Idea: A System for Efficient Failure Management in Smart
loT Environments:

Palanivel Kodeswaran
IBM Research
Bangalore, KA, India
Email: palankod@in.ibm.com

Sayandeep Sen
IBM Research
Bangalore, KA, India
Email: sayandes@in.ibm.com

ABSTRACT

IoT enabled smart environments are expected to proliferate signif-
icantly in the near future, particularly in the context of monitor-
ing services for wellness living, patient healthcare and elderly care.
Timely maintenance of failed sensors is of critical importance in
such deployments to ensure minimal disruption to monitoring ser-
vices. However, maintenance of large and geographically spread
deployments can be a significant challenge. We present ldea that
significantly increases the time-before-repair for a smart home de-
ployment, thereby reducing the maintenance overhead. Specifi-
cally, our approach leverages the facts that (a) there is inherent sen-
sor redundancy when combinations of sensors monitor activities of
daily living (ADLs) in smart environments, and (b) the impact of
each sensor failure depends on the activities being monitored and
the functional redundancy afforded by rest of the heterogeneous
sensors available for detecting the activities. Consequently, ldea
identifies homes that need to be fixed based on expected degra-
dation in ADL detection performance, and optimizes maintenance
scheduling accordingly. We demonstrate that our approach leads to
3-40 times fewer maintenance personnel than a scheme in which
failed sensors are fixed without considering their impact.

1. INTRODUCTION

There is a significant proliferation of /oT enabled smart home
products ranging from home security, environmental controls such
as temperature, light, humidity etc, to voice activated device con-
trols. Of particular interest, are applications in the health care do-
main that enable remote monitoring of patients, particularly the el-
derly. Industry projections [1] show that elderly-care products are
expected to grow to $10.3 billion in 2020 globally, with $2 bil-
lion for elderly safety monitoring in the US and European mar-
kets. A number of medical studies [2-6] show that continuously
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Figure 1: Sensors triggered for various activities.

monitoring Activities of Daily Living or ADLS such as Cooking,
Eating, Showering, Taking Pills etc. is of prime impor-
tance in geriatric care as they allow for the early detection of the on-
set of diseases such as Alzheimer’s, Dementia, Mild Cognitive Im-
pairment, etc. For instance, caregivers of patients with Alzheimer’s
disease rank tracking and identifying activities of daily living of the
patient at the top of their list of needs for health assistance [2].

Automated detection of an ADL is achieved by learning patterns
of sensors that are triggered in the smart home when specific ADLs
are performed. For example, in Figure 1, we depict the kitchen of a
smart home that is instrumented with sensors to monitor the open-
ing and closing of appliances such as microwave, fridge and mul-
tiple cabinets, etc. In the above home a Drinking ADL will be
detected by monitoring the {Cups_Cupboard, Fridge} sensor
events. For such residents, it is envisioned that a service provider
will instrument a smart home and assist care givers by offering a
service to remotely monitor the health of its residents by accurately
detecting the ADLs being undertaken in the home.

Given the importance of health monitoring applications, it is crit-
ical to continuously monitor and maintain functionality of the loT
deployment '. Maintaining sensors by elderly residents is infea-
sible due to the miniature sizes as well as placement of these sen-

'"In this paper we consider activity detection for remote
health/wellness monitoring as the motivating use case. However,
the designed system can be used for other remote monitoring ap-
plications such as home security, home activity monitoring with
baby-sitters, etc.



Table 1: Datasets from IoT enabled Homes

sors [7]. Hence, we expect that the responsibility of maintaining the
sensors, i.e. detecting and repairing failed sensors at the earliest to
ensure that the monitoring applications continue to be effective will
rest upon the service provider.

On the other hand, from a service provider’s perspective, the
maintenance of large scale sensor deployments becomes a signifi-
cant challenge due to the high labor costs involved in monitoring
and repairing sensors that have a non-zero probability of failing
across reasonably large number of geographically spread homes.
Thus there is an inherent tradeoff between maintaining acceptable
application QoS and minimizing operational costs for the service
provider.

We note that the standard approach of deploying redundant sen-
sors to minimize maintenance load explored in the context of ho-
mogeneous sensors [8—15] is not directly applicable in the setting
described above. This is because smart home deployments combine
information from multiple heterogeneous sensors such as contact,
motion and temperature sensors to detect ADLs. Similarly, as ex-
plained in Section 2, deploying multiple redundant sensors is not
sufficient as it only improves failure time logarithmically and faces
operational challenges in smart home environments.

Our approach for mitigating the maintenance load leverages the
observation that a number of sensors are triggered when an ADL
is performed by a given user, implying some sensors could be func-
tionally redundant for the purpose of detecting the activity from
sensor firings. To elucidate, in Figure 1, and ADL detector will de-
tect Prepare_Dinner ADL when at 7PM, events of {Fridge,
Freezer, Grocery,Plates, Pans} sensors are observed.

Note that even if the Grocery_Cupboard sensor fails to trig-
ger, the triggering of other sensors can still detect the occurrence
of Prepare_Dinner with reasonable accuracy. Thus, one of the
key aspects of this work is to quantify the functional redundancies
present among heterogeneous sensors for the task of ADL detec-
tion.

To this end, we build a system for Integrated ADL detection,
estimation of functional redundancy and alerting for mainte-
nance visit (Idea). The Idea system tolerates a number of sensor
failures by leveraging the functional redundancy among heteroge-
neous sensors, and minimizes the degradation in ADL detection
performance in the presence of smart home sensor failures. The
desired consequence of our design is the significant reduction in
maintenance effort as no maintenance visits are required as long
as the ADL detection accuracy is maintained above a certain (user
specified) threshold.

Contributions

Idea builds on prior work on accurate ADL detection [3-6, 18—
26] by explicitly quantifying the functional redundancies available
among sensors in smart homes to enable robust detection in the
presence of sensor failures. It also advances the nascent area of
IoT deployment maintenance [27, 28] by presenting the first joint

Label | Name # Dur. | #ADL # Sensor technique for achieving systematic quantification of functional re-
A KasterenA [16] ?ser g;ays) (lizz(kzcgg\;lty) (1421;:2‘78([)1 3 dundancy among heterogeneou; sensors and assessment of impact
) KasterenB [16] | 1 5 35 (172) 37 (22595) of sensor failure on ADL detection performance.

kC KasterenC [16] | 1 9 27 (254) 23 (39861) In summary, we make the following contributions.

?; ?;;t:g_[llg ][17] é ;ig ; Egﬂg ;go(igﬁig)l) e We present |[dea— the first integrated ADL detector that ex-
T3 Twor2009 [17] | 2 57 T4 (499) 100 (136504) tracts functional redundancy among sensors to provide robust
T2 TworSmr [17] 2 63 8 (1016) 100 (366075) ADL detection in the presence of sensor failures.

