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ABSTRACT
We present a measurement study of a large-scale urban WiF i
mesh network consist ing of more than 250 Mesh Access
Points (M APs), with paying customers that use it for Inter-
net access. Our study, involved collecting mult i-modal data,
e.g., th rough cont inuous gathering of SNMP logs, syslogs,
passive tra ±c capture, and lim it ed active measurements in
di®erent part s of the city. Our study is split into four com-
ponents | planning and deployment of the mesh, success
of mesh rout ing techniques, lik ely experience of users, and
characteri zati on of how the mesh is ut il ized. Durin g our
data collection process that spanned 8 months, the network
changed many tim esdue to hardware and software upgrades.
Hence to present a consistent view of the network, the core
dataset used in th is paper comes from a two week excerpt
of our dataset. Thi s part of the dataset had more than 1.7
mil li on SNMP log ent ries (from 224 MAP s) and more than
100 hours of active measurements. The scale of the study
allowed us to make many import ant observat ions that are
crit ical in pl anning and using WiFi meshes as an Internet
access technology. For example, our study indicates that
the last hop 2.4GHz wirelesslin k between the mesh and the
client is the major bott leneck in client performance. Furt her
we observe that deploying the mesh access points on ut il it y
poles result s in performance degradatio n for indoor clients
that receive poor signal from the accesspoints.

Categoriesand SubjectDescriptors
C.2.3 [Ne t work Op era ti ons]: Network monitori ng,Public
networks; C.2.1 [Ne t work Arc hite ct ure and De sign]:
Wirel esscommunicat ion

GeneralTerms
Documentatio n, Experimentati on, Measurement, Performance,
Reliabil it y
¤All student authors | V. Bri k, S. Rayanchu, S. Saha, S.
Sen, and V. Shrivastava | are in alphabetical order.

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor pro�t or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon the�rst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior speci�c
permissionand/ora fee.
IMC'08, October20–22,2008,Vouliagmeni,Greece.
Copyright 2008ACM 978-1-60558-334-1/08/10...$5.00.

Keywords
WiF i Mesh, Commercial, Measurement , Wireless, Access
Network, Urban, Acti ve Measurement , Pathloss, Client Ex-
perience

1. INTRODUCTION
Th e widespread availabili ty of WiFi and the benē ts of a

low cost tet herless network deployment have spurred a sig-
ni¯ cant amount of interest in wireless mesh networks. As
the init ial excit ement of th is new possibil it y has subsided,
realit ies and challenges of making such a network as a vi-
able technology have set in. The research community has
been spending many years and person-hours tryin g to both
understand performance issues of multi- hop wireless com-
municati on as an accesstechnology and tackle problems in
mult iple innovat ive ways. A few examples of recent progress
include new channel-aware rout ing metrics such as ETX [1]
and WCET T [2]; new opport unist ic and broadcast-ori ented
rout ing strategies such as ExOR [3], COPE [4], MOR E [5],
and CLON E [6]; channel planning and assignment strate-
gies that combine rout ing decisions [7, 8], mesh deployment
strategies [9, 10]. Add iti onall y, a number of vendors (Cisco
Systems, Firet ide, Mesh Networks (now part of Motorola),
Strix Systems, and Tropos Networks, to name a few) have
also spent their e®ort s in creati ng and releasing commercial-
grade mesh networki ng solutio ns that are being used for dif-
ferent purposes,including municipalit y-wide Internet access,
public safety, and commercial use.

A number of detailed and insight ful measurement stud-
ies in the recent years have characterized performance of
vari ous moderate scale, prim aril y home-grown and organi-
call y expanding, mesh networks. Examples include pioneer-
ing work on the Roofnet testb ed around Cambridge, MA
[11], the TFA-Mesh in Houston, TX [9], and the Digi tal
Gangetic Plains project in India [12]. Mesh deployments
wit h a research intent , often, have import ant limi tatio ns. In
such cases,we typicall y useo®-the-shelf components for cost
reasons, and adapt them to their individual goals. Often, in
such deploymentsweprovision additi onal capabil it y for mea-
surements and experimentati on to furt her the research goals.
Addit ionally, the services o®ered by these deployments are,
often, at no cost to the user. Hence, init ial expectati ons of
performance are relat ively low. In contra st, usersof a com-
mercial network have signi¯ cant ly high expectatio ns of net-
work stabili ty and availabil it y. Therefore, commercial net-
works are, often, carefull y deployed, engineered, and tuned
for high quali ty performance. Whil e mult iple studies have
documented the experiencesof mesh networks, that are o®-



Fi gure 1: Log ical vi ew of the MadM esh net work .

shoot of research endeavors, in th is paper, we attempt to
present a ¯rst systematic study of a commercial-grade WiF i
mesh network 1 . The mesh network we study has been op-
erational in Madison, WI , for more than two years now and
is managed by a local company called Mad Cit y Broadband
(see htt p:/ / www.madcitybroadband.com). We refer to th is
mesh as MadMesh. MadMesh consists of more than 250
Mesh AccessPoints (MA Ps) distri buted in thegreater down-
town area of 10 square mil es, current ly serves more than
1000 resident ial customers, provides tra ±c backhauling ca-
pabili ti esfor some other ISPs and small businesses, and pro-
vides additi onal wireless services to di®erent publi c safety
organizatio ns of the city.

1.1 Study goals
Th rough detailed measurement e®ort sspanning more than

8 months, we wish to answer a broad categories of questions.
In each category, apart from try ing to understand exist ing
phenomena, we also attempted to evaluate the relevance of
various ongoing research e®ort s to improving performance.
For instance, given that a lot of e®orts are being spent in de-
signing e®ecti ve network coding based routi ng strategies [4,
6, 5], how applicable are they to common deployment sce-
narios. These categories are:

² Mesh planning and deployment: What are the deploy-
ment strategies and their e±cacies for a large-scale
mesh network spanning a substanti al part of an urban
area? How e®ective is such deployment in handling
failures?

² Mesh routi ng strategies: What are common routi ng
mechanisms adapted? How well do they perform?

1At the tim e of publi cation, we became aware of two con-
current pieces of work that examine certain characteristi cs
of metro-area WiFi mesh networks [22, 23]. As discussed in
Sectio n 7, these e®orts are complementary to work reported
in thi s paper.

² User experience: What is the client performance in dif-
ferent part s of the mesh network?

² Usage characterization: How is the mesh ut il ized by
the users?

While it is always dangerous to generalize observatio ns
based on one single deployment , we believe that the relat ive
success of thi s network makes it a reasonable starti ng point
for other fut ure evaluati ons along these lin es.

1.2 MadMesh Ar chitectureand Use
Th e MadMesh network is compri sed pri mari ly of Cisco

1510 MA Ps [13]. Th e MA Ps are typicall y organized into
a tree structu re, with the root referred to as a Root Ac-
cess Point (RA P), i.e., a RAP is a MA P selected to serve
as a root (see Figure 1). Whi le a RAP typically has wire-
lin e access to the Internet, in the case of MadMesh, the
RAP s use special licensed, wireless frequency bands to com-
municate to an Internet ¯b er hub. MadMesh has mult iple
MA Ps con¯ gured as RAPs, and hence, there is a separate
tree corresponding to each RAP. Each MA P is con¯ gured to
detect other nearby MA Ps, and associate wit h one tree for
all communicatio n. Based on changing channel conditio ns,
a MA P can also change its parent in the tree, or even switch
to a di®erent tree, if available. A mesh contro ller directl y
con¯ gures and manages all the MA Ps in the network. In
part icular, each MA P establi shes a Layer 2 tunnel to th is
mesh contro ller soon after it boots up and joins an existi ng
tree.

