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Abstract
Out-of-distribution (OOD) detection is essential
to deploying machine learning systems in the real
world. However, the reliability of the existing
OOD detectors is severely hampered when used
in an environment with adversarial/natural per-
turbations. Being such a critical component, this
necessitates the study of techniques to robustify
it. In this work, we propose using the representa-
tion learning power of self-supervision methods
with better OOD scoring mechanism based on en-
ergy to improve the robustness of OOD detectors.
Specifically, we propose a blend of flexible loss
function formulations that can effectively learn
robust features. Our findings merit the use of a
new methodological perspective that focuses on
robustifying OOD detection.

1. Introduction
The exciting success of deep machine learning models has
made them the de facto choice as the solution to building in-
telligent systems. The recent progress in their performance
has led to an increasing number of real-world applications
being powered using deep learning. Some of these areas
include autonomous cars, automated facial recognition for
security, voice-controlled devices, etc. Many of these ap-
plications are critical to influence the lives of people and
it is very important that the deployed models are reliable.
One important aspect of enforcing reliability (Amodei et al.,
2016) is to be able to detect out of distribution (OOD) data
and prevent exposing the deep learning models to these.
This makes OOD detection very crucial to deploying trust-
worthy machine learning models.

Even though OOD detection helps in building reliable mod-
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els, they too are prone to adversarial attacks. Robustness
against natural and artificial perturbed inputs is an extremely
relevant problem. For instance, an autonomous vehicle
could misjudge a road STOP sign and accelerate leading to
a fatal car accident at an intersection. A weak facial recog-
nition system could be easily fooled to gain entrance in a
secure location. A wealth of recent literature currently exists
in the area of building a robust OOD detectors (Hendrycks
et al., 2019a; 2020; Chen et al., 2020b; Liang et al., 2017;
Lee et al., 2017).

Building robust OOD detector is very challenging since
the OOD samples at inference time could be very different
from those used during training the model. Hence it is ex-
tremely important that the deep learning models learn robust
features from the datasets. Recently, self-supervision has
been shown to learn meaningful representations (Misra &
van der Maaten, 2019) from an unlabelled pool of data and
gained popularity for transferring learnt model weights to
different datasets (Hendrycks et al., 2019a). Some examples
of self-supervised learning tasks that are popular are the
prediction of geometric rotations (Gidaris et al., 2018), con-
trastive learning(Chen et al., 2020c), solving Jigsaw puzzles
(Noroozi & Favaro, 2017), etc. Some recent work (Kim
et al., 2020) has shown the applicability of self-supervision
in learning models that have some degree of robustness
against perturbations in the input sample. Overall, self-
supervision losses provide an exciting opportunity to learn
meaningful features from the input and hence fit in building
a robust OOD.

Finally, a good OOD detector should separate the in-
distribution samples from out-of-distribution samples.
Hence it is important to use a good scoring function. Re-
cent work in OOD detection (Liu et al., 2020a) has shown
the usefulness of energy score as a better OOD score. The
authors show that energy score is linearly related to the log-
arithm of the probability density of the samples and propose
using energy based regularizer to further improve the OOD
detector.

In this work, we propose to improve the robustness of OOD
detection by augmenting it with popular self-supervision
frameworks and using more meaningful OOD scoring func-
tion. We specifically explore the robustness property of con-
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trastive losses like SimCLR and other self-supervision tasks
like predicting geometric rotations. The idea is to extend
the OOD detection learning with self-supervised component
and further improve it using energy based scores. Some
existing work has proposed solutions for adversarial robust-
ness of self-supervision against perturbations. In the current
work, we explore the transferability of robustness to a com-
pletely unknown dataset (OOD setting) under a variety of
attacks ranging from natural OOD, natural corruptions to
compositional attacks which are harder to detect.