Mul AdINorm [17] 24 84 5 (120) 39 (6425)

e We propose a novel method based on rarity estimation to
leverage the extracted functional redundancies to identify sen-
sor failures (Section 3.4).

e We propose a method that leverages ldea’s rule based design
to estimate the impact of sensor failures on ADL detection
(Section 3.3).

e We design and implement a cloud based maintenance schedul-
ing technique that significantly reduces (3-40 times) mainte-
nance cost by increasing the time before repair for homes
with failures.

e We present a thorough evaluation with publicly available datasets

and realistic sensor failure models, and show that I|dea’s ADL
detection method is more robust to failures than other ap-
proaches to ADL detection, in turn, leading to significant
increase in the time to send repair mechanics to individual
homes. Specifically, based on a representative home distri-
bution in and around Manhattan, New York region, we show
that |dea reduces the maintenance personnel overhead by a
factor of 3-40 times, and increases average per-home inter-
visit times from 18 to 211 days, minimizing user annoyance
(Section 4).

Road map

The rest of the paper is organized as follows. In Section 2 we
benchmark the magnitude of sensor failures for large sensor de-
ployments, thus motivating the need for ldea. We also describe
the intuition leveraged by ldea to reduce maintenance overhead.
In Section 3, we describe the various components of ldea. We
evaluate ldea’s performance in Section 4, describe related work in
Section 5 and finally conclude in Section 6.

2. MOTIVATION

Our goal in this work is to design a solution for the efficient
maintenance of IoT sensors in smart homes to ensure disruption
free continuous remote monitoring of ADLs. We begin with a brief
description of the eight ADL datasets analyzed as part of our work.
The datasets listed in Table 1 consist of time stamped sensor events
that are generated when the variety of contact, temperature and mo-
tion sensors are triggered when the user undertakes various ADLs
such as sleeping, eating, preparing meals, taking medicines, per-
sonal hygiene etc. 2. The eight datasets together capture the het-
erogeneity typically seen across different smart home deployments
in terms of the type of sensors deployed as well as the number of
sensors, ranging between 14 and 99.

To motivate the need for designing efficient solutions for the loT
sensor maintenance problem, we carry out a modeling study for a
representative deployment of 1000 homes, with topology shown in
Figure 2 with a sensor configuration similar to the smart home from
KasterenA dataset mentioned in Table 1 over a period of two years.
‘We model the failure of each sensor using a Weibull distribution (a

*Refer papers cited in Table 1 for more detailed description of
ADLSs monitored in each home.
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Figure 2: Sensor Layout in KasterenA dataset

common choice of modeling failure of sensors) [29-31] with mean
time to failure (MTTF) set to 1.0 years. Analytical calculations
show that increasing the number of homes and sensors leads to an
exponential increase in the number of sensor failures (results omit-
ted for the sake of brevity). This exponential increase results in
significantly high maintenance costs (operational expenditure) for
the provider as they now need to devote a significant amount of
manpower simply to monitor and service the deployment.

As mentioned in Section 1, our approach for mitigating the main-
tenance load leverages the key observation that a number of sensors
are triggered when an ADL is performed by a given user, which
would make a few sensors redundant for detecting the activity. To
validate the above observation, in Figure 3 we plot the CDF of
the number of sensors that are triggered by each ADL across all
datasets in Table 1. From the figure, we see that fewer than 5%
of ADLs trigger only one sensor; while for 50% of the ADLs, up
to ten sensors are triggered per ADL. Intuitively, we can exploit
the above functional redundancy amongst heterogeneous sensors,
to delay the time to repair sensor failures in a home. As mentioned
in Section 1, the task of ADL detection involves learning the sen-
sor (and their temporal) activation patterns corresponding to the
ADLs and then detecting the underlying activity based on the set
of sensor events seen. However, note that ADL detection is not
straightforward. For instance, a similar set of sensors are triggered
by different ADLs as seen in the case of Prepare_Breakfast
and Prepare_Dinner ADLs. Further, humans exhibit signif-
icant variability while performing the same ADL across different
days, in terms of the set of sensors used as well as their sequence.
Additionally, based on the user’s behavioral patterns, the sensors
co-relate differently for different ADLs, thereby implying that the
set of redundant sensors must be learnt separately on a per ADL
basis.

Hence, in this work we design a system called ldea, which (a)
learns and leverages the functional redundancies among sensors
leading to robust ADL detection in the presence of sensor failures
(b) identifies when a sensor has failed, and (c) determines the im-
pact of a failed sensor on the detection performance of all ADLs.
Using these steps, Idea can significantly delay the Time-before-
repair for a home resulting in significant savings in deployment
maintenance costs.

Note that the alternate approach to reducing maintenance costs
by deploying duplicate sensors beforehand as a way to achieve re-
dundancy will not work due to the following reasons. First, adding
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Figure 3: CDF of count of distinct sensors which trig-
gered at least once for an ADL across all datasets in
Table 1.

’n’ sensors will improve redundancy by only log(n). We validated
this observation using a tool available at [32]. Second, based on
observations made by authors in [7], operational problems in smart
homes such as limited number of power sockets and aesthetics also
restrict the number of sensors that can be deployed in any home.

3. Idea SYSTEM DESIGN

In this section, we describe the design of Idea. At a high level,
the functionality of Idea is divided into four key components (Fig-
ure 4): First, Idea includes an ADL Signature Generation phase
to bootstrap the system with sensor events that are annotated with
ADL labels, such that all possible ways of performing ADLs in the
given home are captured at a central /oT gateway. The annotations
can be done either generically for common human activities or on
an application-domain basis by subject matter experts from the IoT
service enterprise, or by competent residents of smart homes. Sec-
ond, Idea assesses the impact of different sensor failures on the
accuracy of detecting ADLs needed by the activity monitoring ap-
plications that run in the home. Third, as the system continues to
run, ldea performs continuous ADL detection, and sensor failure
detection, and raises an alert to the cloud when a sensor fails. Fi-
nally, on receiving sensor failure alerts, and determining the impact
of the corresponding failure on ADL detection performance in the
home, the maintenance scheduler on the cloud schedules mainte-
nance visits for homes where critical sensors have failed®.

3.1 ADL Signature Generation

The goal of the ADL signature generation component is to learn
the sensory-temporal signatures of the various ADLs from anno-
tated sensor events collected during the training phase. During the
training phase, whenever the user performs an ADL, the generated
set of sensor events are collected and annotated in the form of time-
stamped event streams at the local gateway.

