table the average

discovery rate on a selected subset of the non-zero conditional log odds ratios in the true model.

The last column is the average discovery rate of all the zero patterns in the true model. The main

effects are always detected correctly, thus, are not listedin the table. LLM takes too long to

converge on Graph 5 and 6. So the corresponding results are not provided.

According to Table 5.1, BMN, LLM, and SLasso achieve very similar results on the sim-

plest graph (Graph 1). On Graph 3-6, SLasso is more effectivecompared to BMN and LLM.

BMN cannot detect higher order interactions because it onlyconsiders the pairwise interactions.

1http://cran.r-project.org/web/packages/BMN/index.html
2http://www.di.ens.fr/∼mschmidt/Software/thesis.html
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Table 5.1 The average discovery rate of a selected set of the non-zero patterns whenp = 0,
n = 1000. The last column, FP (False Positive), is the average discovery rate of all the zero
patterns in the true model. Note, the numbers of the zero patterns in the true model for the 6

graphs are 6, 51, 231, 994,1030, and1030 respectively.

Graph Method f1,2 f1,3 f2,3 f3,4 f1,2,3 f5,7,8 f5,6,7,8 FP

1

BMN 1.00 1.00 1.00 1.00 0 - - 0.25

LLM 1.00 1.00 1.00 1.00 0.93 - - 0.96

SLasso 1.00 1.00 1.00 1.00 1.00 - - 0.48

2

BMN 0.98 0.53 0.16 0.21 0 - - 0

LLM 1.00 1.00 0.89 1.00 0.89 - - 7.61

SLasso 0.94 0.92 0.90 0.96 0.90 - - 0.94

3

BMN 0.72 0.75 0.24 0.34 0 0 0 0.01

LLM 1.00 1.00 1.00 1.00 0.50 0.70 0.13 11.96

SLasso 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.68

4

BMN 0.81 0.96 0.99 0.01 0 0 0 0.02

LLM 1.00 0.99 1.00 0.96 0.10 0.22 0 2.09

SLasso 1.00 1.00 1.00 0.94 1.00 1.00 0.20 0.98

5
BMN 0.41 0.24 0.05 0.07 0 0 0 0.91

SLasso 0.99 0.99 0.98 0.97 0.95 0.92 0 3.97

6
BMN 0.29 0.78 0.71 0 0 0 0 0.01

SLasso 1.00 0.95 1.00 0.99 0.94 0.82 0 3.58



62

SLasso achieves relative better performance on true positive rate as well as false positive rate com-

pared to LLM.

Now, we evaluate the true positive rate and false positive rate of recovering the conditional

log odds ratios in the model, with increasing sample size. InFigure (5.1) - (5.4), we show the

learning results in terms of true positive rate (TPR) and false positive rate (FPR) as sample size

increases from 100 to 1000. Subfigure (a) and (b) are measuredon the unit of the conditional log

odds ratios (some times are called patterns). Subfigure (c) and (d) are measured on the unit of

the cliques. There are 2, 3, 3, 6, 3, 6 cliques in the true models, respectively. We consider all

the possible cliques of any size in the graph. The total number in a graph ofK nodes is2K − 1.

We calculate the TPR on cliques by dividing the average overall number of correctly discovered

cliques by the number of cliques in the graph. The FPR on cliques is calculated by dividing the

average overall number of false discovered cliques by the number of nonexistent cliques in the

graph. As we discussed in Chapter 2, the graph structure and the conditional independence is

determined by the cliques. And according to the asymptotic analysis in Chapter 4, the estimation

of SLasso is consistent in terms of cliques. So, the results on cliques are important criteria for

evaluating the estimation consistency of a graph structurelearning method. Since BMN does not

consider interactions higher than second order, we will notinclude its TPR/FPR on the unit of

cliques.

The experimental settings are the same as before. The true model parameters are listed in

Appendix B.1. In these figures, we can see that SLasso achieves satisfying performance in TPR

with FPR well controlled. With increasing sample size, the estimate of SLasso is getting close to

the true graph structure.

In Graph 2, LLM outperforms SLasso in terms of pattern TPR, atthe cost of high pattern FPR.

As a result, more noisy cliques (possibly larger cliques) are recovered by LLM, which causes the

worse performance of clique TPR and clique FPR compared to SLasso . SLasso outperforms LLM

in other scenarios.

BMN has good performance on simpler graphs (Graph 1 and 2). However, it misses many

pairwise interactions when graphs are large and contain higher order interactions.
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Figure 5.1 Graph 1,p = 0
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Figure 5.2 Graph 2,p = 0
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5.1.2.2 Whenp = 5

Here, we let the input feature be a vector of 5 dimensions. In Table 5.2, BMN and LLM are

able to recover the pairwise interactions, but they cannot find higher order interactions effectively.

In addition, BMN and LLM will detect many false positive patterns which are pairwise. This is

mainly because of the effects of input features. In contrast, SLasso can effectively exploit the

features to achieve good performance as it did when there is no feature.

The Figure (5.5) - (5.8) show the convergence of SLasso in estimating the graph structure. It

achieves high TPR with FPR well controlled. LLM obtains highTPR at the cost of high FPR.

5.1.3 SLasso with Feature Selection

In this section, we evaluate the performance of SLasso with feature selection. The objective is

in the following equation where the penalties are defined in Equation (3.9).

I(f) = L(f) + λ





∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

+ λ̄
∑

v∈℘(Ω)

‖cv‖1



 (5.1)

The experiment is performed on Graph 3, with the same settings as before. The true parameters

are the same as in Appendix B.2, except thatcω1 andcω3 are set as 0 for allω, i.e. X1 andX3 are

irrelevant variables. The second tuning parameterλ̄ is chosen to be0.06 based on empirical results.