We refer to the lin ks between di®erent MA Ps on a tree,
as the mesh backbone. Th e Cisco 1510 MA Ps are equipped
wit h two radio interfaces. One interface of each MA P is
dedicated for communicatio n on the mesh backbone, and is
referred to as the backbone interf ace. Th e second interface is
con¯ gured to act as a regular Access Point (A P) for regular
clients, and is referred to as the access inter face. (W hen we
refer to the corresponding wireless lin ks, we refer to them
as backbone lin k and access lin k respectively.) The back-
bone interface in MadMesh is con¯ gured to operate using
the 802.11a standards in the 5 GHz band, whi le the access
interface is con¯ gured to operate using the 802.11b/g stan-
dards in the 2.4 GHz band. Since each MAP dedicates a
single radio interface for backbone communication, all these
interfaces of MA Ps that form the same tree are made to
operate on the same 802.11a channel to establi sh commu-
nicatio n lin ks. Di®erent trees operate on di®erent 802.11a
channels. The accessinterface of di®erent MA Ps operate on
di®erent 802.11 b/ g channels. Cli ents associate to the access
interface of a MA P using common WLAN procedures.

In the MadMesh deployment , the access interface is al-
ways con¯ gured to use an omni-directio nal antenna wit h 5
or 8dBi gain to achieve the desired coverage. The MA Ps
are mounted on street uti li ty poles and the expected cover-
age of the AP interface is around 1000 to 1500 feet. Most
backbone interfaces of MA Ps use a 11 dBi sector antenna
for more e±ci ent communicati on. All of the backhaul traf-
¯c is encryp ted by the MA Ps using hardware-based AES to
ensure privacy of the users. The APs support the 802.11i
and WPA standard securi ty authenti cati on and encryp tio n
mechanisms.

Ho w Mad Me sh is used? MadMesh is used to provide
Internet access to users. Users are typically charged a ¯x ed
monthly fee which varies wit h the quali ty of service (lik e



bandwidth limi ts) promised to them. Overall, the end users
of thi s network use it mostly from the student dormit ories,
universit y buildings, cafeteri as and other residences.

Figure 2 presents a high-level view of approximately one-
th ird of MadMesh. The centers of the circles mark the po-
sit ions of the MAP locatio ns. The circle size is proport ional
to the number of usersserved. Th e lin esindicate the typical
connecti vi ty structure with in the mesh.

1.3 Main observations
We now highlight some of the most import ant lessons and

observatio ns learnt about a large-scale, commercial-grade
mesh network thro ugh our measurement study.

Robustness—local doesnotmeanglobal
Each MA P in the network has good connectivi ty with it s
peers. For example, about 60% of the MA Ps had a degree
greater than 3 on average, whil e the top 10% of the MA Ps
had a degree of 6 or higher. However, surpri singly there
were mult iple caseswhere a single lin k failure could part it ion
the network. Thus alt hough the network planning involved
local redundancy, it did not automat icall y tran slat e to global
redundancy.

Bottleneck —it is theaccesslink
The performance of the mesh backbone was fairly robust.
The lin k quali ti es were usually good. Mu lti ple hops on the
backbone, going all the way up to 6-8 hops did not sig-
ni¯ cant ly hinder user performance. However, the biggest
hindrance to performance is the interference in the access
lin k. We believe that there are two reasons for it . First,
the MAP s are on uti li ty poles, and most users are indoors
(in brick or other buildings). The accesslin k, therefore, has
poor signal qualit y from such indoor locati ons. Second, the
radio interface in client devices (laptops, PDAs, etc.) of-
ten tend to operate in low-power modes than the MAP s.
Thus, alt hough clients can `hear' MA P beacons, the uplink
communicatio n lin k is, often, part icularl y bad. Customer
premise equipments (li ke 802.11 repeaters) can potenti all y
help miti gate someof these performance problems.

Routingpaths—�apping is prevalent
The trees that de¯ ne routi ng paths have a °apping behav-
ior. Whi le many MA Ps had fairl y stable paths, about 10%
of the MA Ps had routi ng °aps in a regular fashion (more
than 4 rout e changesper hour betweenthe same alt ernat ive
choices). Often these°aps occur due to availabil it y of mul-
tip le equally good or equall y bad alt ernati ves, and call for
dampening mechanisms to be put into place.

Management—client feedback canreallyhelp
The usual management tools at the disposal of network ad-
ministrators rely on SNMP data collecti on from MA Ps and
other infra stru cture-based components. Unfort unately, the
MA Ps, often, do not observe the real performance problems
being experienced at clients. Inferri ng client performance
based on observatio ns at the MA Ps is harder due to the
high variabil it y and complexity of the urban WiFi environ-
ment. A limi ted amount of automated client feedback (cli ent
report s) can bri ng many of theseperformance problems to
light .

Applicabilityof recentresearch results—network
codingandopportunisticroutingcanhelp
In the recent past, new, wireless-specī c, rout ing and MA C
mechanisms, such asnetwork coding and opportu nistic rout-
ing, have beenproposedand demonst rat ed to work thro ugh
research prototypes in lim it ed setti ngs. However, the ques-
tio n of their real appli cabil it y in outdoor mesh deployments
have not been answered. Our measurements indicate that
certain degree of topology diversity exists in the network
that will allow for these mechanisms to lead to performance
gains.

User characteristics— night-timepeaksand uneven
usage
Finally, we have also studied the usual aspects of user be-
havior on th is network. Being pri maril y a residentia l ac-
cessnetwork, we observe that tra ±c volumes peak in late
evenings and the night hours, rath er than in the dayt ime.
Thi s is lik ely to be consistent with tra± c pat terns of other
accessnetworks, but is cont rary to observati ons made in core
ISPs (th at seedayti me peaks). Client dist rib utio n between
MA Ps is also quit e uneven.

1.4 Roadmap
Th e rest of the paper is structured as follows. In the

next section we describe our measurement methodology. In
Sectio ns 3 to 6, we examine di®erent questi ons in the four
broad categories, namely mesh planning and deployment,
mesh routi ng strategies, user experience, and usage charac-
terist ics. In Section 7, we present some related work and
place our current e®ort in perspective, We, ¯n ally, conclude
in Secti on 8.

2. MEASUREMENT METHODOLOGY
For our measurement study we have collected data over a

period greater than 8 months. The main limi tatio n to our
abil it y to collect data has to do with the commercial nature
of the network we study. Alth ough most of our needs were
accommodated by the network operator, our access to logs
was lim it ed and our experiments had to be conducted in
a manner that would not signi¯ cant ly impair the network
performance. Combining the passive and acti ve data, how-
ever, still allowed us to capture and understand the overall
characteristics of the network.

Periodic infrastructure logs
Using our pri vi leged access to the mesh cont roll er we polled
SNMP records from all acti ve MA Ps, once every th ree min-
utes. Each SNMP record had more than 150 parameters
that each MAP records about its performance. For exam-
ple, each MA P maintai ns stati stics about the total number
of clients associated to it , the MA C address of the current
parent MA P, MA C addresses of its neighbors, the current
channel number, the number of failed tra nsmissions, the
noise °o or level at the MAP etc. In addit ion, we had ac-
cessto various management tools and syslogs at the mesh
contro ller, that tra cked other global mesh parameters.