Sensory Signature Extraction

The key intuition behind sensory signature extraction is to iden-
tify frequently occurring subsets of sensor events across activi-

*For simplicity of description of ldea, we assume that the behavior
of the resident exhibited in the learning phase does not change after
learning. Since users’ activity patterns change in reality, we note
that the system can locally re-learn the ADLs when the system de-
tects that significant behavioral change might have happened. We
do not discuss this extension in the paper.
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Figure 4: Solution Architecture of Idea

ties that are indicative of an underlying ADL. For example, in the
home shown in Figure 2, when an elderly resident uses the toi-
let, the Toilet Door, Bathroom Door and Flush sensors
are mostly triggered. Due to the inherent variability exhibited by
humans regarding the set of sensors used and their corresponding
sequences while performing ADLs, we focus on extracting fre-
quent sensor subsets rather than sensor sequences. We employ a
Frequent itemset mining (FIM) approach [33] for identifying fre-
quently occurring subsets of sensors that are indicative of an ADL.
The FIM algorithm takes as input a set of activities and the corre-
sponding set of sensors that were triggered during the activity, and
outputs frequently occurring subsets of sensors in the form of rules
for each ADL. For example, we obtain the following rule for the
Prepare_Breakfast ADL
(R1)Fridge, Groceries_Cbrd,Plates_Cbrd =
Prepare_Breakfast<support:0.05,confidence:0.7>
The rule attributes of R1 provide various measures of the fre-
quency and predictive power of the rule. In particular, the support
of a sensor subset X, Supp(X) is defined as the proportion of ac-
tivities in the training dataset that contain the sensor subset X. The
predictive power of a rule is reflected in its confidence value, which
for a given association rule of the form A = O, is defined as
Conf(A = O) = Supp(AUO)/Supp(A).
Note that FIM generates, not one, but a set of rules for a given
ADL based on the number of sensors that are typically triggered
by the ADL. For example, the following rules are obtained for Pre-

pare_Breakfast ADL in the KasterenA home as shown in Figure 2,
(R2) Groceries_Cbrd, Plates_Cbrd =
Prepare_Breakfast

(R3) Fridge, Groceries_Cbrd = Prepare_Breakfast
(R4) Groceries_Cbrd = Prepare_Breakfast

In general, the number of rules generated for an ADL is a func-
tion of the redundancy exhibited by the triggered sensors. For
example, in the KasterenA dataset, there is a single rule for the
leave_house ADL which triggers a single sensor while the
Prepare_Dinner ADL which triggers six sensors includes eigh-
teen rules. By generating multiple association rules for each ADL,
Idea is able to identify (heterogeneous) sensor subsets that are
strongly co-related with each other on a per ADL basis, thus provid-
ing the provide functional redundancy for the task of detecting the
ADL. For example, the sensor pair [Freezer, Plates_Cbrd]
is strongly co-related with each other when occurring as part of
Prepare_Dinner ADL, where as the sensor pair shows lower
co-relation while occurring as part of Prepare_Breakfast ADL.
This implies that the Freezer and Plates_Cbrd sensor pair
are redundant with respect to Prepare_Dinner and a single sen-
sor may be sufficient for ADL detection even if the other sensor
fails. The above property holds for all rules for a given ADL that
have the same support, but the set of sensors in one rule is a proper
subset of the other. Thus Idea is able to systematically discover
redundancies among sensors in ADL detection, using multiple as-

sociation rules which in turn helps in estimating the importance of
a sensor and in detecting sensor failures as described later.

Temporal Signature Extraction

We observe in the datasets that several ADLs (especially the related
ones) trigger the same set of sensors and differ only in their tempo-
ral features such as time(hour) of day of occurrence and duration.
For example, Prepare_Breakfast and Prepare_Dinner
use a similar set of sensors as shown in Figure 2 while differing
only in their time of day occurrence, peaking at 11 am and 8 pm
respectively. Similarly, both Brushing and Sleeping use the
Toilet door at roughly the same time of day around 10 PM, but sig-
nificantly differ in the activity durations ranging from one minute
for Brushing to about six hours for Sleeping. This indicates
that temporal features such as time-of-day of occurrence as well
as activity duration play a significant role in disambiguating ADLs
when the sensory signatures alone are not discriminative enough,
either due to sensor overlap among ADLs or due to the failure of
sensors. Consequently, for each rule, ldea identifies the set of ac-
tivities in the training set that match the rule, and determine the
time of day of occurrence as well as duration of the activity. Based
on the collected samples across days, Idea then estimates the most
probable time of day of occurrence as well as duration based on the
modal value and standard deviations of the samples.

At the end of this step, ldea generates for each ADL a set of
sensory-temporal signatures of the form < S;, S;...Sn,
Mean_Time_of_Day, Mean_Duration = ADL >.

3.2 ADL Detection

Once the ADL signatures are generated, ldea processes the sen-
sor streams collected at the IoT gateway at run-time to detect ADLs
based on matching the incoming sensor stream against the sensory
temporal signatures learnt in the previous step. We assume that
the incoming sensor event stream is cut into activities using an
event segmentation model [22, 34, 35] such that each activity, T',
potentially corresponds to an underlying ADL undertaken by a sin-
gle user. The detection process consists of several scorer modules,
each extracting specific features from the activity 7" and scoring the
various ADLs that the activity could potentially map to. For each
ADLy, we denote the set of rules that are used to detect the AD Ly,
as Ry . ldea computes a closeness of match for the incoming ac-
tivity with each rule in the rule base to obtain the following set of
scores.

Sensor Scoring: We define that an activity 7" matches a rule if the
set of sensors in the rule is a subset of the sensors in the activity.
Let R(T') denote the set of rules matching activity 7. For each
ADLy € Ry(T), |dea computes the sensory score of T as the
sum of the confidences of the matching rules multiplied by the prior
probability of occurrence of the ADLj, that is estimated from the
training dataset. Note that the above formulation handles the case
where the same sensor set is used in multiple ADLs. In these cases,
the confidence would be higher for the more frequently occurring
ADL such as Drinking compared to the less frequent one such
as Prepare_Breakfast, and consequently, the sensory score
for the more frequent ADL would be higher compared to the less
frequent ADL.

Temporal Scoring: Idea next computes the temporal scores by
matching the activity 7" against the temporal features viz. time of
day and duration of the rule set. We say that an activity temporally
matches a temporal feature of a rule if it lies within a threshold k
number of standard deviations from the modal value of the rule’s
feature. By experimenting with multiple datasets, we determine
that k£ = 1.5 yields the best accuracy. For each rule R;, we extract



temporal features and denote the modal hour of day as T'od(R;)
and average duration of the ADL as Dur(R;). For example, in
KasterenA dataset, the modal ToD and duration for Brushing
ADL are 10 PM and one minute respectively. For a given input
activity 7', we compute the hour of day (ToD), by extracting the
hour from the timestamp of the first event in 7', and duration as
the time elapsed between the first and last sensor events. After
identifying the set of temporally matching rules, Idea computes
the time of day score as the sum of the confidences of the matching
rules. Similarly, the duration score is computed as the sum of the
confidences of the rules matching the duration.