For each sample size ranging from 100 to 1000, we carry out 100independent runs and average

the results. We count the correctly and incorrectly discovered parameters and compare them to the

true models. The true positive rate and false positive rate are ploted in the figure. We can see that

with increasing sample size, SLasso recover the non-zero parameters more accurately.

5.1.4 Comparison with Ordinary Lasso

In this section, we compare the SLasso method with the ordinary Lasso for multivariate Bernoulli

data, which we call “Vanilla” in Equation (5.2). For each of the sample sizes100, 200, · · · , 1000,
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Table 5.2 The average discovery rate of a selected set of the non-zero patterns whenp = 5,
n = 1000. The last column, FP (False Positive), is the average discovery rate of all the zero
patterns in the true model. Note, the numbers of the zero patterns in the true model for the 6

graphs are 6, 51, 231, 994,1030, and1030 respectively.

Graph Method f1,2 f1,3 f2,3 f3,4 f1,2,3 f5,7,8 f5,6,7,8 FP

1

BMN 1.00 1.00 0.97 0.13 0 - - 2.00

LLM 1.00 1.00 1.00 0.97 1.00 - - 2.12

SLasso 1.00 1.00 1.00 1.00 1.00 - - 0.04

2

BMN 0 1.00 1.00 1.00 0 - - 3.14

LLM 0.63 1.00 1.00 1.00 0 - - 18.12

SLasso 1.00 0.95 1.00 1.00 0.95 - - 0.96

3

BMN 1.00 0.99 1.00 1.00 0 0 0 1.57

LLM 1.00 1.00 1.00 1.00 0.09 0.76 0 17.17

SLasso 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.35

4

BMN 1.00 1.00 1.00 1.00 0 0 0 9.10

LLM 1.00 1.00 1.00 1.00 0.16 0 0 16.45

SLasso 1.00 1.00 1.00 0.86 1.00 0.99 0.15 0.24

5
BMN 0.67 0.78 0.45 0.54 0 0 0 4.67

SLasso 0.99 0.99 0.98 0.97 0.80 0.71 0 1.97

6
BMN 0.72 0.85 0.64 0.54 0 0 0 6.17

SLasso 1.00 1.00 1.00 0.99 0.94 0.85 0 1.58
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Figure 5.5 Graph 1,p = 5
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Figure 5.6 Graph 2,p = 5
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Figure 5.7 Graph 3,p = 5
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Figure 5.9 Performance of SLasso with feature selection on Graph 3,p = 5. The TPR and FPR
are calculated on the unit of parameters. That is, we count the correctly and incorrectly

discovered parameters and compare them to the true models.
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we evaluate the methods on 100 separate runs and average the performance. In each run, we gen-

erate 2 datasets for the graph structure as in Figure (2.1(a))-(2.1(d)). One of the data set is used for

training and the other for testing.

The true set of the model parameters,cωj , j = 1, · · · , 5, are shown in Appendix B.2. The fea-

tures,Xj, are i.i.d uniform on [-1, 1].Y is sampled according to the probability in equation (2.4).

We evaluate the following 5 models

1.V anilla : min
f

Iλ(f) = L(f) + λ
∑

ω,j

|cωj | (5.2)

2.SLasso : min
f

Iλ(f) = L(f) + λ
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖fω‖2
Hω

(5.3)

3.SLasso−Refit : Refit the logistic regression on the subset selected by SLasso (5.4)

4.Full : Fit the logistic regression without model selection (5.5)

5.Best : Use the true model parameters on test set (5.6)

We evaluate “BAC”(Balanced Accuracy, equals to (sensitivity + specificity)/2) and “Log-likelihood”

on the test set and average the results over the100 runs for each of the sample size. The results are

plotted in Figure (5.10(a)), (5.11(a)) ,(5.12(a)), (5.13(a)), and Figure (5.10(b)), (5.11(b)), (5.12(b)),

(5.13(b)).

In Figure (5.12(a)) and Figure (5.13(a)), “SLasso-Refit” achieves almost the same performance

as “Best”. This is because with increasing sample size, “SLasso” tends to select the true non-zero

patterns, which makes the refitted models close to the true models. Since “SLasso” is itself a the

model selection method, and thus provides biased estimators of the model parameters with finite

sample size, the BAC performance is below “SLasso-Refit” and“Best”. The “Vanilla” is below

“SLasso” and “Full”. One possible reason is using a single tuning parameter in the “Vanilla”

model. In addition, the sparsity on the level of graph structure is more important than the sparsity

on the level of model parameters. This might also be the reason that “Vanilla” is not as good as

other methods.

In Figure (5.12(b)) and Figure (5.13(b)), similar results are observed. “SLasso-Refit” achieves

almost the same performance as “Best” with increasing sample size. In terms of log-likelihood
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on the test set, “Vanilla” and “SLasso” achieve very close performance, since they are both model

selection methods.

For Graph 1 and Graph 2 which have simpler structure comparedto Graph 3 and Graph 4, the

performance of “SLasso” is not as good as “Vanilla” or “Full”(In Figure (5.10(a)), 5.11(a), and

Figure 5.10(b), 5.11(b)). The reason may be the benifits of estimating the correct graph structure

for a simple graphical model is overwhelmed by the bias brought by SLasso. But still, after re-

fitting on the non-zero patterns estimated by SLasso , “SLasso-Refit” achieves almost the same

performance as “Best” with increasing sample size.