2. Related Work
Several works on out-of-distribution (OOD) detection has
been proposed. OOD detection refers to models that are able
to distinguish OOD samples – which are deviates from in-
distribution (ID) samples. From a traditional machine learn-
ing methods point of view, it is assumed that training data
and testing data are independently identically distributed.
Nevertheless, in the real world, it is hardly possible to assure
that data fed into deployed models is always in-distribution.
That is, it is also likely to be OOD (i.e., outlier). A deep
learning model without an outlier detector can easily mis-
recognize an OOD sample as one of the classes from the ID
samples – this is not reasonable. Therefore, it is imperative
to build a model that is able to detect OOD data. The pro-
pelling motivation behind OOD detection, is that previous
work has shown that neural network can produce predic-
tions with large confidence for OOD inputs (Hendrycks &
Gimpel, 2016; Lakshminarayanan et al., 2017).

Robust Out of Distribution Detection. (Chen et al.,
2020b) propose a novel robust OOD detection method – Ad-
versarial Training with Informative Outlier Mining (ATOM)
that carefully samples outliers data for training. ATOM has
shown to improve robustness and generalization to adversar-
ial attacks such as clean and perturbed OOD inputs.

Self-Supervised Learning with Rotation. As predict-
ing rotation requires modeling shape, and knowing that a
smaller region of an image alone might not be sufficient for
deciding if the image is flipped, training with self-supervised
auxiliary rotations may improve robustness. (Gidaris et al.,
2018) predict image rotations by training models to recog-
nize 2d transformations. (Hendrycks et al., 2019a) show
that by applying rotations to inputs, self-supervision can im-
prove robustness to adversarial examples, label corruption,
common input corruptions, and out-of-distribution detection
on difficult and near-distribution outliers.

Contrastive Learning. Proposed by (Chen et al., 2020d),
SimCLR is a framework for contrastive learning of visual
representations. It maximizes agreement between 2 aug-
mented (e.g., rotation, crop, resize, etc) versions of the same
image. This naturally takes outliers into consideration.

Energy-based Out-of-distribution Detection. (Liu et al.,
2020b) focus on energy scores instead of softmax confi-
dence since it is biased and not aligned with a density of in-
puts. Energy-based OOD detection is useful for information
mining and it can improve models by being less susceptible
to overconfidence, and superior to softmax confidence score.
Energy method gain their

Our Contributions. The main contribution of this work
involves (a) We propose using self-supervision based losses
to improve robustness of OOD detection, (b) We extend
existing SOTA OOD detection using energy based OOD
scores and provide further evidence on the efficacy of energy
score, (c) We investigate the robustness of self-supervision
losses over a variety of OOD attacks, and (d) We empirically
show that SimCLR based losses and using energy score to
perform outlier mining outperforms existing methods on
hard OOD detection tasks.

3. Background: Robust OOD
We first introduce the problem of Robust out-of-distribution
detection. OOD detection is defined with respect to an
inlier distribution p(x). Consider learning a classifier fθ(x)
to predict labels y ∈ {1, 2, ..., k}. Essentially fθ learns
the conditional distribution p(y|x). The training dataset,
sampled from joint inlier distribution p(x, y), is available
for learning parameters of fθ. During inference time, the
data could also come from another distribution q(x) which
might be perturbed. The problem of learning a robust OOD
detector is defined as learning a function h(x) such that

h(x) =

{
−1; x ∈ p(x)

1; otherwise
(1)

OOD Perturbations. We consider perturbations of indi-
vidual input samples x denoted by Ω(x). At test time, the
OOD detection is evaluated on worst case input in Ω(x) for
OOD samples x coming from an unknown distribution q(x)
to which we do not have access to during training. How-
ever, we assume that access to an auxiliary dataset Dauxout is
provided while training h(x).

Following (Chen et al., 2020a) our detector is evaluated on
OOD perturbations of the following types

1. Natual OOD: Ω(x) = {x}, no perturbations

2. L∞ attacked OOD (white-box): Ω(x) = {y|||x −
y||∞ ≤ ε}, attack considers worst case perturbations
which has low OOD score for OOD samples

3. Corruption attacked OOD (black-box): Realistic
type of attacks which could happen naturally. These are
based on common corruptions as mentioned in (Chen
et al., 2020a).