Idea computes the composite scores for each AD Ly, as a weighted

sum of the individual scores. Empirically, we observe that temporal
features possess a stronger discriminating power in detecting ADLs
compared to sensor usage, and consequently we set higher weights
for the temporal scores compared to the sensor score weight (ratio
of 1000:1). Finally, Idea assigns the ADL label corresponding to
the highest composite score to the input activity.

3.3 Impact Estimation

The goal of impact estimation is to identify critical sensors for
each ADL. We define a sensor as critical for a given ADL if the
sensor is necessary to maintain the detection accuracy above a con-
figured threshold. When a critical sensor for an ADL fails, there
are two possibilities that arise for the corresponding input activi-
ties: (1) no ADL is detected, and (2) the ADL is misclassified as
another ADL. The goal of Idea is to minimize both possibilities.

The impact estimation component takes as input the annotated
event stream collected during the training phase along with the sen-
sory temporal signatures learnt in Section 3.1. From the annotated
data, Idea estimates the functional redundancy, for ADL detection,
among sensor patterns that are triggered by the ADL as well as
their corresponding proportions. For example, in the KasterenA
dataset, the following subset of sensor patterns are triggered by the
Prepare_Breakfast ADL in the corresponding proportions
{Fridge, Groceries_Cbrd, Plates_Cbrd} = 0.05,
{Groceries_Cbrd, Plates_Cbrd} = 0.05,

{Fridge, Plates_Cbrd} = 0.06.

For a given [sensor, ADL] pair, Idea estimates the impact of
sensor failure as follows. In the first step, ldea determines if the
sensor is applicable for the ADL by checking if any of the sensory
signatures for the ADL include the sensor. If no such signature
exists, the impact is determined to be zero, as the sensor is not used
for recognition of the given ADL; |dea also classifies the sensor
as non-critical. In the above example, a Toilet Flush sensor
is non-critical for Prepare_Breakfast as it is not part of any
sensory signature for Prepare_Breakfast. In the second step,
Idea determines if there are other sensors that can be used to detect
the ADL. This is achieved by scanning the rule base to check if
there are any sensory signatures for the ADL that do no include the
given sensor. If no such signature exists, the ADL can no longer
be detected in the absence of the sensor, and Idea classifies the
sensor as critical for the ADL. For example, in KasterenA, only the
Front Door thatis used for detecting the Leave_House ADL,
and in its absence, no Leave_House instance can be detected.

In the third step, l[dea determines if the remaining set of sensors
alone can detect the ADL and estimates the resulting detection ac-
curacy. In this case, ldea estimates the detection accuracy with and
without the sensor and returns the change in the estimated detection
accuracy as the impact of losing the sensor on the ADL.
Estimating Detection Accuracy: Given an ADL, |dea estimates
its detection accuracy by choosing each distinct sensor pattern of
the ADL and estimating its accuracy individually as follows. For a

Algorithm 1: Compute Impact of Sensor loss on an ADL
1 ComputeImpact{ADL,S;.}

2 impact < 0

3 for SensorPattern P € Adl do

4 if S;a € P then proportion < ||P| = ||ADL||

5 noLoss < EstAccuracy(P, ADL)

6 wLoss < EstAccuracy(P — {Sia}, ADL)
7 0 < (noLoss — wLoss)/noLoss

8 impact < impact + proportion X §

9 >

10 end

11 Return tmpact

given sensor pattern and ADL, ldea determines if the rules match-
ing the sensor pattern can accurately detect the ADL. If the sensor
pattern matches only the single given ADL, then ldea assumes all
these instances can be correctly detected. On the other hand, if
the sensor pattern matches multiple ADLs, Idea determines if any
of the other matching ADLs overlaps with the given ADL in the
temporal domain. We define two ADLs to overlap in the temporal
domain if any of their rules have temporal features (time of day or
duration) that are within a threshold number of standard deviations
of each other. In the case of overlapping ADLs, ldea chooses to be
conservative, in estimation of functional redundancy and assumes
all these instances of the ADL will be misclassified, and returns a
detection accuracy of zero. This conservative design enables Idea
to proactively maintain failed sensors, and prevent the application
QoS from falling below the required threshold. Finally, Idea es-
timates the overall detection accuracy for the ADL by summing
the individual estimates of each sensor pattern multiplied by their
corresponding proportion. Algorithm 1 summarizes the impact es-
timation approach. At the end of this step, ldea computes the ag-
gregate impact of a sensor as the sum of the impacts of the sensor
for each individual ADL, and returns critical sensors both on a per
ADL as well as aggregate basis.

Note that for ease of explanation we described impact estimation
for a single sensor failure. However, the same calculation is easily
extendable to estimating the impact of multiple sensor failures by
carrying out the calculations for a set of failed sensors instead of a
single one. We evaluate performance of ldea under multiple sensor
failures in Section 4.

3.4 Sensor Failure Detection

We now describe how Idea detects sensor failures, while con-
tinuously monitoring ADLs in a smart home. Algorithm 2, shows
the three techniques employed by ldea to generate failure alerts
for both periodic and event-driven sensors. The first technique is
for detecting the failure of sensors that send events (of their state)
periodically. For such sensors, ldea raises a failure alert if a thresh-
old amount of time has elapsed since last state report by the sensor.
The second and third techniques are for event-driven sensors, which
generate events only when certain activity is performed. For e.g., a
working Toilet-door contact sensor reports an "open" (or close)
event only when the door is opened (closed). Idea’s task for such
sensors that fail to report data over a period of time, is to differ-
entiate between whether the corresponding ADL did not actually
happen, or the sensor has failed. In our current design, we consider
only fail-stop failures*. The second technique focuses on sensors
that are identified as critical by the impact estimation component

*Our approach, in principle, can be adapted to sensors giving in-
consistent values when they fail, but we did not have sufficient
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Figure 5: Detection of missing Fridge sensor in KasterenA
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in the previous step. In particular, the second technique focuses on
those critical sensors that have a 100% impact on detection accu-
racy, i.e. the ADL can no longer be detected in the absence of the
sensor. We call these sensors grave sensors. For example, the Front
Door sensor is a grave sensor for Leave House ADL in Kaster-
enA dataset. For such sensors, ldea raises a failure alert if the time
elapsed since the last detection of the ADL exceeds a threshold that
is based on previously observed ADL occurrence data.