5.1.5 Consistency in Estimating the Cover of Non-zero Patterns

The grouping structure of the penalty in SLasso objective function in Equation (3.5) produces

the consistency property of estimating the cover of non-zero patterns (see Section 4.1). If the true

graphical model has the hierarchical structure, the SLassomethod will recover the same set of

non-zero patterns when sample size goes to infinity. However, if the true graphical model does not

have the hierarchical structure, e.g. a fourth order interactions exists without some/all the lower

order interactions, the SLasso method can recover the same graph structure eventually, but with all

lower order interactions included.

In this section, we will show the consistency of the SLasso method when the graph does not

have the hierarchical structure. We carry out the experiments on Graph 3 whenp = 5. Only the

main effects andfω, ω = {3, 4}, {1, 2, 3}, {5, 6, 7, 8} are non-zero. The true model parameters we

use are listed below.

Graph 3, p=5

{1} {2} {3} {4} {5} {6} {7} {8}

-0.5000 0.7500 -0.5000 0.5000 1.0000 1.0000 -0.7500 0.5000

0.7500 0.5000 -0.5000 -0.7500 1.0000 -0.7500 -1.0000 -0.5000

-0.7500 0.5000 -0.5000 0.7500 -0.7500 -1.0000 -1.0000 -1.0000

-0.5000 1.0000 -1.0000 -0.7500 0.5000 -0.5000 1.0000 0.5000

-0.7500 0.5000 0.5000 -0.7500 -0.5000 -1.0000 0.5000 0.5000

-0.4000 -0.4000 -0.8000 -0.8000 -0.4000 -0.4000 -0.4000 -0.4000
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Figure 5.10 Comparison on Graph 1
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Figure 5.11 Comparison on Graph 2
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{3,4} {1,2,3} {5,6,7,8}

-0.6000 0.6000 -0.3000

0.4500 0.4500 -0.4500

-0.3000 -0.6000 0.6000

0.3000 -0.3000 0.6000

-0.6000 -0.6000 -0.4500

2.0000 2.6000 3.6000

As we did in the previous section, we plot the performance of five methods in terms of balanced accuracy

and log-likelihood in Figure (5.14). It is worthy of noting that “SLasso” is better than “Best” in terms of

balanced accuracy. It may be because training the “SLasso” model alleviates the overfitting issue with the

above chosen model parameters. But in terms of log-likelihood, “SLasso” is not as good as other methods,

except for “Full” which tends to overfit in the setting. “SLasso-Refit” is getting very close to “Best” in

both balanced accuracy and log-likelihood, when sample size becomes large. This shows that when the

SLasso method recovers the true graph structure (in high probability when sample size is large), refitting

the model achieves very similar results as those achieved inthe oracle scenario.

Although SLasso discovers many lower order interactions belonging to the three cliques in the hierar-

chical structure, it performs very well in terms of structure learning. The TPR of SLasso recovering the

cliques is92.34%, with 1.54 false discovered cliques in one run on average, when the sample size is 1000.

5.2 Case Study: Census Bureau County Data

We use the county data from U.S. Census Bureau3 to validate our method. We remove the counties

that have missing values and obtain 2668 entries in total. The outcomes of this study are summarized in

Table 5.3. “Vote” Scammon et al. (2005) [74] is coded as 1 if the Republican candidate won in the 2004

presidential election. To dichotomize the remaining outcomes, the national mean is selected as a threshold.

The data is standardized to mean 0 and variance 1. The following features are included: Housing unit

change in percent from 2000-2006, percent of ethnic groups,percent foreign born, percent people over

65, percent people under 18, percent people with a high school education, percent people with a bachelors

3http://www.census.gov/statab/www/ccdb.html
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Figure 5.14 Comparison on Graph 3 where only the main effectsand
fω, ω = {3, 4}, {1, 2, 3}, {5, 6, 7, 8} are non-zero.p = 5
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Table 5.3 Selected response variables

Response Description Positive%

Vote 2004 votes for Republican presidential candidate 81.11

Poverty Poverty Rate 52.70

VCrime Violent Crime Rate, eg. murder, robbery 23.09

PCrime Property Crime Rate, eg. burglary 6.82

URate Unemployment Rate 51.35

PChange Population change in percent from 2000 to 2006 64.96

degree; birth rate, death rate, per capita government expenditure in dollars. By adjustingλ, we observe new

interactions enter the model. The graph structure ofλ = 0.1559 is shown in Figure 5.15(a). The results of

BMN (the tuning parameter is 0.015) is in Figure 5.15(b). Theunemployment rate plays an important role

as a hub as discovered by SLasso , but not by BMN.

We analyze the link between “Vote” and “PChange”. Though themarginal correlation between them

(without X) is only 0.0389, which is the second lowest absolute pairwise correlation,the link is firstly

recovered by SLasso . It has been suggested that there is indeed a connection4. This shows that after taking

features into account, the dependence structure of response variables may change and hidden relations could

be discovered. The main factors in this case are “percentageof housing unit change” (X1) and “population

percentage of people over 65” (X2). The part of the fitted model shown below suggests that as housing

units increase, the counties are more likely to have both positive results for “Vote” and “PChange”. But this

tendency will be counteracted by the increase of people over65: the responses are less likely to take both

positive values.

f̂V ote = 0.2913 · X1 + 0.3475 · X2 + · · ·

f̂PChange = 1.4726 · X1 − 0.3709 · X2 + · · ·

f̂V ote,PChange = 0.1358 · X1 − 0.0458 · X2 + · · ·

4http://www.ipsos-mori.com/researchpublications/researcharchive/2545/Analysis-Population-change-turnout-the-election.aspx
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(a) SLasso-Complete

(b) BMN

Figure 5.15 Interactions of response variables in the Census Bureau data. The first number on the
edge is the order at which the link is recovered. The number inbracket is the function norm on the
clique and the absolute value of the elements in the concentration matrix, respectively. We note

SLasso discovers at 7th step two third-order interactions which are displayed by two circles in (a).
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Chapter 6

Concluding Remarks

The graphical models are very popular in modeling the relations in a set of discrete random variables

Y . It is more interesting to estimate the distribution ofY conditioned on another set of predictive variables

X. When the graph structure is given, the parameterization with potential functions are effective in esti-

mating the model parameters. However, if we want to learn thegraph structure and the functions ofX that

characterize the (higher-order) interactions among theY ’s, this method could lead to over-parameterization.