Passivemonitoring
We strategicall y placed a few monitoring nodes at di®erent
part s of the network to gather wireless tra± c passively. We
used three forms of passive locatio ns | (i) an outdoor uti li ty



Fi gu re 2: A thi rd of the MadMe sh depl oyme nt area. The circ les repre sent the MAPs , thei r rel ati ve
sizes ind icate the rel at iv e nu mber of user s associa te d, averag ed over three min ute in te r vals over the
durati on of the stud y. The larg est circ le corre sponds to an AP whi ch had 6.55 users in averag e. The
li nes indi cate the i r con necti vi t y in to the tre e struc tu re .

pole mounted monitori ng node that was close to a MA P, (ii)
indoor monitori ng nodes co-located wit h a few residentia l
users, and (iii ) a mobile monitorin g node mounted on a city-
bus traveling all over Madison, WI. Unfortu nately, all client
tra ±c on the mesh was encryp ted, and hence, it was not
feasible for us to do any applicati on-level tra ±c analysis.
However, the MA C-level headers of all wireless frames were
available th rough th is method.

Activemeasurements
Our log analysis revealed that passively collected data did
not adequately describ e experience of indiv idual network
clients. To address th is issue, members of our teams period-
ically went to di®erent part s of the city to perform limi ted
volumesof activemeasurement, using tools such asiperf [14].
For these measurements we used laptops equipped with a
Cisco AI R-PCM352PC Card wirelessadapter and the Mad-
Wi¯ driv er v0.9.3.

Over the duratio n of these 8 months, the network itself
changed many times. For example, MA Ps were moved be-
tweendi®erent ut il it y poles, hardware was changed and up-
graded, and so on. So to present a consistent view of the
network performance, the core dataset used in th is paper
comes from a two-week period, between the end November
and early December 2007. Thi s part of the dataset had
more than 1.7 milli on SNMP log ent ri es (from 224 MA Ps)
and more than 100 hours of act ive measurements.

Basedon thesedata sets,we now present our observatio ns
in the four di®erent categoriesin the following four sections.

3. ON MESH PLANNING & DEPLOYMENT
We begin with our observatio ns on various topological

properties of MadMesh. Many of these questio ns arisewhen
the mesh is being deployed or periodically upgraded. More
speci¯ call y, we focus on the following questions in th is sec-
tio n:
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² What does the neighborhood of each MA P look lik e?
What kind of connectivit y does each MA P have wit h
its peers?

² How robust is the deployment to failure scenarios?

² What are the lin k-level error rat esand the signal qual-
iti eson the backbone and access lin ks? What are their
contri but ion causes?

² Does the network topology lend itself to new rout ing
mechanisms such as network coding and opport unist ic
rout ing?

3.1 AverageMAP degree
We de¯ ne the degree of a MA P as the number of neigh-

boring MA Ps wit h lin k quali ty above a th reshold (14 dB for



th is study). Th e average degree of the MAP s in the net-
work helps us determine the connect iv it y properties of the
deployed mesh network. A low degree of connectivit y would
imply that the MA Ps are constrained in their choicesof par-
ent lin ks, which in turn implies lim it ed re-routi ng choices in
presence of losses. Similarl y, an extremely high degree of
connecti vi ty would imply over-provisioning in the deploy-
ment apart from increased possibil it y of self interference.
Figure 3 plots the CDF of the degree for all the MA Ps in
the mesh. We can observe that 20% of the MA Ps have a
degree of lessthan 2 and about 60% of the MA Ps have a de-
gree of more than 3. Th is observati on is interesti ng because
more than 70% of the MAP s use directio nal sector antenna
systems with a 45 degree beam for the backbone, and we
would have expected a much lower connectedness. Overall,
the connecti vi ty of the MA Ps with in the meshis fairl y good.

However, it is interesting to note that the neighborhood
distrib utio n of MadMesh is stil l much lower than an organ-
ically grown mesh, such as the Roofnet. Th e lat ter is a
network deployed in Cambrid ge, MA , in and around MI T .
Roofnet compri sesof a set of wireless nodes that are hosted
in homes and apart ments of wil li ng volunteers, and hence,
there is limi ted ¯d elity in contr olli ng its growt h and struc-
tu re. In Figure 3 we also plot the degree of nodes in the
Roofnet network, and we believe that the large variatio n
in node density is a consequence of its unplanned growth .
In cont rast, the deployment of MadMesh is well structu red,
and was precededby detailed site surveys. Addit ionally, po-
sit ioning of MAP s are cont inuously changed based on perfor-
mance requirements. Finally, MA Ps in MadMesh are con-
tin uously available, and are tig htl y managed by the network
operators, making their upti mes more predictable. There-
fore, it is logical to expect that the density of MA Ps in
MadMesh is much lower than RoofNet.

3.2 Robustnessof the deployment
To gauge the qualit y of the mesh planning one also needs

to measure the robustness of the deployment against lin k
failures. A well deployed network should have more than one
distinct path to the wired Internet connectio n. We study the
robustness of the mesh topology by looking at the min-cut of
each MAP { the minimum number of edges, whose removal
would disconnect the MA P from the graph. To understand
th is, we build a graph out of connectivit y reports obtained
th rough SNMP logs and calculate the min-cut of each MA P
from the di®erent RAPs. Figure 4, shows the scatt er-plot
of the average min-cut of all the MA Ps as it varied against
average degree. As can be seenfrom the plot , around 8% of
the MA Ps have a mincut less than 2. This implies that the
MA Ps would get disconnected from the rest of the network
if lessthan 2 other specī c MA Ps fail . Th e ¯g ure also shows
that MA Ps with neighbor degreeashigh as7 can stil l have a
min-cut lower than 2. Thi s can be the case, if the neighbors
of a MA P have a common ancestor in the path to the RAP.
Figure 4 shows a speci¯ c instance of thi s phenomenon where
a group of MAP s are connected to the rest of the network
via a single path (at a specī c tim e instant ). In th is case,
failure of the common MAP would result in a disconnected
topology.

Th e analysis presented above assumes that all MAP s in
the mesh have equal failure probabil it y. However, in realit y
the failure of a MA P can be trig gered by many independent
factors including hardware failures, channel °u ctuatio ns or

path to the root
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external interference in the medium. Thus the exact fail -
ure probabil it y of each MA P may be di®erent depending
on aforementi oned factors and th is informatio n needs to be
coupled wit h the mincut valuesto provide a bett er estimate
of the robustnessof a MA P. One way of estimati ng the fail-
ure probabili ty of a MA P is to tra ck the upti mes of all the
MA Ps in the system. Unfort unately, we current ly do not
have access to th is informati on for Madmesh and we hope
to provide more detail s on node failure in our futu re work.
But we sti ll believe that tra cking the mincut of the MA Ps
in the mesh provides a reasonable estimate of the robust-
ness of the mesh and network planners should examine the
path diversity in their mesh deployments. More specī cally,
they need to ensure that multi ple paths do exist between
each MA P and the di®erent RAPs, that can help ti de over
indivi dual failures, and a high neighbor degree of each MA P
does not automat icall y guarantee robustness.