The third technique is for the rest of the sensors that do not sat-
isfy the criteria of the previous two techniques. The approach for
such sensors, involves computing a rarity score (p). The p essen-
tially, is the probability that the sensor has not triggered, while cer-
tain related activities (ADLs) that the sensor participates in have
been detected by the detector using a combination of other sen-
sors. If the p value falls below a rarity threshold (1) we raise a
sensor failure alert. We now explain alert generation in the context
of an example. In Figure 5, we show the amount of time it will
take to generate an alert for missing Fridge sensor in KasterenA
dataset using occurrence traces of two activities Drinking and
Cooking from KasterenA dataset. On X-axis, we plot the time
since the Fridge sensor stopped generating events. On Y-axis, we
plot p values. The points on each line represent the time when an
ADL was detected since the Fridge failed.

First, for every tuple <s;, ADLx> we calculate the Pr(S7|ADLy),
probability of non-occurrence of s; given ADLy has occurred. Specif-
ically, in KasterenA dataset,

Pr(Fridge|Cooking) = 0.05 and Pr(Fridge|Drinking) = 0.4
respectively. Assuming, that 7 is set to 0.1, we observe that the se-
quence [Drinking, Cooking] was detected over last 6 hours
without a single Fridge event. The p for the above sequence
is defined as Pr(Fridge|Sequence). We observe that the sensor
trigger for a given activity are independent of other activities and
hence,

Pr(Fridge|Sequence)

= Pr(Fridge|Drinking)x Pr(Fridge|Cooking). Note that, for
each detected activity in which an expected (based on prior history)
sensor has not triggered, besides sensor failure, two other possibil-
ities could have happened:

e |dea could had misclassified the activity itself. We counter
this by weighting the probability of non-occurrence of the

datasets to explore this extension.

Algorithm 2: Missing Sensor alert generation

Data: S : Set of all sensors, tmaz :; Maximum time allowed
since last firing, 7 : Rarity threshold
1 Phase 1 - Detect Stoppage of Periodic Sensors
2 forall the sperioaic € S do
3 if Time since last Sperioaic event > tmaqz then
generate Alert(Speriodic) ;
4 end
s Phase 2 - Detect Stoppage for Grave Sensors
6 forall the scritica1 € S do
Data: ADLy for which scritica1 1S critical
7 if Time since last ADLyx > t.mqq then
generateAlert(Scritical) ;

8 end
9 Phase 3 - Detect Stoppage using Rarity Score (p)

10 forall the s; € S — Scritical — Speriodic do
Data: Seq = ADL,,ADL2,...,

sequence of ADLs detected since last s; event
11 p = Pr(s;i|Seq) x Accseq

12 if p < 7 then generateAlert(s;) ;

13 end

sensor for a given activity with the detection accuracy of
the ADL (Accyk). This introduces a slack in alert generation
times. Based on experimentation, ADL detection accuracy,
ACCDrinking = 0.93 and ACCCooking = 0.89.

Hence, p = { Pr(Fridge|Drink) X Accprink} X
{Pr(Fridge|Cook) X Acccoor} = 0.02.

e Or (2), The user behavior has changed and she has stopped
using the specific sensor for conducting an activity. In this
case, we assume that the behavior of the user will not change
for all activities at the same time, and the presence of sen-
sor triggers caused by other activities will inform us that the
sensor has not failed.

Further, we periodically re-learn all the rules to account for behav-
ioral changes > We raise a sensor failure alert when p < 7. Note
that, we track p across multiple activities as it leads to a faster alert
generation than considering a single activity. For example, from
Figure 5, when 7 is set to 0.01 or lower, tracking only Drinking
ADL will generate an alert around the 18 hour mark while tracking
only Cooking will generate an alert after 24 hours.

We define that a false failure alert for a sensor occurs when a
sensor signal is received sometime after Idea raises a failure alert
for the sensor. We note that a high value of 7 will lead to larger
number of false alerts since a a smaller number of ADLs with non-
occurrence of a specific sensor will cause the p to quickly fall below
7. On the other hand a lower 7 reduces false alerts but increases the
alert generation times. We evaluate this tradeoft and present results
in later sections(Section 4.4).

3.5 Maintenance scheduling

The maintenance scheduling component in the cloud collects all
sensor failure alerts across the various homes, and periodically de-
termines the homes that need to be visited by maintenance per-
sonnel, and the order in which the visits should occur. To build the
maintenance schedule, the system expects for each candidate home,

5In a deployment setting, we could also ask the user/maintenance
personnel to provide feedback when false alerts occur to trigger
re-learning of rules.
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Figure 6: ADL Detection accuracy of Idea, NBC and HVMIM for
the KasterenA dataset with no failed sensors.

information on (a) impact of sensor failure, (b) location of the can-
didate home, and c¢) the maximum allowable reduction in accuracy
for each ADL (or aggregated across all ADLs). The maintenance
operation itself is simple and involves replacing all failed sensors
in the home. Note that the main cost in maintenance involves the
mechanic’s hourly billing rate, and hence ldea optimizes for la-
bor cost in the optimization formulation. Assuming that each me-
chanic’s billing rate is same, ldea adds additional constraints on
the maximum distance that can be traversed by each mechanic and
then attempts to minimize the number of mechanics required to fix
all the critical sensor failures. Thus minimizing the overall cost
of maintenance while ensuring that the reduction in ADL detecting
accuracy does not degrade below the required threshold.

‘We model the problem of finding optimal routes for maintenance
personnel as a mixed integer program for Traveling Sales Man
(TSP) problem. The solution to the problem is used for schedul-
ing maintenance jobs periodically.

3.6 Prototype

Idea adopts a hybrid-deployment architecture wherein the ser-
vice provider deploys an IoT gateway at the home to collect and
process sensor data locally for enabling resident-centered functions
like ADL monitoring, while sensor maintenance scheduling are
centralized and run on the enterprise cloud. The centralized op-
eration of maintenance scheduling allows the maintenance service
provider to leverage failure information from all homes in the de-
ployment to plan maintenance dispatches optimally. In our current
implementation, the IoT gateway is emulated by an application that
collects sensor data, performs ADL detection and sensor failure
detection, and sends alerts to the cloud server that runs the mainte-
nance scheduling component. We have implemented the compo-
nents in Java, with the frequent itemset mining for ADL signature
generation carried out using R packages. We use a CPLEX [36]
solver for solving the mixed integer programming solution. The
cloud server is a node hosted on a commercial cloud platform [37].

4. EVALUATION

In this section, we evaluate the performance of ldea. We be-
gin by evaluating the constituent components of ldea to show the
efficacy of our design choices. We then demonstrate the overall
performance of Idea in increasing the time-before repair, and con-
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Figure 7: ADL Detection accuracy of NBC, HMM and |dea
across multiple datasets described in table 1 with no sensor fail-
ures.