Our first contribution is the reparameterization of the distribution of Y conditioned onX by multivari-

ate discrete distributions. The conditional log odds ratios decompose the effect ofX on Y to main effects

and interactions of all orders. We prove the multivariate discrete distributions are equivalent to the graphical

models parameterized by potential functions. The multivariate discrete model is easy to interpret the inter-

actions among the nodes, since we prove the equivalence of the sparsity in the set offω ’s to the sparsity

of the cliques in the graph. And the sparse estimation of the set of conditional log odds ratios leads to the

conditional independence in the graphical model.

We propose the SLasso method to learn the graph structure that is specified by the conditional log

odds ratios defined on the predictive variablesX. The advantage is the combination of the graph structure

learning and the flexible choice of the functional spaces onX. The method solves a maximum likelihood

problem penalized by a structure penalty. The penalty is designed on groups of the conditional log odds

ratios, following the hierarchical structure assumption.An efficient gradient descent algorithm is given

to estimate the complete model. The global convergence of the algorithm is guaranteed. And a greedy

approach is applied when the graph is large. The BGACV tuningmethod is derived to select the tuning

parameter. It achieves satisfactory numerical results in simulation studies.

In addition, we allow the log odds ratios of the joint distribution conditioned on the predictive vari-

ables be functions in any separable Reproducing Kernel Hilbert Spaces. In this way, we extend the linear
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models to teh non-parametric models. The asymptotic analysis shows that the SLasso method with para-

metric models and non-parametric models is consistent in terms of graph structure estimation, because of

the special design of the structure penalty. That is, if the true model satisfies the hierarchical structure as-

sumption, the SLasso method is consistent in estimating theset of non-zero conditional log odds ratios. If

not, the SLasso method will recover a superset of the non-zero conditional log odds ratios in the true model.

The superset will still give the same graph structure, so theestimation will still preserve the conditional

independence structure.

This model can be applied to a variety of areas. One application is to discover the relations of multiple

symptoms or clinical responses and how they are affected by the environmental and genetic covariates of

the subjects. Smoking could be significant for many diseasesand their interactions, but other covariates,

such as taking Vitamin might be only related to a subset of thesymptoms.

We can apply this method on Facebook data if available in the future. Say we haveK ads (or ads

categories), which will be clicked (1) or not (0) by the users(X). The observations of the clicks will be

of multivariate Bernoulli distribution conditioned onX. The intuition is that those ads are related to each

other. But these relations will depend on the features of theusers, because different users have different

browsing patterns. We are also interested in the predictionof a user’s browsing behavior. In addition, we

want to make better use of the social network between the users, e.g., friends, families, or subscriptions.

This introduces another network, which is onX, and will be treated as known in the future work. The

relationships between the users will provide additional information in the prediction, because friends are

likely to share similar interests.
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Appendix A: Technical Proofs

A.1 Proof of Theorem 2.3

Proof. Given UGM (2.1), the corresponding parameterization in MVBmodel is shown in Equation (2.12)

of Lemma 2.2.

The expression ofexp(Sω(x)) in Equation (2.11) follows from the definition of the conditional log

odds ratios in (2.6).

Let yω
C be a realization ofyC such thatyω

C = {yω
i | i ∈ C} whereyω

i = 1 if i ∈ ω andyω
i = 0 otherwise.

Let the odd-even partition of the power set ofω defined as in Lemma 2.2. The conditional log odds ratios

in MVB model are:

fω(x) = log

∏

κ∈℘e(ω)

∏

C∈C ΦC(yκ
C ; x)

∏

κ∈℘o(ω)

∏

C∈C ΦC(yκ
C ; x)

and b(f) = log
Z(x)

∏

C∈C ΦC(0; x)
(A.1)

Conversely, given the MVB model of (2.4), the cliques can be determined by the nonzerofω: clique

C exists ifC = ω andfω 6= 0. Then the maximal cliques can be inferred from the graph structure. And

suppose they areC1, . . . , Cm. Letωi = Ci, for i = 1, . . . , m, andκ1 = ∅, κi = Ci ∩ (Ci−1 ∪ · · · ∪C1), i =

2, . . . , m. Then the parameterization is:

ΦCi
(yCi

; x) = exp
(

Sωi(y; x) − Sκi(y; x)
)

and Z(x) = exp(b(f)) (A.2)

whereSω(y; x) =
∑

κ⊆ω yκfκ(x). Thus, UGM (2.1) with bivariate nodes is equivalent to MVB (2.4).