3.3 Err or rates of backboneand client access
links

Th e mesh network ut ili zes two di®erent spectral bands
(2.4 GHz for access lin ks and 5 GHz for backbone lin ks)
for communicati on. We now characterize the relat ive per-
formance of access and backbone lin ks. In order to do thi s,
we ¯rst compare the packet error rat es (PER ) for the ac-
cessand backbone lin ks. We de¯ ne PER as the fract ion of
unicast wirelessframes for which no corresponding acknowl-
edgment was received. For the calculati on of PER on the
backbone lin ks, we ut il ize two SNMP counters which report
the number of packets for which the MA P did not receive an
acknowledgment ( F ) and the number of tran smitt ed pack-
ets for which an acknowledgment was successfull y received
(T ). We then calculat e PER for the backbone lin ks using
F=(T + F ). However, the SNMP data for calculati ng the
PER on access lin ks was not available to us. We therefore
carried out a set of directed act ive measurements to estimate
the PER of the access side. As part of our acti ve measure-
ment experiments, we randomly selected a set of 35 locations
in the coverage area, and at each locatio n we connected with
the MAP with the strongest signal and performed th ree sets
of TCP iperf sessions, each session lasting 120 seconds. Our
iperf server was running on the mesh cont roll er. We were
also capturi ng packets in the monit or mode (on a di®erent
interface), from which we determine the number of retrans-
missions (and hence the loss rates). We observed a tota l
of 15 dist inct MAP 's in th is acti ve measurement procedure.
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The PER is averaged for each MAP over all the runs at
di®erent lo cations.

We have plott ed our results in Figure 5. The ¯g ure shows
the CDF of the PER for all the backbone (5.2 GHz) and the
access(2.4 GHz) bands. We observe that the PER on the
accessside is much higher than that on the backbone side.
Thi s result indicates that the errors rate in 2.4 GHz access
band is much higher than the 5.2 GHz backboneband, which
can be att rib uted to much higher level of interference and
noise in the 2.4 GHz band, used widely by most wireless
access points to serve end clients. Furt her, on the access
side, the client to MA P lin k is more vulnerable due to the
lower tra nsmit power of the client devices as compared to
the MAP . Thi s lin k asymmetry which can lead to packet
losses from client to MAP , even though the signal strength
from the MA P to the client is high.

We validated thi s assumpti on using a client device wit h
a higher tra nsmit power, and as expected the PER on the
accessband was signi¯ cant ly lower for that client .

Since client devices typically have lower tran smit power,
the performance on an end-to-end meshpath will be severely
impacted by the interference and errors observed on the
access lin k. Even if the mesh backbone is of high quali ty
(which is the case for MadMesh), the performance observed
by clients will be limi ted by the interference and error e®ects
on its direct connecti on to the ¯rs t MA P.

3.4 Channel selectionin backboneand access
links

As describ ed before, the packet error rat es on the access
lin ks are signi¯ cant ly higher than those of the backbone
lin ks. In order to understand th is contra st, we ¯rst examine
the signal-to-noise rati o (SNR) of the backbone lin ks. For a
lin k operating on a higher SNR, there is a higher probabil -
it y of successful packet tra nsmissions. Similarl y, lin ks wit h
low SNR values can result in hi gh packet error rates. Such
low SNR values could be because of presence of high levels
of ambient interference in the network or due to a very low
received signal strength. In Figure 6(a) we plot the CDF of
the SNR values report ed for all the backbone lin ks across
the duratio n of study. We observe that nearly 99% of the
lin ks have an SNR above 15 dB. These high values of SNR
explain the minimal values of PER seen on the backbone
lin ks.

We next tu rn out att entio n to the qualit y of the access
lin ks. Similar to the backbone lin ks, high SNR values in
the access would imply that the clients would experience
relati vely low losses on the accesslin ks. To study the char-
acteristi cs of the access lin ks ideally we would lik e to plot
the SNR for these lin ks. However, di®erent client radios
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use di®erent radios (quali ty/ brand) and di®erent tran smit
powers. This makes the reported SNR a functio n of the
client device used and also it s proximit y to the MA P, which
are di±c ult to quanti fy. We therefore analyzed the amount
of ambient noise (th e raw power received from non-802.11
sources operating in the same channel) and the amount of
interference (raw power received from 802.11 sources other
than the client in communicatio n). These values are re-
port ed periodicall y in the SNMP records for the duratio n
of study. We observed that the ambient noise °o or was at
an acceptable level of -90 dBm, for nearly 90% of the access
lin ks. In contra st, we observed that the amount of inter-
ference was very high. Figure 6(b) shows the CDF of the
amount of interference for all the access lin ks. As can be
seenfrom the plot , more than 20% of the access lin ks expe-
rience a high interference of ¡ 70 dBm. We att rib ute such
high valuesof interference to be one of the main reasons for
high PER seen on the access lin ks. Another possible rea-
son could be the low RSS of the client radios, however we
could not verify th is as we did not have accessto the MA P
software.

A possible remedy for the losses would involve a) forc-
ing the clients to use a better RSSI whil e talk ing with the
MA Ps and b) ensure that the access lin k operates in the
channel with the least amount of ambient noise and inter-
ference. Whi le, the signal strengths from the clients can not
be contro lled by the MAP s, they can ensure that they oper-
ate in the best possible channel (channel with least amount
of interference and ambient noise). To ¯n d out whether the
MA Ps are indeed worki ng in the best channel, we plot the
CDF of the least amount of interference present in any given
channel for all the SNMP snapshots in Figure 6(b). Th e
plot shows the MA Ps are not worki ng in the best channel
available. We believe that adoptio n of a channel of opera-
tio n selection algorit hm would result in better performance
in the mesh. Designing such channel selectio n algori thm is
nont riv ial, since while select ing the locall y best channel of
operation the MAP s have to ensure that they operate in
independent channels to avoid in terferin g with each other.
However given the huge loss rat es observed in the current
settings, we believe that th is opt imizatio n would result in
improvement of overall mesh performance.

3.5 Feasibility of Network Coding
A good degree of connecti vi ty in the mesh network has

an implicatio n in context of current ongoing research in the
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¯el d of opport unisti c rout ing and coding based approaches
for mesh networks [3, 4, 5, 15]. These mechanisms exploit
the broadcast nature of the wirelessmedium and are based
on the possibili ty of overhearing (of data packets) in the
network. As shown in Figure 3 nearly 50% of the MA Ps
have a degree of more than 3. Thi s indicates that there
might be a good possibili ty of overhearing (of data packets)
in the mesh network.

In order to understand the achievablegains from overhearin g-
based mechanisms in the MadMesh deployment , we take
the example of COPE [4], a network coding scheme based
on opport unist ic overhearin g of data packets, and calcu-
late an estimate of th roughput improvements achievable at
each MA P. COPE achieves in-network data compression by
XORing mult iple data packets together and tra nsmit t ing a
single coded packet. The number of packets which can be
coded together at each MA P is determined by the coding
rul e in [4]. which indicates that n packets (desti ned to n
neighboring MA Ps) can be coded together only if the struc-
tu re of the network permit s each of the n neighboring MAP s
to overhear the other n ¡ 1 packets. In such a case, a cod-
ing gain of n is said to be achieved at th is MAP . In order
to estimate the thro ughput improvements possible at each
MA P, we derive the maximum coding gain at each of the
MA Ps using the above coding rule. Note that, the coding
gain achievable in practi ce also depends on the underlying
rout ing mechanism, the number of °ows and the directio n of
these°ows. Here, we are interested in ¯n ding out the net-
work coding opportu niti es the deployment inherentl y sup-
port s and we therefore look at the best casescenario i.e., we
assume that each of the MA Ps always has backlogged tra ±c
to send to each of the other neighboring MA Ps.