S
: NBC
0.12 | |dea ===

0.1
0.08 ¢
0.06 1
0.04 r
0.02 ¢

Fraction

# Missing ADL

Figure 8: Reduction in Detection accuracy of NBC, HMM and
Idea across all datasets in the presence of sensor failures

sequently the significant reduction in maintenance overhead across
a variety of data sets. We begin by describing our methodology.

4.1 Methodology

We run experiments using the datasets listed in Table 1. For
bench marking ADL detection performance, we use 80% of the
dataset for training, and the remaining 20% for testing. In case we
need to run an experiment for a much longer time than the available
trace length, we re-create a longer trace by replaying the same trace
of the home in a loop (e.g. for reliable detection of failed sensors
in Section 4.4).

For statistical confidence, we randomly choose a different start-
ing point in the trace for each run of the experiment; For example,
the trace may start on the morning of Monday for one run, while
starting at Thursday afternoon for the next run. Unless otherwise
stated, we run each experiment 20 times and present the aggregate
results. To evaluate the effects of sensor failure on ADL detection,
we emulate a sensor failure by creating a trace with the failed sen-
sor removed, and running the detector on this trace. To emulate
sensor failures over large deployments in Section 4.5, we generate
traces with failed sensors using the data sets as follows. We iter-
ate over the trace, select a sensor at random and determine whether
the sensor will fail at a specific time using a Weibull distribution,
with mean time to failure of 1 year. Once sensor failure is deter-
mined, we remove its future instances from the trace. We present
our evaluation results next.
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4.2 ADL Detection

We first demonstrate the efficacy of the ADL detection compo-
nent in ldea. We compare the performance of ldea with two other
detectors (NBC [25] and HMM [22]) that have been used in the
past for ADL detection. Briefly, NBC learns a probabilistic model
of the ADL from the underlying sensor event data, while HMM
learns a sequential model for each ADL based on the sequence of
sensor events that constitute the ADL. In particular, we evaluate the
detection accuracy of the three schemes, both in the presence and
absence of sensor failures. Figure 6 shows the detection accuracy
of Idea, HMM and NBC for each individual ADL in KasterenA
dataset when there are no sensor failures. As can be seen from the
plot, Idea provides the highest detection accuracy across all ADLs.
We observe similar results for other datasets.

In Figure 7, we present the average accuracy of the three schemes
across all ADLs for several representative datasets with no sensor
failures. We find that Idea performs better than NBC and HMM
schemes in each data set. NBC performs worse compared to Idea
since the NBC model assumes independence among the sensor
events, while Idea is designed to extract the dependencies among
sensors on a per ADL basis. Similarly, HMM performs worse,
since it is based on sequences of human activities, whereas human
activities are inherently variable and can happen out of sequence
several times. On the other hand, Idea is designed to seamlessly
handle human induced variabilities and achieves higher detection
performance.

We next evaluate detection performance in the presence of sensor
failures. Figure 8 depicts the aggregate drop in detection accuracy
(compared to the baseline case of no sensor failures) for all possible
combinations of 1, 3 and 7 failed sensors across all datasets. We ob-
serve that the drop in aggregate accuracy is the least for Idea com-
pared to NBC and HMM, and |dea performs significantly better
compared to the other schemes with increasing number of sensor
failures. This lower deterioration in performance can be explained
in terms of ldea’s ability to effectively extract redundancy among
sensors and leverage it for better detection.

To further explain, in Figure 9, we plot the aggregate change in
detection accuracy of Idea with increasing number of sensor fail-
ures for Aruba and KasterenB respectively . We find that the deteri-
oration in performance with sensor failures is lower for Aruba than
KasterenB datasets. On deeper investigation, we found that Aruba
has higher redundancy compared to KasterenB, thus, demonstrat-
ing that ldea effectively leverages sensor redundancies for ADL
detection.

sensor failure impact on detection accu-
racy for all sensors and ADLs across all

Figure 10: Benchmarking impact estimation

pare_breakfast across all sensors for
KasterenA dataset.

4.3 Impact Estimation

The impact estimation component enables identifying critical
sensors for each ADL by computing the severity of the sensor fail-
ures in terms of deterioration in ADL detection accuracy. We bench-
mark the performance of impact estimation in terms of the estima-
tion error. For this, we compare the impact estimated by the model
on the training data against the actual change in ADL detection ac-
curacy obtained by running the detector twice on the test data, once
with all sensors included, and again with the failed sensor removed
from the trace. In Figure 10(a), we plot the CDF of error between
the estimated impact and the actual impact obtained by running
the detector. As can be seen from the plot, for more than 95%
of the activities the error in estimation is zero. This result shows
that impact estimation is able to accurately predict the change in
recognition accuracy, thereby allowing us to identify critical sen-
sors, and reduce scheduling of "avoidable" maintenance visits. Fig-
ure 10(b), depicts the maximum estimation errors (over all sensors
in 20 runs) for a specific ADL in KasterenA dataset. We have ob-
tained similar performance on other datasets as well and present
KasterenA as an exemplar. Seven out of fourteen sensors (50%)
have zero error in the impact estimate. The Groceries_Cbrd
and Plates_Cbrd sensors have a maximum error of 25% for
Prepare_Breakfast. This is due to the fact that the remain-
ing Prepare_Breakfast sensors such as fridge are shared with
other ADLs such as Drinking and Snacking whose sensors
overlap with Prepare_Breakfast in the absence of an critical
sensor like Groceries_Cbrd or Plates_Cbrd. In this case,
Idea assumes all these instances will be misdetected and overesti-
mates the impact.

4.4 Sensor Failure Detection

We next evaluate the responsiveness and tradeoffs involved in
sensor failure detection and alert generation in Idea. Figure 11
shows the time taken by the failure detection module to detect the
failure of the Fridge sensor in KasterenB dataset, by analyzing
the (non-)occurrence of Fridge events during the performance of
four ADLs: Eating, Cooking, Storing Groceries iniso-
lation. As can be seen from the plot, the alert for the failed Fridge
sensor is generated the earliest (12 hours) by monitoring Eating
activity. This is due to the combined effects of high triggering prob-
ability(0.95) for the [sensor, AD L] pair and high frequency of the
ADL (every 11.2 hrs). We also observe that Cooking provides
the next best detection time of 13 hours, which is 4 hours less than
that of Drinking ADL although the Drinking ADL (once ev-
ery 0.81 hours) is more frequent than Eat ing event (once every
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Figure 11: Time taken to detect failure of fridge sensor using
a single ADL in KasterenB dataset. The numbers denote the
occurrence frequency of each ADL and occurrence probability
of the Fridge sensor(in brackets) for that ADL

12.4 hours). This is due to the fact that the probability of trigger-
ing fridge to Drinking is only 0.43, compared to 0.93 probability of
triggering fridge for Cooking.