In the latter part of the theorem,1 ⇒ 2 and3 ⇒ 1 follow naturally from the Markov property of

graphical models. To show2 ⇒ 3, let yω
C be a realization ofyC such thatyω

C = (yω
i )i∈C whereyω

i = 1 if

i ∈ ω andyω
i = 0 otherwise. Notice that wheneverκ ∩ C = κ′ ∩ C, we haveyκ

C = yκ′

C . For any possible

v = κ∩C, κ′ ∈ {κ|κ = v∪u, s.t.u ⊆ ω−v} will satisfy the condition:κ′∩C = v. There are2|ω−v| such

κ′ in total due to the choice ofu. Also, they appear in the nominator and denominator of Equation (2.12)

equally. So, for anyC ∈ C,

∏

κ∈Ψω
even

ΦC(yκ
C ; x) =

∏

κ∈Ψω

odd

ΦC(yκ
C ; x) (A.3)

It follows thatfω = 0 by (2.12).
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A.2 Proof of Theorem 3.2

Proof. The existence of the minimizer can be shown following the proof of Theorem 1 in Lin and Zhang

(2006) [53]. Let the projection off onto span{K(xi, ·), i = 1, . . . , n} ⊂ HK be g, andh = f − g.

Note,‖f‖2
HK

= ‖g‖2
HK

+ ‖h‖2
HK

, andf(xi) = 〈K(xi, ·), f〉 = 〈K(xi, ·), g〉, then the objective function in

Equation (3.5) is

1

n

n
∑

i=1

L(〈K(xi, ·), g〉) + λ
∑

v∈℘(Ω)

pv

√

∑

ω∈Tv

‖gω‖2
Hω

+
∑

ω∈Tv

‖hω‖2
Hω

(A.4)

Therefore, we know the minimizer is inspan{K(xi, ·), i = 1, . . . , n}.

A.3 Proof of Theorem 3.3

Proof. We give the proof for the linear case. The convexity ofIλ is easy to check, sinceL andJ(fTv) are

all convex inc. Suppose there is someω2 ⊃ ω1 s.t. ĉω2 6= 0 andĉω1 = 0, by the groups constructed through

Figure 3.1,‖ĉTv‖ = ‖(ĉω)v⊆ω‖ 6= 0 for all v ⊆ ω1. So the partial derivative of the objective (3.12) with

respect tocω1 at ĉω1 is

∂L

∂cω1

∣

∣

∣

∣

cω1=ĉω1

+ λ
∑

v⊆ω1

pv
ĉω1

‖ĉTv‖ = 0 (A.5)

Thus, the probability of{ĉω2 6= 0} equals to the probability of{ ∂L
∂cω1

∣

∣

cω1=ĉω1
= 0}, which is 0.

A.4 Proof of Lemma 4.3

Proof. Let

Un(δ) =
1

n

n
∑

i=1

[LZi
(f∗ + λnδ) − LZi

(f∗)] , (A.6)

Vn(δ) = λn [J (f∗ + λnδ) −J (f∗)] (A.7)

Note δ̂n = 1
λn

(f̂n − f∗) is the minimizer of 1
λn

2 Un(δ) + 1
λn

2 Vn(δ). We will first show the convergence

of Un(δ) andVn(δ).
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ForVn(δ), consider the cases wherev ∈ A first.

1

λn

[

Jv

(

f∗Tv + λnδTv

)

− Jv(f
∗Tv)

]

=
pv

λn

[

‖f∗Tv + λnδTv‖ − ‖f∗Tv‖
]

=
pv

λn

2
(

f∗Tv

)T
λnδTv + ‖λnδTv‖2

‖f∗Tv + λnδTv‖ + ‖f∗Tv‖

−→ pv

(

f∗Tv

)T
δTv

‖f∗Tv‖
, asn → ∞ (A.8)

Forv ∈ Ac, we have

1

λn

[

Jv

(

f∗Tv + λnδTv

)

− Jv(f
∗Tv)

]

→ Jv(δ
Tv) (A.9)

Then, we get the convergence result of1
λn

2 Vn(δ):

1

λ2
n

Vn(δ) −→ (γA)T δA + J (δA
c

), asλn → ∞ (A.10)

ForUn(δ), we have

1

λ2
n

Un(δ) =
1

λ2
n

· 1

n

n
∑

i=1

[LZi
(f∗ + λnδ) − LZi

(f∗)] (A.11)

=
1

λn

√
n

δT

[

1√
n

n
∑

i=1

∇LZi
(f∗)

]

+ δT

[

1

2n

n
∑

i=1

∇2LZi
(f∗)

]

δ + op

(‖δ‖2

n

)

Let M(f∗) = E
[

∇LZ(f∗)∇LZ(f∗)T
]

. By central limit theorem, 1√
n

∑n
i=1 ∇LZi

(f∗)
d−→ W =

N(0, M(f∗)), sinceE[∇LZi
(f∗)] = 0 and var(∇LZi

(f∗)) = E
[

∇L(Y ; f∗(X))∇L(Y ; f∗(X))T
]

=

M(f∗). So the first term converges to0 in probability asλn

√
n → ∞ whenn → ∞.

NoteE
[

∇2LZi
(f∗)

]

= ∇2
E [LZi

(f∗)] = H(f∗), we have

1

n

n
∑

i=1

δT∇2LZi
(f∗)δ

a.s.−−→ δT H(f∗)δ (A.12)

Then, we get the convergence result of1
λn

2 Vn(δ):

1

λ2
n

Un(δ)
p−→ 1

2
δT H(f∗)δ (A.13)

Therefore,

Un(δ) + Vn(δ)
p−→ W (δ) =

1

2
δT H(f)δ + (γA)T δA + J (δA

c

) (A.14)
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Finally, sinceUn(δ) + Vn(δ) is convex andW (δ) has a unique minimum, it follows Geyer (1996) [27]

and that

1

λn

(

f̂n − f∗
)

= arg min
δ

(Un(δ) + Vn(δ)) (A.15)

d−→ δ̂ = arg min
δ

1

2
δT H(f∗)δ + (γA)T δA + J (δA

c

)

More general version of the convergence in minimization forrandom functions on finite dimensional

Hilbert space can be found in Knight (1999) [41] and Rockafellar and Wets (1998) [73].