Figure 7 shows the maximum coding gain for each of the
MA Ps in the network, if it were to act as the relay node (i .e.,
the node where the packets were being coded). We observe
that around 10% of the MA Ps have no coding opport uni-
ties available as they were the leaf MAP s (M APs with only
one neighboring MA P). For about 66% of the MA Ps in the
network the maximum coding gain achievable was only 2
i.e., even though the number of neighboring MA Ps for each
of theseMAP s were more than 1, the structure of the net-
work did not permit coding more than 2 packets. However,
there are around 24% of the MAP s where coding gains of
more than 2 were possible with the maximum coding gain
reaching 6 for some of the MAP s.

Th is shows that techniques lik e network coding can po-
tentia ll y improve the performance of such densely deployed
outdoor mesh deployments.

4. ON MESH ROUTING STRATEGIES
Rout ing in mult ihop wireless mesh networks has been a

¯el d of signi¯ cant research in recent times. Algori thms pro-
posed in [3, 1, 4] descri be routi ng algorit hms designed to
improve the performanceof the network. Studying the func-
tio ning of a routi ng algorit hm in a mesh network spanning
a city is an exciti ng problem in its own right . Ideally, such
characterizati on would involve large scale experimentatio n.
However, the commercial nature of the mesh deployment
constrains the amount of experimentatio n feasible. In par-
tic ular, we could not change the parameters of the rout ing
algori thm to observe its characteri stics. Instead, we studied
the performance of the rout ing algorit hm in terms of the
rout ing paths created and the relat ive stabili ty of the rout -
ing paths. To reason about the quali ty and stabil it y (or lack
thereof ) of the rout ing paths, one needs to know about the
factors which a®ect the routi ng decision. In th is section, we
attempted to answer the following questi ons:

² How often do routes change and what speci¯ c events
(from therout ing algori thm's perspective) trig ger these
changes?

² What is the consequence of the rout ing algori thms
used on the structure of data trees?

² What are potenti al ine±c iencies in the rout ing mech-
anisms?

4.1 Understanding behavior of meshrouting
algorithm

In th is section we present a study of the mesh rout ing
decision algorit hm. Our goal is to correlate each possible
rout ing changes with its root cause. Th e current mesh de-
ployment usesease metri c for route creat ion. Detail s of th is
metri c are presented in [17]. Th e ease is basedon a weighted
sum of the SNR and hop count of the potent ial MAP s. The
MA P choosesa neighbor which has the best value for the
metri c. On comparing th is metri c wit h ETX [1], we ¯n d
that ETX uses (expected tra nsmission count) over a lin k as
an indicator of the quali ty of the lin k, in cont rast the current
metri c usesthe SNR value as a predictor of the same. Both
of them sum the metric over the ent ire path .

On studying the SNMP logs to ident ify root cause of
a route change we found that both hop count and SNR
changes were involved in 0.9 of the ent ire parent changes
(1-0.1 = 0.9). For the rest 0.1 of the casesboth SNR and
hopcount worsened due to the parent change. On closer in-
spection we found that in another .06 of the (t otal) cases
the one of the ancestors increased its hop in the routi ng tree
which made it a bad parent optio n and hence forced a rout -
ing tree change. We could not account for the rest 0.04% by
looking at the logs.

4.2 Implication of the meshrouting metrics
A rout ing metric which is a weighted sum of the lin k SNRs

and hop count, has some non-obvious implicatio ns on the
¯n al rout ing paths being used by the MAP s. We comment
on them below.



Implicationonhopcountof theMAPs
The SNMP data contains periodic updates about the hop
count of each MAP . We uti li ze th is information to plot Fig-
ure 8 which depicts the distrib utio n of average number of
MA Ps on di®erent hops in the network. We observe that
around 15% of the MA Ps in the network are RAPs. Also,
the average number of MAP s decrease wit h increase in the
hop count i.e., a higher number of MA Ps are present at
the lower hops. Thus, the network is well deployed and the
rout ing algori thm performs well for most of the time.

However, we also observe that around 8% of the MA Ps
have a hop count of more than 5. Conventio nal wisdom
suggests that the achievable th roughput of the in a multi-
hop network degradesdrasticall y with increasing hop count.
Presenceof longer pathsbetweentheMA P and a RAP might

0.3

0.2

0.1

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Hop count

# of MAPs 224, # of Clients 498

MAPs at each hop
Users at each hop

Fi gu re 8: Plo t showi ng frac ti on of MAPs at var io us
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be becauseof two reasons: (a) the network was not planned
well and therefore su±c ient rout ing choices were not avail -
able (b) the rout ing algorithm is not choosing the right path.

To investigate, whether th is high hop-count is a result of
bad deployment , we looked into the the best available neigh-
bors in terms of hop-count (i.e., neighbor MA Ps with lowest
hop-counts) for MA Ps with a hop-count greater than 4. We
have plott ed the CDF of the hopcounts of such neighbors
wit h the best available hops and reasonable lin k qualit y (l ink
SNR higher than 14 dB) in Figure 9. As can be seenfrom
the plot , the MA Ps at hop-counts higher than 4 always have
a neighbor wit h bett er hopcount available. Thi s leads to the
conclusion that the phenomenon is not an arti fact of the de-
ployment i.e., there were other (shorter) paths available in
the network, but the rout ing algori thm did not choose to
use it. Thi s behavior is an impli catio n of using a rout ing
metr ic which is a weighted sum of SNR and hop-count . A
neighbor wit h which the MAP has a bett er lin k (in terms
of SNR) is given priori ty as potenti al parent over another
MA P wit h lower hopcount and a relat ively lower SNR. Such
long paths can be avoided if the rout e selectio n algorit hm
uses a threshold on SNR for selecting the potenti al parents
and then decides amongst the potent ial parents based on
hop-count .

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1  2  3  4  5  6  7  8

F
ra

ct
io

n 
of

 M
A

P
s

Hop count

Best Current

Fig ur e 9: Plot show ing the frac tio n of cu rre nt and
best hop- counts of MAPs wi th a hop -coun t gre ate r
than 4

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200

H
ou

rly
 P

ar
en

t c
ha

ng
es

MAP Index

# of MAPs 200

Fig ur e 10: Plot show ing the aver age hourl y rate of
pare nt chan ges for all the MAPs (No te : Re st of the
MA PS did no t show any pare nt chan ge)

Implicationon routestability
The MAP s in the network can form lin ks to more than
one MA P in their neighborhood. A parameter of interest
to gauge the performance of the rout ing algori thm is the
relati ve stabil it y of the routi ng paths. Large °u ctuatio ns
in the path imply that the network condit ions are unsta-
ble. These might be caused by the appearance of another
potentia l lin k with bett er characteristi cs, disappearance of
the current parent lin k or occurrence of certain other events
such as increased interference etc., which make a previously
unat tra ct ive parent lin k more att racti ve.

We show the stabil it y characteristics of the mesh rout ing
algori thm in Figure 10. Thi s ¯g ure shows the relati ve fre-
quency of the parent changes for all the MAP s occurri ng
in a given durat ion. The data was collected by analyzing
a parent change counter present in the SNMP log for each
MA P over the span of passive data collection. This plot
shows that some MA Ps have a faster rate of changing their
parent than other MA Ps. We observed that the high par-
ent change frequency for some of the MAP s was due to: (a)
presence of mult iple parent choices wit h similar qualit y (in
terms of SNR and hop count) which coupled wit h momen-



tary °u ctuatio ns in the wireless characteristics makesone of
the lin ks momentaril y bett er than the rest forcing the MA P
to °ap its route. (b) he lin k to the parent for some inter-
mediat e MAP (ancestor) has very bad SNR (less than 10
dB), th is causes the intermediate MAP to choose a di®er-
ent parent frequent ly, thus causing a route °ap. A possible
remedy for reducing the amount of route °apping would be
keepa th reshold on the number of tim esa MAP can change
its route in a given quantum.