We next evaluate the improvements in failure detection times
when multiple ADLs are combined and used together to detect a
sensor failure. In Figure 12, we present the time taken to raise an
alert from the time of occurrence of a failure, as a function of the
maximum number of ADLs that are collectively monitored over all
datasets, normalized to the time taken by the single best ADL to
raise an alert. Particularly, we present the best possible time for
alert generation by an ADL combination of specific size. As ex-
pected, the figure shows that the alert generation time decreases
with an increasing number of ADL combinations. More interest-
ingly, even having just combinations of three ADLs instead of one
leads to halving of the time to detect a failure and raise an alert,
showing the benefits of the collective monitoring scheme of ldea.
False positive trade-offs: Next we evaluate the effect of the rarity
threshold on the sensor failure false (positive) alert rate. In Fig-
ure 13, we present the effect of the rarity threshold on the time
taken to detect a sensor failure across all datasets. For the median
case, compared to a baseline rarity threshold of 0.01, it takes 17 x
more time to detect sensor failures when the rarity threshold is set
to 0.001. The detection time increase to 123 x for the same fail-
ure when the rarity metric is set to 0.0001 (compared to baseline
of 0.01). We next present the effect of the rarity threshold on false
alert rates.

In our experiments, we found that with a rarity threshold of 0.001
we had 23 x fewer false positive alerts compared to a threshold of
0.01, while the number of false alerts decreased 318 x when the
threshold was changed to 0.0001. The above results are expected,
as a low value for rarity threshold implies that more instances of
non firing events (when a ADL occurs) will have to be observed
before the alert can be raised. Thus, a lower rarity threshold, will
lead to a delay in raising a failure alert (false positive) while mini-
mizing the number of false alerts (false positive).

4.5 End-to-end: Maintenance Scheduling

We now benchmark the performance of Idea on maintenance
efficacy in terms of the number of maintenance visits and per-home
maintenance inter-arrival times.
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Figure 12: Time taken to detect failed sensors using multiple
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Methodology

To quantify the maintenance benefits, we begin by emulating the
geo-graphical distribution of homes over a large city, in our case,
the Manhattan region of NY city. We generate home locations (lat-
itude, longitude) of ten thousand homes over a 400 sq miles re-
gion of Manhattan as shown in Figure 14 using the City and Net-
work Generator(CING) [38] that generates representative traces of
the population distribution, mobility patterns as well as spatial dis-
tribution of homes and offices. We then randomly assign to each
home a set of sensors identical to one of the testbed homes listed
in Table 1. We emulate error probabilities of individual sensors
in each home using the well accepted Weibull distribution [29, 30]
with mean time to failure (MTTF) of 1 year for a period of 2 years.
Once a sensor is determined as failed, it remains failed till a main-
tenance person visits the home and fixes the sensor. Finally, we
collate the failures across the ten thousand homes and determine
the maintenance visit schedules for each day based on the alerts
received the previous day. We consider and alert as critical if the
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Figure 15: Number of homes with critical faults over 10K
homes

impact of new sensor failures, along with potential prior failures is
greater than 5%. We investigate the performance of ldea against
three other schemes for scheduling maintenance visits:

e Independent: Any failed sensor in each home has to be fixed
the next day.

e Prompt-Util: Maintenance is done only for sensors that are
necessary for detecting one or more ADLs in the home. Any
sensor that is part of at least one ADL signature (in Idea) is
considered eligible for maintenance.

e Periodic: A maintenance person will periodically visit each
home, and fix all the failed sensors on the day of visit.

We present the performance comparison results next.

Reactive Maintenance

In Figure 15, we present the CDF of the number of unique homes
that need to be visited daily over the entire duration of the exper-
iment. Observe that the number of homes is significantly fewer
for Idea compared to other schemes. Specifically, we find that for
more than 50% of the days ldea needs only 68 visits (less than 1%
of the number of homes), while the independent scheme will re-
quire around 750 visits (11 x) , and Prompt-Util needs around 134
visits (2x). Note that, Prompt-Util (a simplified version of Idea)
itself leads to a significant reduction in the number of visits. In
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Figure 16: Inter maintenance visit time distribution for 10K
homes
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Figure 17: Maintenance visits with Aruba type deployments for
10K homes

Figure 16, we plot the CDF of the inter-maintenance visit times
(in days) to individual homes. We find that for the average case,
Idea needs to visit a home every 211 days, whereas Independent
and Prompt-Util need maintenance visits every 18 and 128 days
respectively.

We illustrate the effects of passing time on the maintenance work-
load in Figure 17 and Figure 18, the figure shows the per month
average number of maintenance visits for the three schemes for
homes with sensor configurations similar to Aruba and KasterenB
respectively. The figure shows that the number of maintenance vis-
its will increase with time, as expected, since more sensors will fail
with increasing time. However, the overall visits for Idea are fewer
than the other schemes. We also note that for Aruba the improve-
ment in performance of Prompt-Util scheme over Independent is
higher than that of KasterenB homes; this is due to the fact that
Aruba homes have around 21% sensors not useful for ADL detec-
tion, while KasterenB has only 8% such sensors.

Periodic Maintenance

The benefit of a periodic visit scheme is the fixed number of main-
tenance visits; however, the scheme suffers from the possibility of
critical sensor failures (leading to reduced detection accuracy of
important ADLs) in the home till the next maintenance visit. In
Figure 19(a) we depict the average number of sensor failures (both
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Figure 18: Maintenance visits with KasterenB type deploy-
ments

overall and critical) per home that will be present as a function of
periodic maintenance times. As can be seen from the plot, with
increased inter-visit time gap from 50 days to 250 days, the num-
ber of failed sensors also increases from 0.04 to 0.31. Figure 19(b)
shows the number of days from the first critical failure till the ar-
rival of maintenance operation. We find that on an average a home
will have 19 days with failed critical sensors for a periodic visit of
50 days. The number goes up to 87 days for a visit gap of 250 days.
Such under-performance of monitoring applications is clearly un-
desirable in a number of scenarios, esp. patient care and elderly
care.