A.5 Proof of Lemma 4.5

Proof. We know f̂A
n is unique since the objective function in Equation (4.18) isstrongly convex. Using

the techniques when proving Lemma 4.3, the1
λn

-consistent result of̂fA
n for f∗A which is similar to the

one implied in Equation (4.8) means thatf̂A
n

p−→ f∗A. This implies thatP
(

P ⊆ P̂nA
)

→ 1. Since

A = cover(P), we haveP
(

A ⊆ ÂnA
)

→ 1. SinceP̂nA = ÂnA almost surely as shown in Lemma 4.2,

we haveP

(

A ⊆ P̂nA
)

→ 1. P̂nA ⊆ A is always true, soP
(

P̂nA = A
)

→ 1. The conclusion of

Lemma 4.5 follows from Lemma 4.2.

A.6 Proof of Lemma 4.15

Proof. First, Volle and Hiriart-Urruty (2011) [89] showed that a weakly lower-semicontinuous function

defined on a reflexive Banach space has a unique minimizer if and only if it is essentially strictly convex.

Note, a RKHS is a reflexive Banach space. The properties of theobjective function provides sufficient

conditions forWn andW attaining a unique minimizer.

Note, a sequence{Fn : HK → R} is said to epi-converge toF : HK → R at f ∈ HK if for any

fn → f , lim inf Fn(fn) ≥ F (f) and∃fn → f such thatlim supFn(fn) ≤ F (f) (Dong and Wets (2000)

[19]). Vogel and Lachout (2003) [88] showed that the point-wise convergence in probability for allδ ∈ HK

implies thatFn epi-converges toF in probability. We introduce the notion of epi-convergenceto utilize

the general convergence results. More about the epi-convergence in probability can be found in Geyer

(1994) [26], Hess (1996) [32], and Lachout (2006) [47]. It isworth noting that the continuity ofWn, W

and point-wise convergence ofWn to W ensureWn epi-converges toW in probability.
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SinceWn epi-converge toW in probability, we can find another set of random elementsW ′
n andW ′

which are identically distributed asWn andW , andWn epi-converges toW almost surely (Van Der Vaart

and Wellner (1996) [87]).

Let δ̂′n = arg minδ∈HK
W ′

n andδ̂′ = arg minδ∈HK
W ′. SinceWn(δ) =d W ′

n(δ) andW (δ) =d W (δ),

it is easy to see that̂δ′n andδ̂′ have the same distribution asδ̂n andδ̂, which are the minimizers ofWn and

W , respectively:̂δ′n =d δ̂n andδ̂′ =d δ̂.

It follows Theorem 2.11 and Corollary 2.13 in Attouch (1984)[5] that for Fn, n = 1, 2, · · · andF

which are functionals defined on a separable Hilbert spaceH, if Fn epi-converges toF andF has a unique

minimizer, thenarg minFn → arg minF . SinceW ′
n(·, e) epi-converges toW ′(·, e) for almost alle ∈ E ,

denoteδ̂′n,e = arg minW ′
n(δ, e) and δ̂e = arg minW ′(δ, e), thenδ̂′n,e → δ̂′e for almost alle ∈ E , which

implies thatδ̂′n → δ̂′ almost surely. Therefore,arg minδ∈HK
Wn(δ)

d−→ arg minδ∈HK
W (δ).

A.7 Proof of Lemma 4.16

Proof. Similarly, let

Un(δ) =
1

n

n
∑

i=1

[LZi
(f∗ + λnδ) − LZi

(f∗)] , (A.16)

Vn(δ) = λn [J (f∗ + λnδ) − J (f∗)] (A.17)

Wn(δ) =
1

λn
2 [Un(δ) + Vn(δ)] (A.18)

From the Taylor’s theorem in Banach space,

1

λ2
n

Un(δ) =
1

λ2
n

· 1

n

n
∑

i=1

[LZi
(f∗ + λnδ) − LZi

(f∗)] (A.19)

=
1

λn

[

1

n

n
∑

i=1

∇LZi
(f∗)(δ)

]

+

[

1

2n

n
∑

i=1

∇2LZi
(f∗)(δ, δ)

]

+ op

(

‖δ‖2
HK

n

)

BecauseL·(f) is a bounded continuous operator ofZ ∈ Z, andf∗ is optimal for the risk operator, we

have for anyδ ∈ HK

EP [∇LZi
(f∗)(δ)] = EP ◦ ∇L(·)(f

∗)(δ) (A.20)

= ∇(EP ◦ L(·))(f
∗)(δ)

= 0
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So the first term 1
λn

[

1
n

∑n
i=1 ∇LZi

(f∗)(δ)
] a.s.−−→ 0 by the law of large numbers in Banach space

(Ledoux and Talagrand (1991) [49]).

For the second term,

EP∇2LZi
(f∗)(δ, δ) = ∇2(EP ◦ L(·))(f

∗)(δ, δ) (A.21)

= H(f∗)(δ, δ)

So the second term
[

1
2n

∑n
i=1 ∇2LZi

(f∗)(δ, δ)
] a.s.−−→ 1

2H(f∗)(δ, δ). Therefore,

1

λn
2 Un(δ)

p−→ 1

2
H(f∗)(δ, δ) (A.22)

ForVn(δ), consider the cases wherev ∈ A first.