5. ON MESH USEREXPERIENCE
Robust client performance is important in commercial,

pay per use mesh network. Alt hough careful evaluati on of
SNMP logs provide us with valuable insight into the dynam-
ics of mesh infrastructu re, client performance can be bett er
understood by carryi ng out targeted acti ve measurements
at di®erent lo cati ons in the mesh. Speci¯ cally, we want to
know the following regarding client performance in commer-
cial mesh deployment under study:

² How good is the quali ty of client to mesh connecti vi ty
in MadMesh ? Are coverage holes prevalent ? What
is the impact of client mobili ty on coverage holes?

² What is the maximum achievable thro ughput by a
mesh client ? What is the impact of hop-count , RSSI,
channel congesti on on the client th roughput?

² Is there any issue of starvati on at higher hops when
clients are present at lower hops as well ?

Broadly, the aforementio ned questio ns relate to two main
issues - how easil y can a client connect to the network and
once connected, what is the observed performance. We ¯rst
describ e our measurements for characterizing client connec-
tiv it y in the mesh deployment , followed by a detailed anal-
ysis of client performance.

5.1 Client connectivity
Ubiquitous client connect iv it y is one of the most impor-

tant goals of largescale meshdeployments. In order to main-
tain client connect iv it y, it is import ant to have a monit orin g
infrastructure in place which can ident ify `coverage holes'
created due to obstacles, weather and temporary interfer-
ence sources. Once such coverage holes are detected, correc-
tiv e actio n can be taken by adjusting power levels of di®er-
ent MA Ps or by deploying new ones. Exist ing approaches
commonly used by leading vendors, employ pathloss mod-
els to estimate the expected area of coverage. Such models
describ e the att enuatio n experienced by wireless signal as
a functio n of distance. In order to assess the e±cacy of
such pathlossmodels, we ¯rs t perform detailed experiments
to characterize the pathlossexponent in our urban environ-
ment.

Characterizingpathlossexponent
In the following equatio n, ® is the pathloss exponent, and ²
is the shadowing component that descri bes the variatio n in
pathlossexponent . PdB m (d) is the signal strength measured
at a given distance d, whil e PdB m (d0) is the signal strength
at the reference distance d0 [16].

PdB m (d) = PdB m (d0) ¡ 10®log10 (
d
d0

) + ² (1)
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Fig ur e 11: Prop agati on pathl oss for t wo di®e re nt
MA Ps in div erse setti ngs. The MA P in (a) is lo cate d
in campu s and has a pathl oss of 2.3, whil e (b) is
lo cate d in downto wn and its mea sure d pathl oss is
2.9 .

We follow the measurement methodology reported in prior
research work on propagat ion modeling [9] and collect signal
strength informat ion at 25 di®erent locat ions for each MAP .
We compute the path loss exponent for di®erent MA Ps in
MadMesh network. Our result s indicate signi¯ cant varia-
tio ns in pathloss exponent between di®erent MA Ps. Figure
11(a) and (b) show the signal strength measurements as a
funct ion of lin k distance for two MA Ps, located in downtown
and campus regions of the city. As shown in the ¯g ure, the
pathloss exponent for the downtown MAP is 2:9 while the
pathloss exponent for the campus MA P is 2:3. This is in
contra st to the path lossof 3:3 shown in [9], who also report
that their path lossexponent is stable acrossdi®erent access
points in their network. We att ri bute thi s signi¯ cant vari-
ation in pathloss exponent to diverse set of obstacles and
external interference, which also vary signi¯ cant ly from one
locat ion in the city to another. Our result s show that gener-
alizing a pathloss exponent for a city wide meshdeployment
may be inaccurate, and targeted experiments must be per-
formed to determine the pathloss in di®erent parts of the
city. Thi s observat ion furth er reinforces the ine± cacy of
pathlossmodels in determining coverage holes. Next we de-
scribea simple monitori ng tool that can detect such coverage
holes e±ci ent ly.



Characterizingcoverageholes
In order to assess the prevalence of coverage holes in the
mesh deployment under study, we perform extensive client
measurements. Wereport on some sample result s in in a 6£ 6
block area of the mesh deployment . In our experiments, a
few clients (I BM laptops with Cisco Ai ronet wireless card)
were equipped with a module which cont inuously records
the informatio n about the locatio n, current state of associ-
ation and received signal strength . Periodically, the clients
upload th is informatio n to a centr al server. Over a period of
tim e (seven days, in our case) informat ion aggregated from
theseclients is used to detect coverage holes in the network.
Figure 12 shows the average client connect iv it y in our tar-
get area. Alt hough, the propagati on model based radio map
generated by the meshcont roll er shows thi s enti re area to be
`covered', we found addit ional coverage holeswere observed
by the clients.

Vehicularclient connectivity
Wirel essaccessfrom mobile devices has beenan act ive area
of research recent ly [18]. In that context, we wanted to eval-
uate MadMeshin terms of providing client connect iv it y from
moving vehicles. Towards th is end, we repeat our measure-
ments from moving vehicles that makes round of the same
6x6 block area that we targeted for our walk ing experiments.
The average speed of the vehicle was 25 mil es/hr. The cov-
erage holes detected at such vehicular speeds is shown in
Figure 12. As shown in the ¯g ure, the holes detected by the
clients at vehicular speeds are much larger then the holes
detected during earli er client measurements. In fact, we ob-
serve that about 65 % of the tota l path fall s under the cate-
gory of coverage holesat vehicular speeds. It is important to
note that the observations would have beenvery di± cult to
make wit hout the help of actual measurements on the client
side. We believe that such measurements can provide signif-
icant corrective feedback to the operator regarding coverage
holes, hich are much more accurate then the propagatio n
models used in current mesh cont roll ers.

5.2 Client Performance
In order to assess the performance of end users in the

mesh deployment, we undertake targeted active measure-
ments, where we randomly sample 100 locatio ns in the mesh
coverage area and perform bandwidth tests to determine
the achievable th roughput at that lo catio n. At each sam-
pled location, we associate to the MA P wit h strongest signal
strength and run TCP iperf[14] from the client to the mesh
cont rol ler. We use TCP as it is the dominant tra± c type in
mesh networks, and secondly it is lessint rusive then a UDP
test, which can completely satu rate the lin k and negat ively
impact other client in the mesh. We perform th ree itera-
tio ns of 100 seconds each. Figure 15 shows the distrib utio n
of TCP th roughput at the sampled locatio ns. As shown in
the ¯g ure, the measured th roughput closely matches a uni-
form distri butio n, with about 10% of the clients achieving
lessthen 0.2 Mbps and 80% of the client achieve thro ughput
less than 1 Mbps. Th is upper limi t on client th roughput is
expected in view of the Service Level Agreement (SLA) of
MadMesh, which advert ises a 1 Mbps service to the clients.