Effect of redundancy aware detector design on Main-
tenance load

We next benchmark the impact of ldea’s redundancy aware de-
tector design against other schemes such as NBC and HMM. In
Figure 20, we plot the average inter-maintenance visit time (Time-
before-repair) for the four schemes on a 1000 home KasterenA
deployment. HMM and NBC improve Time-before-repair more
than twice over the independent scheme having a Time-before-
repair of 47 days. On the other hand, Idea has a approximately 2 X
longer Time-before-repair of 207 days compared to 101 and 117
days for NBC and HMM schemes respectively. This is expected as
detection performance of Idea degrades more gradually compared
to NBC, HMM as shown in Figure 8. We note that techniques such
as SMART [27] that also attempt to reduce maintenance visits by
relying on off-the-shelf NBC and HMM detectors will also gener-
ate lesser number of maintenance visits by using ldea instead.
Such significant reductions in maintenance overhead have a di-
rect implication on resource provisioning for an IoT enterprise. In
practice, the total distance that can be covered by a maintenance
person on any given day is limited. We consider this constraint in
our MIP formulation and allow the use of multiple people to cover
the tasks at hand. We conduct two sets of experiments - one that
limits the total distance traveled per day to 40 Km and the other
that limits it to 20 Km (Figure 21). Under each of these settings we
compute the number of maintenance people needed to complete
"X%" of the tasks on any given day. In Figure 21(b), we find that
under a 40 Km distance limit per day on the KasterenB dataset, we
observe that our approach requires about 2.5x fewer maintenance
personnel to cover 10% of the tasks and about 3.3x fewer personnel
to cover all the tasks. In FigureFigure 21(a), we show similar re-
sults for 20 KM distance limit. These results demonstrate that our
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Figure 19: Periodic maintenance scheme performance.

approach translates into significant (over one order of magnitude
in dense deployments) savings in maintenance resources (costs),
thereby making IoT enterprises more profitable.

S. RELATED WORK

We compare and contrast Idea with prior literature in the areas
of diagnostics in smart homes, large scale asset management tools,
robust sensor network deployment, fault detection in homogeneous
sensor networks and ADL detection in smart homes.

Smart home fault diagnostics

The closest work to ours is SMART [27] that leverages application
level semantics to identify non-fail stop failures. In the training
phase, SMART learns multiple classifiers for recognizing the same
set of activities based on different subsets of sensors. At run time,
SMART analyzes the relative change in recognition accuracy of the
different classifier instances, and uses this information to identify
the failed sensors. We believe we make the following distinctions
from SMART 1) SMART retrofits failure detection on state of the
art detectors such as NBC and HMM by viewing the classifiers as
black boxes and using relative changes in accuracy between the
different classifiers for detecting a failure. On the other hand, |[dea
is a white box integrated approach that combines ADL detection
with sensor failure detection and functional redundancy estimation
for determining maintenance scheduling 2) SMART trains and si-
multaneously runs O(Number of Sensors) classifiers just for failure
detection, with this ensemble of classifiers having no impact on the
ADL detection accuracy. On the other hand, |dea runs a single
classifier, that improves both ADL detection accuracy as well as
sensor failure detection. 3) SMART cannot detect failures of sen-
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Figure 20: Average inter-maintenance
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sors that are not frequently used in any of the activities. On the
other hand, Idea will detect the failures of these sensors as well.

The authors in [28] present a complementary technique to detect
failures by learning the regular patterns of sensor firings with re-
spect to electrical appliance usage, and raising an alert when there
is significant deviation from the regular firing interval distribution.
This is an example of approaches that require extra electrical sens-
ing infrastructure, and can be leveraged in ldea as well.

Commercial asset management software

Existing enterprise asset management products such as [39,40] au-
tomate the maintenance of large scale device deployments. Akin to
Idea such software allows (automatic as well as manual) logging
of fault tickets about various assets being maintained, and provides
sophisticated algorithms for scheduling of maintenance operations.
Idea enables complementary functionality by learning the inherent
redundancies in capabilities of various sensors, which allows for
significantly extending the time-before-repair.

Robust homogeneous sensor network deployments

There has been considerable research [8§—15] in understanding and
enhancing redundancy in homogeneous sensor deployments to en-
hance the lifetime of deployments, from both an energy efficiency
and fault tolerance perspective. [41] and [42] enable applications
to specify at a high level the relevant contexts and context changes,
while the system optimizes and manages the sensing based on the
available resource state. Similarly, [43] proposes an energy effi-
cient sensing framework by exploiting the relationship among con-
texts, for example between driving and being at home, as well as
the relationship between the cost of sensing and inferring a con-
text. The key distinction of ldea from such prior art, lies in the fact
that it focuses on systematically understanding the functional re-
dundancies amongst heterogeneous sensors resulting from resident
behavior. Furthermore, home deployments involve heterogeneous
event-driven sensors that are triggered by human action as opposed
to continuous sensing systems for which the prior approaches were
developed.

Fault detection in homogeneous sensor networks

A number of works [44—46] address the problem of fault detection
in sensor networks. The authors in [47] provide a survey of fault
management approaches in sensor networks. Akin to ldea, authors
in [48,49] a) identify sensor faults by identifying outliers among
neighboring sensors to build a community of trust among nodes to

% of maintenance task completion
(a) 20 Km

% of maintenance task completion
(b) 40 Km

Figure 21: Distribution of number of mechanics necessary to repair '"‘X%'"’ of
faults in a day, normalized to number of mechanics necessary to fix 10% faults,
with a constraint of (a) 20 Km and (b) 40 Km travel radius

provide high data integrity and detect faulty sensors and b) prompt
for human assistance to improve fault detection. However, in con-
trast to Idea prior work does not deal with finding outliers in het-
erogeneous sensor deployments.

Smart home ADL detection

A number of recent works [20,21,23,24] have addressed the prob-
lem of detecting ADLs from sensor firings in smart homes using
machine learning based approaches Hidden Markov Models, Naive
Bayes Classifier, Conditional Random Fields etc.. Specifically, the
authors in [23] propose using hidden semi-Markov models for ac-
tivity recognition while incorporating duration of activities as a fea-
ture for classification. Similarly, Roy et al. [S0] address the prob-
lem of ADL recognition in multi-inhabitant environments by com-
bining smart phone and infrastructure sensors and learning spatio-
temporal constraints to infer the attributes such as location of the
user.

However, the above body of work does not customize the design
of their classifiers to address the unique problems and opportunities
associated with sensor faults in smart home deployments.

6. CONCLUSION

In this paper, we design ldea a novel sensor failure manage-
ment system for IoT-enabled smart environments. Our approach is
based on learning and leveraging the functional redundancy avail-
able among sensors for robust ADL detection in the presence of
sensor failures. Specifically, our approach leverages the fact that
there is inherent redundancy when combinations of sensors mon-
itor activities of daily living (ADLS) in smart environments, and
the utility or impact of each sensor depends on the activity being
monitored and the rest of the sensors available for detecting the ac-
tivities. Based on estimated impact of sensor failures, the system
schedules necessary maintenance visits. Results show that Idea
significantly increases the time-before-repair of homes, thereby re-
ducing the maintenance overhead of keeping such IoT deployments
functioning as expected.
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