Robustifying Out-of-Distribution Detection: A Self-Supervision and Energy Based Approach

4. Compositionally attacked OOD (white-box): This
attack considers the composition of L∞ and corruption
attack.

4. Robustness using Self-Supervised Losses
In this section, we first describe the out-of-distribution
detection using outlier exposure. Next, we show how
self-supervised learning losses can be combined with out-
lier exposure method to improve the robustness of out-of-
distribution detection.

4.1. Outlier Exposure using Adversarial Training

We consider a k way deep network fθ for the classification
of inlier distribution images. The standard training objective
for learning this classifier is given by

min
θ

E
(x,y)∼Dtrainin

[
`(x, y; fθ)

]
(2)

where ` is the cross entropy loss. To perform out-of-
distribution detection another head is added to this network
making it a k + 1-way classifier. The (k + 1)th class la-
bel indicates if the input is an outlier. Similar to (Chen
et al., 2020a), we define the outlier exposure objective using
adversarial training as

min
θ
Loe = E

(x,y)∼Dtrainin

[
`(x, y; fθ)

]
+ λ E

x∼Dtrainout

[
max

x′∼Ω∞,ε(x)
`(x′, k + 1; fθ)

] (3)

where Dtrainout is the OOD training dataset. This exposes
the standard training to outliers. The inner max in (3) is
solved using Projected Gradient Descent (PGD) (Madry
et al., 2017) and applied to the half of the minibatch while
the other half is not perturbed. This is to ensure good per-
formance on both natural OOD and perturbed OOD.

After training the model fθ, the inlier classification is done
using the first k logit of the network using argmax. The
OOD detector is constructed using the (k+ 1)th logit of the
network. An input x is labelled as an outlier if fθ(x) < γ for
some threshold γ which can be selected in a way to ensure
that a significant fraction of inliers is correctly classified.

Next, we augment this objective with self-supervision losses
to improve the robustness of outlier detection. The proposed
framework is shown in Figure 1. The training consists
of three components (a) Inlier classification objective (b)
Outlier exposure component, and (c) Self-supervision com-
ponent.

Figure 1. Our proposed framework for training robust OOD de-
tector. During training, it uses inputs from inlier dataset, outliers
from an auxiliary dataset, and a perturbed fraction of outliers. The
CNN module has three heads for (a) inlier classification, (b) OOD
detection, and (c) self-supervised component.

4.2. Robustness using Contrastive Losses

Contrastive losses (Misra & van der Maaten, 2019) have
been used in self-supervised learning to learn representa-
tions which are useful for downstream tasks. The idea is to
maximize the similarity between different augmentations
of the same instances and minimize the similarity between
representations of different instances. SimCLR (Chen et al.,
2020c) is a popular contrastive learning method and has
been effectively used to train models in a self-supervised
and semi-supervised way. (Kim et al., 2020) show its ef-
fectiveness in learning adversarial robust models. We use
SimCLR based contrastive losses to improve the robustness
of OOD detection under a variety of attack scenarios.

As in SimCLR, we consider a two-layered FC network
which outputs the latent representation using the output
of the penultimate layer of the classification network fθ.
We use z = gω(x) as the latent representation of input x.
Consider T as the family of augmentations applicable to
image x as described in (Chen et al., 2020c). Sampling two
random transformations t, t′ ∼ T and applying on image x
gives us two different views of the data as xi and xj . The
SimCLR loss is applied on the encoded representation of
these two views, i.e zi = gω(xi) and zj = gω(xj).

For applying SimCLR loss on a minibatch of N examples,
pairs of augmented examples are derived from the minibatch
producing 2N samples. Let sim(u, v) = uT v/||u||||v|| be
the normalized dot product between u, v. The SimCLR loss
for positive pair (zi, zj) is defined as

`(i, j) = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1(k 6=i) exp(sim(zi, zk)/τ)
(4)
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Figure 2. We illustrate the SimCLR head used for self-supervision.
This replaces the self-supervision component in Figure 1. SimCLR
based constrastive loss is applied on encoded representations zi, zj
for two different views of the input image x.