Furth er, to understand the impact of hop count , channel
congestion and RSSI on client 's th roughput, we perform tar-
geted experiments on one stable 6 hop tree (shown in Figure
13), compri sing of eight MAP s and a RAP. MA Ps one, two

Fig ur e 13: Tre e for our targe te d experi me nts to un-
der sta nd the impac t of RSSI , hop cou nt, chann el
congest io n on cl ient perf orma nce.

and three shown in Figure 13 are located on a busy main
road of the city that has substantia l interference from other
wirelesshotspots in the area. On the other hand, MA Ps four
to eight are located inside the neighborhood areas, experi-
encing relat ively less interference. We choose a minimall y
loaded tree, so that our experiments are not impacted by
the presence of other MadMeshusers on the same tree. Our
result s from the act ive measurements on chosentree is sum-
marized in Table 1. The main observatio ns are as follows:

² In all experiments, maximum client thro ughput is lim -
ited to 1 Mbps, which indicates that bandwidth shap-
ing may be performed by the mesh operator for meet-
ing the SLA.

² Client th roughput remains stable with RSSI to a point ,
beyond which it dropsquickly. Sinceper client thro ugh-
put is limi ted by the operator, higher RSSI, which
can sustain higher data rat e, does not improve client
th roughput.

² Ext ernal interference from other wirelesssources has
a signi¯ cant impact on the client th roughput beyond
the ¯rst hop.

² Thro ughput unfairness is observed when clients at dif-
ferent hops of the same tree are acti vated simult ane-
ously, with clientsat higher hopsachieving low th rough-
put share.

We now describ e each observatio n in detail.

Impactof hopcount
As shown in Table 1, there is no strong correlati on between
the th roughput and the hop count . Di®erent th roughput is
seenat clients associated to MA Ps at the same hop count in
the tree. As shown in table 1, th roughput of 0.3Mbps and
0.92Mbps is observed on two di®erent MA Ps at a hop count
of th ree. Similarl y, a th roughput of 0.91Mbps and 0.6 Mbps
is observed on MA Ps at a hop count of ¯v e. Thi s variation in
th roughput at di®erent MAP s with same hop count can be
attri buted to channel congesti on on their accesssides which
we discuss next.

Impactof ChannelCongestion
Presence of tra± c due to other 802.11b/g sources can have
a great impact on the th roughput observed at each hop. We



Fi gu re 12: Ac tu al net work coverag e as observ ed b y cli ent s, in areas esti mat ed to be perf ectl y covere d b y
inf ras tru cture -side manage me nt to ols , that rely on prop agati on mo del s.

estimate the channel congestio n by monit ori ng the tra± c on
each hop whi le doing the TCP iperf experiments. Table 1
shows that the thro ughput achieved on MA Ps at the same
hops is well correlated wit h the channel congestion at their
respective access sides. We furt her observe that channel
congestion doesnot have any impact on client connected to
the ¯rs t hop. Th is is because of the lessernumber of lin ks
theseclients have to contend for on the backbone. However
if the channel congesti on is relat ively high, th is observati on
might not hold true.

Impactof SharedCongestion
In another set of experimentswestudy the impact on th rough-
put of clients at a lower hop count in the presence of other
clients in the tree. We ¯rs t associate only one client to a
MA P at a higher hop count in the tree and calculate its
TCP th roughput using iperf as shown in ¯g ure 14(a). In
order to seethe e®ect on th roughput due to ot her clients in
the tree, we associate another client at a lower hop count on
the same tree and start running TCP iperf, shown in ¯g ure
14(b). As shown in the ¯g ure, on running the second client
the th roughput of the ¯rs t client suddenly drops from 0.98
Mbps to 0.43 Mbps. Thi s is due to shared channel congestio n
as discussed in [19], when mult iple clients try to contend for
the same backbone path . Thi s can have a great impact on
the clients connected to MAP s at a higher hop count , which
can su®er from increased th roughput degradation with the
increase in clients at lower hops (closer to RAP) .

Summary : In Madcity mesh network, because of band-
width shaping policies enforced, hop count did not really
seem to be the bott leneck for performance. However, th is
is mostly tru e in absence of shared congestion; that is in
presence of mult iple °ows sharing the same backbone path ,
the th roughput of higher hop-count routes would be lower.
Hence alt hough the penalty of using higher hop counts is
diminished due to bandwidth shaping, choosing a lower hop
path is stil l bett er due to the possibil it y of shared congestio n
in the path.

6. ON MESH USAGE CHARACTERIZA TION
We now answer one of the most basic questions about the

mesh network { how is the network being used? Speci¯ call y,
we want to know the following:

Fig ur e 14: E®ect of share d congest io n on a cl ient as-
sociat ed to a MA P at hop 4. In isol ati on it achi eves
close to 1 Mbps , but whe n ano the r cli ent at hop 3
is acti vat ed, its thro ughp ut drop s to 0.43 Mbp s.

² How many clients are using the network? How does
their number vary across ti me?

² How are the clients distri buted across the coverage
area?

² What is average number of clients connected to each
MA P? Are there any popular MA Ps?

² How doesclient distri buti on vary acrossdi®erent hops?

Clientdistributionacrosstime
Figure 16 shows the average number of clients per hour con-
nected to the network over th is 2 week period. The error
bars show the 95% con¯d ence lim it s. We observe that the
average number of clients varied considerably acrossthe du-
rat ion of the day, with most number of clients being con-
nected at around 10 PM and the least number of clients at
5 AM. We note that the observed usage pattern is unique
to th is mesh network as it is mostl y accessed by the users
from their residences. Thi s is apparent from the fact that



MAP Hop Count Avg. RSSI. Av g. Chnl. Ut il. TCP Thrp t . TCP loss rate (M bps) TCP RTT (msec)
Index (M AP to client)

1 1 34 0.28 .96 0.021 111§ 98.4
2 2 33 0.27 0.4 0.092 158§ 115
3 3 35 0.20 0.3 0.087 258.2§ 168.7
4 3 40 0.09 .92 0.007 192.5§ 91.9
5 4 33 0.10 0.7 0.021 252.2 § 126.4
6 5 32 0.05 .91 0.007 215 § 73
7 6 37 0.09 0.5 0.030 208.2 § 117.5
8 5 33 0.11 0.6 0.015 278.7§ 127.4

Tab le 1: Exp erime ntal resul ts fo r the tree unde r study . Con ¯de nce in t erv als for RSSI and throu ghpu t
is small and omi tte d for brev i t y
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Fi gu re 15: CD F of throu ghput mea sure d throu gh
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covera ge area of MadM esh. Throu ghpu t is almo st
uni fo rml y dis tri but ed, with maxim um thro ughp ut
bein g cl ipp ed aroun d 1.2 Mbp s

number of clients starts increasing from around 6 AM , re-
mains steady th roughout the afternoon and then again in-
creases from around 6 PM as the users start returning to
their homes. It reaches its peak around 10 PM when most
of users are their homes and starts tai li ng o® as the night
progresses. We observe that durin g the busiest hour around
627 clients were connected to the network wit h around 498
being connected to the network on average.