1

λn

[

Jv

(

f∗Tv + λnδTv

)

− Jv(f
∗Tv)

]

=
pv

λn

2
〈

f∗Tv , λnδTv

〉

HK

+ ‖λnδTv‖2
HK

‖f∗Tv + λnδTv‖HK
+ ‖f∗Tv‖HK

(A.23)

−→ pv

〈

f∗Tv , δTv

〉

HK

‖f∗Tv‖HK

, asn → ∞

Forv ∈ Ac, we have

1

λn

[

Jv

(

f∗Tv + λnδTv

)

− Jv(f
∗Tv)

]

→ Jv(δ
Tv) (A.24)

So,

1

λ2
n

Vn(δ) −→
〈

γA, δA
〉

HK

+ J (δA
c

), asn → ∞ (A.25)

Therefore,

Wn(δ) =
1

λn
2 [Un(δ) + Vn(δ)]

p−→ 1

2
H(f∗)(δ, δ) +

〈

γA, δA
〉

HK

+ JAc(δA
c

)

The conclusion of the lemma follows Lemma 4.15.
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A.8 B-spline

Given m knots, t0 ≤ t1 ≤ · · · ≤ tm−1, the B-spline basis functions of degreed are defined recur-

sively De Boor (1978) [17]:

bk,0 =











1; if tk ≤ t < tk+1

0; otherwise
, for k = 0, · · · , m − 2

bk,l =
t − tk

tk+l − tk
bk,l−1(t) +

tk+l+1 − t

tk+l+1 − tk+1
bk+1,l−1(t), for k = 0, · · · , m − d − 2; l = 0, · · · , d

Let Bk(·) = bk,d(·), then{Bk, k = 0, · · · , m − d − 2} arem − d − 1 basis functions, which span the

functional spaceB. The B-spline curve inB is:

g(t) =
m−d−2
∑

k=0

ckBk(t) (A.26)

whereck’s are the control points to be estimated. In our simulation studies,ck’s are assumed to be one

dimensional scalers for simplicity.

Supposex ∈ R
p, we let eachfω(x) be inB0 ⊕B1 ⊕ · · ·⊕Bp. Here,B0 is a space of constant functions

andBj , j = 1 · · · , p is a B-spline functional space on domain ofxj . Therefore,

fω(x) = cω
0 +

p
∑

j=1

gω
j (xj) (A.27)

wheregω
j ∈ Bj are defined similarly as in (A.26):gω

j (xj) =
∑D

k=1 cω
jkBk(xj), andD = m − d − 1 is the

number of basis functions.
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Appendix B: True Model Parameters in the Experiment

Here, we list the true model paramters we used in the experiments, one column for one conditional log

odds ratio. Without special notice, we use these parametersto generate the data in the experiments. For

p = 5, we list the6 paramters in one column in the order:cω
1 , · · · , cω

5 , cω
0 , wherecω

0 is the intercept.

B.1 p = 0

Graph 1, p = 0

{1} {2} {3} {4} {1,2} {1,3} {2,3} {3,4}

-2.0000 -2.0000 -2.0000 -2.0000 1.2000 1.2000 1.2000 1.2000

{1,2,3}

1.2000

Graph 2, p = 0

{1} {2} {3} {4} {5} {6} {1,2} {1,3}

-0.3778 -0.2667 -0.0444 -0.3778 0.0667 0.0667 0.2889 -0.0444

{2,3} {3,4} {5,6} {1,2,3}

-0.2667 -0.4889 -0.4889 1.0000

Graph 3, p = 0

{1} {2} {3} {4} {5} {6} {7} {8}

-0.2000 -0.2000 -0.2000 0.2000 -0.2000 -0.2000 -0.2000 -0.2000

{1,2} {1,3} {2,3} {3,4} {5,6} {5,7} {5,8} {6,7}

0.4000 0.4000 0.2000 0.5000 0.2000 0.3000 0.5000 0.6000

{6,8} {7,8} {1,2,3} {5,6,7} {5,6,8} {5,7,8} {6,7,8} {5,6,7,8}

0.5000 0.5000 0.3000 -0.2000 -0.2000 -0.2000 -0.2000 1.0000

Graph 4, p = 0
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{1} {2} {3} {4} {5} {6} {7} {8}

-0.2000 -0.2000 -0.2000 -0.4000 -0.4000 -0.2000 -0.2000 -0.2000

{9} {10} {1,2} {1,3} {2,3} {3,4} {4,5} {5,6}

-0.2000 -0.2000 0.6000 0.2000 0.4000 0.5000 0.6000 0.3000

{5,7} {5,8} {6,7} {6,8} {6,9} {7,8} {9,10} {1,2,3}

0.6000 0.3000 0.4000 0.6000 0.4000 0.5000 0.6000 0.6000

{5,6,7} {5,6,8} {5,7,8} {6,7,8} {5,6,7,8}

-0.3000 -0.2000 -0.2000 -0.2000 1.4000

B.2 p = 5

Graph 1, p = 5

{1} {2} {3} {4} {1,2} {1,3} {2,3} {3,4}

-2.0000 -3.0000 3.0000 3.0000 1.2000 -2.4000 1.8000 -2.4000

-4.0000 -3.0000 3.0000 3.0000 1.2000 -1.2000 -1.2000 -2.4000

4.0000 3.0000 -3.0000 -2.0000 -2.4000 2.4000 2.4000 2.4000

-3.0000 4.0000 -4.0000 3.0000 -1.2000 -2.4000 1.2000 1.8000

-2.0000 -3.0000 2.0000 2.0000 1.2000 -1.2000 -1.2000 2.4000

1.0000 1.0000 1.0000 1.0000 1.2000 1.2000 1.2000 1.2000

{1,2,3}

-2.4000

-1.2000

-2.4000

1.8000

-1.2000

1.2000
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Graph 2, p = 5

{1} {2} {3} {4} {5} {6} {1,2} {1,3}

-3.0000 -2.0000 3.0000 3.0000 -2.0000 3.0000 1.8000 -1.8000

-4.0000 3.0000 2.0000 3.0000 4.0000 -2.0000 1.8000 1.8000

4.0000 4.0000 -2.0000 -4.0000 4.0000 -3.0000 -1.2000 1.2000

-2.0000 4.0000 2.0000 2.0000 -2.0000 -3.0000 1.8000 1.2000

2.0000 -4.0000 -3.0000 4.0000 4.0000 3.0000 1.2000 2.4000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.2000 1.2000