For a minibatch of size N , the SimCLR loss is given as

Lsimclr =
1

2N

N∑
i=1

[`(2k − 1, 2k) + `(2k, 2k − 1)] (5)

Using (3) and (5) gives us the robust training objective as

min
θ,ω
Loe + ηLsimclr (6)

where the SimCLR is applied on the minibatch samples
from the Dtrainout . This setup is depicted in Figure 2.

Next, we describe another self supervised loss that could be
used in place of SimCLR for learning robust OOD detector.

4.3. Robustness using Geometric Rotation Prediction

Predicting geometric rotations of images has been success-
fully used as a self-supervision method to learn useful latent
representations. To correctly predict the amount by which
the original image has been rotated requires learning global
image features. Hence we explore whether learning these
features provides robustness from various types of perturba-
tions. (Hendrycks et al., 2019b) provide some evidence in
this direction.

Our method consists of adding addition 4 classification head
to the original (k + 1)-way classifier. These additional
logits would be used for predicting the degree of rotation
of the original image. The images are randomly rotated
by {0◦ , 90

◦
, 180

◦
, 270

◦}. These transformations can be
achieved using flips and matrix transpose operations and
hence does not introduce any artefacts in the input image.
Figure 3 describes the setting.

Figure 3. The self-supervised component based on predicting geo-
metric rotation task; Inputs are rotated by {0◦, 90◦, 180◦, 270◦}.
The overall loss function is the average of four cross entropy loss
for predicting the rotation class.

The loss for predicting rotation is given by

Lrot =
∑

r∈{0◦,90◦,180◦,270◦}

`CE(x, one hot(r); fssθ )/4

(7)

where fssθ is the self-supervised part of the model used for
predicting rotations. The robust training objective is given
as follows

min
θ
Loe + ηLrot (8)

where the rotation based loss is applied to all the inliers and
outliers samples in the minibatch.

5. Using Energy to improve Robustness
In this section, we describe how we can further improve the
robustness of OOD detection using energy based techniques
from (Liu et al., 2020a). We first describe the informative
outlier mining method (ATOM) introduced in (Chen et al.,
2020a) as an improvement over the outlier exposure objec-
tive (3). Next, we provide some details on energy based
methods which have been shown to perform better for OOD
detection and have better theoretical properties. Finally we
describe how we can use energy based scores with outlier ex-
posure objective to improve the robustness of OOD detector.
The proposed method can be used on top of self-supervision
based techniques to improve its robustness.

Informative Outlier Mining: (Chen et al., 2020a) show
that if the outliers are adaptively chosen for training in
(3), the resulting algorithm (ATOM) leads to a much better
decision boundary between inliers and outliers. The main
idea is to use the scores from the current model to select a
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sample set of outliers. Starting with the qth quantile score
in the score sorted list of outliers, n outliers are selected for
the training. The value of the (k+1)th logit from fθ is used
as the outlier score.

Energy Score: A natural choice of doing OOD detection
would be to use density of the samples p(x). Samples with
low density are deemed to be outliers. In (Liu et al., 2020a),
authors show that logarithm of p(x) is linearly related with
the energy score as in

log p(x) = −E(x; fθ)− logZ (9)

where Z is a constant and energy function is expressed as

E(x; f) = −T. log

k∑
i=1

fi(x)/T (10)

where fi is the ith logit and T is the temperature parame-
ter. The authors show that using energy score as the score
for outliers leads to better separability between the score
distribution of outliers and inliers making them a superior
choice.

5.1. Informative Outlier Mining using Energy Score

From the above discussion we see that energy score is a nat-
ural choice for outlier score and informative outlier mining
leads to more robust models. We propose combining these
two concepts and use energy score as the outlier score in
mining informative outliers. The idea is to sort the outliers
using the energy score obtained from the first k logits of
the model fθ. n outliers with lowest energy are selected
for training the outlier exposure objective (3). We call this
method ETOM and is given in Algorithm 1.