ClientdistributionacrosstheMAPs
The average number of clients connected to a MA P gives a
measure of the amount of load experienced by that MA P.
The client distri butio n across the MA Ps also helps us iden-
tify `client hotspots' and accordingly deploy more MA Ps in
that region to evenly dist rib ute the load across the access
points. In Figure 17 we plot the number of clients connected
to each MA P averaged over the period of study. The MA Ps
are sorted in the decreasing order of the average number of
clients connected to them. We observe that certain MA Ps
are much more popular when compared to the others, wit h
the average varyi ng from around 7 to lessthan 1. Th e ¯g ure
also shows the 25, 50, 75 and 95 percent il esof the number of
the clients and the corresponding number of MAP s to which
theseclients are connected. For example, one can seethat
around 50% of the clients are connected to 40 most popu-
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Fig ur e 16: Dis tri bu ti on of the averag e num ber of
cl ients con necte d to the net work acro ss time .

lar MA Ps which account for only 20% of total the deployed
MA Ps. We also ¯n d that many of the MA Ps are light ly
loaded in the mesh network wit h around 110 MA Ps having
on an average lessthan one user connected to them.

Spatialdistributionof clients
In Figure 2, we show the spatia l distrib ut ion of the clients
using the mesh network where each MA P is represented by
a circle. The sizeof the circle represents the average number
of clients connected to the MA P. We can clearly observe the
uneven distri buti on of the clients across the coverage area.
More important ly, we note that the most of the popular
MA Ps (th e MAP s wit h higher number of clients connected
to them on an average) are concent rated in the area depicted
which is a popular area near the downtown. Furt her, in thi s
region we can observe the formatio n of a small number of
clusters in the areas depicted by B2, B3 and B4. We note
that there are several student dormi tori es in the area B2
which can explain it s populari ty. Whi le B3 is very popular
among the people with a high number of co®ee shops and
restaurants concentra ted in that area, B4 is popular because
of an open park where student acti vi ty is prominent .

Hopcountandnumberof clients
The distri butio n of the number of clients acrossthe di®erent
hops of a network informs us about how good the deploy-
ment is. In a well planned deployment , one can expect to
seemost of the clients connected to network to be with in a
few hops. If there are popular MAP s at a higher hop count,
network planners might deploy a RAP in the area in order
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Fi gu re 17: Dis tri buti on of the averag e num ber of
cl ients conn ecte d to the net work acro ss di® er ent
MA Ps.

to reduce the hop count . Figure 9 shows the distrib ut ion of
the clients across di®erent hops of the deployed mesh net-
work. We observe that around 15%of the clients are direct ly
connected to the RAPs and amongst the other MAP s, the
number of clients decrease with increase in the hopcount.
In part icular, we observe that around 85% of the clients are
connected to the network wit hin 3 hops. We note that th is
distrib utio n is similar to the distrib ut ion of MA Ps (F igure
8) shown earlier because a large fracti on of the deployed
MA Ps are also at a lower hop count .

Distributionof MAPswith highpacket losses
We observed that some of the MA Ps had experienced a
packet error rate of more than 35%. On furt her investi-
gatio n, we observed that most of these MA Ps had a very
low number of clients connected to them. We also observed
that the MA Ps with similar packet error rates are clustered
together represent ing the regions of high and low interfer-
ence on the accesslin ks. For example, we observe that the
MA Ps in the area B4 experience very low packet lossesas
they are deployed in open park. On the other hand, the
MA Ps wit h higher packet error rates are clustered in near
B3 where there are other WiFi networks causing interfer-
ence.

7. RELATED WORK
In th is secti on we present a summary of previous work

being done on the study of wirelessnetwork deployments.
A substantia l body of research has already beenconducted

on evaluati on of the performance characteristi cs of wireless
networks. Studies report ed in [20, 21] ut ili ze SNMP tra ces
to understand the performance of wirelessnetworks. Specif-
ically, Kot z et. al. [21, 20] present a comprehensive study of
the usage patterns (appli cat ion populari ty, temporal varia-
tio n in ut il izatio n etc.), of a campus wide WLA N network.
Aguayo et. al report their ¯n dings on the lin k level charac-
teri stics of an 802.11b rooftop based mesh network in [11].
The network is deployed in a urban city. Thei r study focuses
on the lin k level characterist ics of the deployment. In con-
tra st, we present results on the quali ty of the deployment
and the applicatio n level performance of our network along
wit h lin k level characteristics of the network.

Chebrolu et. al. [12] and Sheth et. al [9] also study the
lin k level characterist ics of outdoor mesh networks, however

their work is appli cable to rura l settings. Our study was
done on a commercial meshwhi le all of the above menti oned
studies were conducted on custom testbeds buil t explicit ly
for experimentati on.

Th e work by Knig ht ly et. al report s a measurement study
of a mesh network deployment in [9] and highlights the im-
port ance of measurements in accurately planning and pro-
visioning mesh networks. Whil e their deployment is has a
two-ti er architecture as well, their deployment operates ex-
clusively in 2.4 GHz setti ngs while ours operates in both 2.4
GHz and 5 GHz. Also, the span of MadMesh network (250
nodes) is far bigger than their deployment (18 nodes). We
summari ze and contra st the our measurement study with
pri or work on mesh network deployments in Table 2. As
can be seenfrom the table, the unique features of our study
are, a) our deployment has a far bigger scale in terms of
nodes deployed b) use of two type of RF bands for network
operation (802.11 a & b), and c) the commercial nature of
the MadMesh deployment .

At the ti me of publicatio n, we became aware of two in-
dependent piecesof work performed concurrent ly with ours,
that evaluated di®erent aspects of a metropolitan-area mesh
network whose scale was similar to th is study. Th e ¯rst of
them is work by Kn ight ly et. al [22] that estimated the
coverage properties of the Google WiF i mesh network de-
ployed in and around downtown Mountai n View, CA. The
other is work by Afanasyev et. al [23] that observes the us-
age characteristi cs for di®erent user device classes(such as
smart phones, statio nary modems, etc.) in the same Google
WiF i mesh, focusing on applicatio n workl oads, mobili ty pat -
terns, and device populari ty at di®erent lo catio ns. Both
these e®ort s complement our measurement study, and to-
gether help provide a greater understanding of di®erent as-
pects of a metro-area WiFi mesh.

8. CONCLUSION
Th is paper presents the ¯rs t systemati c study of a com-

mercial grade wirelessmesh network deployed in an urban
setting. We ¯n d that the planned part of the network (back-
bone) is performing far better than the access side. This dis-
parit y in performance is mostly a result of unmit igated in-
terference in 2.4 GHz spectrum in urban setti ngs. Th e study
also presents a set of interesti ng stat isti cs on the actual us-
age of the meshnetwork, which would help in customizati on
of fut ure deployments to make them more pro¯ table. We
also present a set of lessons which if followed would result
in more robust deployments and stabler rout ing algorithms
in futu re.

Finall y, the study th rows open a set of immediat e next
steps that need to be carefull y addressedin real deployments
to make mesh networks viable. Some examples include (i)
a bett er architectural design to mit igate interference on the
client access lin k, (ii) design of mechanisms to detect topol-
ogy robustness in a global sense, (ii i) strategies to mit igate
route °apping, as common metri cs that determi ne routi ng
changes frequent ly, and (iv) ut il izatio n of client feedback in
management of these networks.
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No des (Sq. Km) leng th usage tec hno logy

Roofnet [11] » 50 4 Mostly Testbed Omni antennas Urban Single Tier
(Rooftop mesh) < 500 m on rooftops 802.11b

DGP [12] 17 80 km Up to few tens Testbed High gain Rural Single Tier
(Long-distance (point- to- of kms dirn l. antennas 802.11b

Mesh) to-point) on tall towers
TFA@Rice [9] 18 3 Mostly Non Omni antennas Urban Two tier

(Sub-Urban Mesh) < 500 m commercial on poles 802.11b
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