{2,3} {3,4} {5,6} {1,2,3}

2.4000 1.2000 1.2000 -1.2000

1.2000 -1.2000 -1.8000 -1.8000

-1.8000 -1.8000 1.8000 -2.4000

-1.2000 2.4000 1.8000 -1.2000

-1.8000 2.4000 2.4000 -1.2000

1.2000 1.2000 1.2000 1.2000

Graph 3, p = 5

{1} {2} {3} {4} {5} {6} {7} {8}

-0.5000 -1.0000 -1.0000 -0.5000 -0.7500 0.7500 -1.0000 -0.7500

-0.5000 -1.0000 0.5000 0.7500 -1.0000 -0.7500 -1.0000 0.7500

-0.5000 1.0000 1.0000 0.5000 -1.0000 -0.7500 0.7500 0.5000

0.5000 0.5000 0.5000 -1.0000 0.5000 0.5000 -0.7500 -0.5000

-1.0000 1.0000 0.7500 1.0000 0.5000 0.7500 -0.5000 0.5000

-2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000

{1,2} {1,3} {2,3} {3,4} {5,6} {5,7} {5,8} {6,7}

0.6000 -0.3000 -0.6000 0.3000 0.4500 -0.4500 0.4500 -0.4500

-0.3000 0.6000 -0.3000 0.4500 0.4500 -0.6000 -0.4500 -0.3000

-0.6000 0.6000 -0.3000 0.3000 0.3000 0.4500 0.4500 -0.6000

0.6000 -0.3000 -0.3000 0.3000 0.4500 -0.3000 -0.3000 0.4500
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-0.6000 -0.4500 -0.6000 -0.4500 0.6000 0.4500 -0.3000 -0.3000

1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000

{6,8} {7,8} {1,2,3} {5,6,7} {5,6,8} {5,7,8} {6,7,8} {5,6,7,8}

0.3000 0.4500 0.6000 0.6000 -0.6000 0.3000 0.4500 -0.6000

-0.6000 -0.4500 -0.3000 0.4500 -0.6000 -0.6000 -0.6000 -0.4500

-0.4500 0.6000 0.6000 0.4500 -0.6000 -0.3000 0.6000 0.6000

0.3000 -0.6000 0.3000 -0.6000 0.3000 -0.6000 0.6000 -0.3000

-0.4500 -0.4500 0.3000 0.4500 -0.6000 -0.3000 0.3000 -0.6000

1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000

Graph 4, p = 5

{1} {2} {3} {4} {5} {6} {7} {8}

-0.5000 -0.7500 0.5000 0.7500 0.7500 -1.0000 0.5000 -0.7500

-1.0000 -0.7500 -0.7500 0.5000 -1.0000 -0.7500 -0.5000 0.7500

0.5000 -1.0000 -1.0000 -1.0000 0.7500 0.5000 0.7500 -0.7500

-0.5000 -0.5000 0.5000 1.0000 0.5000 -1.0000 0.7500 -0.5000

0.7500 1.0000 1.0000 -0.7500 -0.7500 -0.5000 0.5000 1.0000

-1.5000 -1.5000 -1.5000 -1.2000 -1.2000 -1.5000 -1.5000 -1.5000

{9} {10} {1,2} {1,3} {2,3} {3,4} {4,5} {5,6}

0.7500 0.5000 -0.6000 -0.3000 -0.6000 0.4500 -0.4500 0.3000

-0.7500 0.7500 -0.6000 -0.4500 -0.3000 0.4500 -0.6000 -0.3000

-1.0000 -1.0000 -0.6000 -0.3000 -0.3000 0.6000 -0.4500 0.3000

0.5000 -0.5000 0.6000 -0.6000 0.4500 -0.3000 0.4500 -0.4500

0.7500 -0.7500 -0.3000 0.6000 -0.3000 -0.4500 -0.6000 0.3000

-1.5000 -1.5000 1.2000 1.2000 1.2000 1.5000 1.8000 1.2000

{5,7} {5,8} {6,7} {6,8} {6,9} {7,8} {9,10} {1,2,3}

-0.4500 0.4500 -0.4500 0.4500 -0.4500 0.4500 -0.6000 -0.3000

-0.6000 -0.4500 0.3000 0.4500 0.6000 0.4500 0.6000 0.3000
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-0.4500 0.4500 -0.3000 0.4500 0.6000 0.6000 -0.3000 -0.3000

-0.4500 0.3000 -0.3000 0.4500 -0.3000 -0.4500 0.3000 -0.6000

-0.4500 0.3000 -0.3000 0.6000 0.6000 0.3000 0.6000 0.3000

1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.8000 2.0000

{5,6,7} {5,6,8} {5,7,8} {6,7,8} {5,6,7,8}

-0.3000 0.4500 -0.3000 0.3000 -0.3000

-0.6000 -0.6000 -0.6000 0.6000 -0.3000

0.3000 -0.6000 0.3000 -0.4500 0.6000

-0.6000 -0.3000 0.3000 -0.6000 0.4500

-0.6000 -0.4500 0.4500 -0.6000 -0.3000

-0.9000 -0.5000 -0.5000 -0.5000 2.4000
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