Algorithm 1 ETOM - Energy based ATOM
input Dtrainin , Dauxout , n, m, N fθ
output fθ
for t = 1, 2, ...,m do

Randomly sample N points from Dauxout to get set S
Compute OOD scores to get V = {E(x; fθ)|x ∈ S}
Sort scores in V ascending
Dtrainout ← V [0 : n]
Train fθ for one epoch using objective (3)

end for
Build fθ

5.2. Energy Regularized Informative Mining

We also explore the use of energy regularizer from (Liu
et al., 2020b) on top of Informative Outlier Mining (ATOM).
As described earlier the inliers correspond to lower ener-
gies, and the outliers correspond to higher energies. The
regularizer tries to penalize low energy of outliers and high

energy of inliers. This is expected to create more separation
between the score distribution of the inliers and outliers,
thus making it easy to classify between them. The energy
regularizer is given by following

Lenergy = E(xin,y)∈Dtrain
in

[
max(0, E(xin −min))

]2
+Exout∈Dtrain

in

[
max(0,mout − E(xout))

]2 (11)

We combine this with the objective (3) and propose optimiz-
ing following

min
θ
Loe + ηLenergy (12)

6. Experiment
We now describe our experimental setup and demonstrate
the effectiveness of our proposed methods in building a ro-
bust OOD detector. We evaluate the proposed OOD methods
against a variety of attacks mentioned in Section 3.

6.1. Setup

Datasets. Following (Chen et al., 2020b), we will use
CIFAR-10 as in-distribution datasets and SVHN (Netzer
et al., 2011), LSUN (Yu et al., 2015), iSUN (van den Oord
et al., 2016), Textures (Cimpoi et al., 2014) and Places365
(Zhou et al., 2018) for our OOD inputs.

Auxiliary Out-of-distribution Datasets. We use
ImageNet-RC, a variant of ImageNet (Chrabaszcz et al.,
2017) as an alternative auxiliary OOD dataset.

Out-of-distribution Datasets. We consider the robust
OOD Evaluation tasks described in (Chen et al., 2020b),
namely natural OOD input, OOD input with L∞ perturba-
tions, corruptions bound OOD input and joint L∞ perturba-
tions and corruptions bound OOD input.

Hyperparameters. (i) Self-supervision with rotation uses
eta = 0.1, epoch = 60, batch size = 64 (ii) SimCLR
robustness uses eta = 1, epoch = 60, batch size = 64,
τ = 1 (iii) Energy-based approach usesmin = −13,mout =
−3

Metrics. We measure the following metrics: Accuracy,
False Positive Rate (FPR) at 5% False Negative Rate, False
Positive Rate at 80% True Positive Rate, Area Under the
Receiver Operating Characteristics (AUROC), Area Under
the Precision Recall Curve.

Baselines. We consider the model learned from optimiza-
tion 3 as the ‘baseline‘ model in our results. We also com-
pare our results with ATOM and NTOM setup from (Chen
et al., 2020b) which are based on a similar setup. To pro-
vide more prespective on the importance of our results we
include the comparisons with various baselines from (Chen
et al., 2020b).



Robustifying Out-of-Distribution Detection: A Self-Supervision and Energy Based Approach

Dtest
in Method

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) Accuracy

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10
Baseline 11.21 97.34 35.58 92.82 65.30 59.82 59.63 64.71

w/ Rotation 3.92 99.06 32.38 94.60 98.91 15.91 99.19 16.80
w/ SimCLR 10.69 97.70 33.83 93.57 21.86 94.92 37.05 92.66

Table 1. Comparison with Comparison of proposed self-supervision based OOD detection method with baselines. We evaluate on four
types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD
inputs. The smaller value FPR is, the better; the larger AUROC is, the better. All values are percentages and are averaged over six natural
OOD test datasets mentioned in 6.1. Bold numbers are superior results

Dtest
in Method

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10

NTOM 1.87 99.28 30.58 94.67 99.90 1.22 99.99 0.45
ATOM 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

w/ Energy Reg. (Ours) 8.08 98.49 50.45 91.65 8.72 98.26 50.50 91.64
ETOM (Ours) 7.74 98.59 25.46 95.61 8.13 98.48 25.42 95.60

Table 2. Comparison with proposed energy based OOD detection method with SOTA methods like ATOM and NTOM. We evaluate four
types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD
inputs. A smaller FPR value is better, while a larger AUROC is better. All values are percentages and are averaged over six natural OOD
test datasets mentioned in 6.1. Bold numbers are superior results

Dtest
in Method

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

FPR
(5% FNR) AUROC

Natural OOD Corruption OOD L∞ OOD Comp. OOD

CIFAR-10

MSP 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67
ODIN 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01

Mahalanobis 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58
SOFL 2.78 99.04 62.07 88.65 99.98 1.01 100.00 0.76

OE 3.66 98.82 56.25 90.66 99.94 0.34 99.99 0.16
ACET 12.28 97.67 66.93 88.43 74.45 78.05 96.88 53.71
CCU 3.39 98.92 56.76 89.38 99.91 0.35 99.97 0.21

ROWL 25.03 86.96 94.34 52.31 99.98 49.94 100.00 49.48

Table 3. Evaluation results for competitive OOD detection methods on four types of OOD inputs: (1) natural OOD, (2) corruption attacked
OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD inputs. The smaller value FPR is, the better; the larger AUROC is,
the better. All values are percentages and are averaged over six natural OOD test datasets mentioned in 6.1

6.2. Results

Self-Supervision to improve Robustness. Table 1 pro-
vides the comparison of performance of methods based
on self-supervision and outlier exposure baseline. We see
that the self-supervision based on rotation provides good
robustness against normal OOD. However when the detec-
tor is attacked using perturbations in L∞ norm, the method
fails to provide any robustness. Hence the behavior for
L∞ OOD and compositional OOD. With SimCLR based
robust formulation, we find that it outperforms the baseline
on all the OODs. This further provides evidence that the
representations learnt using SimCLR are more meaning-
ful in comparison to rotation based self-supervision. For
L∞ OOD and compositional OOD, it performs at par with
ATOM which is very encouraging since the model is not

trained for these attacks.

Robustness using informative mining with Energy
Scores. Table 2 shows the performance of our proposed
energy based informative outlier mining training method
(ETOM). ETOM performs at par with ATOM on corrup-
tion OOD while it significantly outperforms ATOM on L∞
OOD and compositional OOD. This solidifies the use of
energy score as OOD score. It is quite promising since we
can now work with quantile based ETOM and analyze its
influence on robustness.

Robustness with ATOM + Energy Regularizer. From
Table 2, we find that the energy regularized ATOM does
better at L∞ OOD samples. However, it underperforms for
other OOD attacks in comparison to ATOM. We are still
investigating this behavior.
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We also include Table 3 to illustrate a comparison of our pro-
posed method with state of the art OOD detection methods.
We find that the proposed method of using SimCLR and
energy based informative outlier mining provide promising
results and improve the robustness for OOD detection.

7. Conclusion
In this work, we explore improving the robustness of OOD
detection using motivations from self-supervision tech-
niques and energy based scores. Our proposed method of
using constrastive learning loss (SimCLR) and using Energy
based informative outlier gives very promising results and
outperforms the existing methods for harder outliers. These
seem to be potential directions that can be explored in detail
and combined under one framework to build SOTA robust
OOD detector.

Future Work. Inspired by the results from our experiments,
we would like to investigate the behavior of ETOM under
quantile based mining. Another promising direction is un-
derstanding properties of Energy function in the current
setup which leads to its superior performance. We will also
consider how to jointly use all the proposed techniques to
build a superior robust OOD detection method.
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