
Privacy-Preserving Deep Packet Filtering over
Encrypted Traffic in Software-Defined Networks

Yi-Hui Lin, Shan-Hsiang Shen, Ming-Hong Yang, De-Nian Yang, and Wen-Tsuen Chen

Institute of Information Science, Academia Sinica, Taipei, Taiwan 115
Email:{yihui1223,sshen3,curtisyang,dnyang,chenwt}@iis.sinica.edu.tw

Abstract—Deep packet filtering (DPF) has been demonstrated
as an essential technique for effective fine-grained access controls,
but it is commonly recognized that the technique may invade the
individual privacy of the users. Secure computation can address
the tradeoff between privacy and DPF functionality, but the
current solutions limit the scalability of the network due to the
intensive computation overheads and large connection setup de-
lay, especially for the latest network paradigm, network function
virtualisation (NFV) and software-defined network (SDN). In this
paper, therefore, we propose a privacy-preserving deep packet
filtering protocol, named DPF-ET, that can efficiently perform
filtering function over encrypted traffic while diminishing the
communication overhead and setup delay for the controller in
SDN. DPF-ET guarantees the data privacy for users and remains
rule privacy for the network owner. The implementation results
on an experimental HP SDN/NFV platform demonstrate that
the proposed DPF-ET outperforms the current approaches by
reducing 250 times in the communications overhead and 32 times
in the setup delay.

I. INTRODUCTION

Deep packet filtering (DPF) plays a crucial role in sophisti-
cated access control for large networks. Through investigating
the headers and the payload of the packets in Layer 4-7,
network administrators are able to observe and filter traffic
flows based on the fine-grained policies. For example, an
enterprise network operator can block a file transfer to prevent
internal data leaking but allow voice calls between the same
pairs of clients [17]. Moreover, an ISP can provide URL
filtering over HTTP traffic to block malicious web pages for
their customers [18].

However, since DPF is inclined to partially jeopardize the
individual privacy [5], end-to-end encryption protocols, such
as IPSec and TLS/SSL, are widely adopted by clients to
ensure the privacy of data streams. For the encrypted data,
prediction and classification of the traffic flows based on
machine learning [1][11] are proposed for DPF to maintain
the user privacy, but the accuracy is lower than the traditional
DPF schemes. Moreover, users still need to trust an authorized
proxy to process and analyze their traffic, and it still has a
chance to invade user privacy [19].

To address the above issue, secure computation is proposed
to balance the trade-off between the user privacy and DPF
effectiveness, by allowing the clients to jointly compute a
function with their private input data [4]. Private set inclusion,
one of the primary functions in secure computation, is able
to examine encrypted packets without violating user privacy

[13]. However, it usually requires longer computation time,
i.e., subseconds for a 1K rule set with 32-bit rule length, and
thereby is difficult to scale for large networks. BlindBox [15]
is proposed to conquer the above challenge with a tailored
protocol for the user and the middlebox with the DPF network
function. The packet process time can be improved since it
only takes twice 128-bit AES operations.

Recent development on Network Function Virtualisation
(NFV) [20] and Software-Defined Network (SDN) [8] is a
promising way to support the large-scale deployment of secu-
rity services (e.g., DDOS defense [6] and Anomaly Detection
[9]). As shown in Fig. 1, since the controller has full knowl-
edge of the whole SDN/NFV system, the network operator can
first place different numbers of VNFs through the VNF control
channels according to the corresponding security policies, and
the traffic are then forwarded to the designated VNFs installed
with fined-grained rules through OpenFlow [8]. To support
the on-line matching of the encrypted data streams and the
filtering rules in DPF, it is necessary to first generate the
encrypted rules with each user and then install them in VNFs.
The SDN controller plays a crucial role during the above
procedure to effectively optimize the computation resources of
the whole SDN. However, for DPF with BlindBox [15], large
communications overhead and connection setup time between
the controller and each user tend to be incurred (e.g., 9.5s
process time and 500MB transmission size for encrypting a
1K rule set with 32-bit rule length) [15], because BlindBox
exploits Yao’s garble circuit [16] to securely compute AES
encryption for each rule. Therefore, the above properties in
traditional DPF are inclined to limit the scalability of DPF in
SDNs.

To address the above issues, we design a low-overhead
privacy-preserving DPF protocol for SDNs in this paper. The
protocol is composed of a setup phase and a process phase.
The setup phase generates encrypted filtering rules, while the
process phase matches the encrypted rules with encrypted
packets from users. To ensure the privacy of users, the network
will not learn the data stream if it does not match any filtering
rules. On the other hand, the rule privacy (i.e., the rules will not
be acquired by any users) is also sustained. More specifically,
we prove that the user and rule privacy are both preserved
in our DPF protocol according to Canetti’s model [4] under
random oracle assumption [3]. Moreover, we encrypt the fil-
tering rules and the data streams based on a fast OT extension

Fig. 1. SDN/NFV Platform: Network traffic is forwarded to VNFs.

[2] to effectively reduce the communications overhead. We
implement the proposed protocol on HP SDN/NFV platform,
and the experimental results manifest that the protocol requires
only 0.3s connection setup time and 2MB transmission size
for a 1K rule set with a 32-bit rule length. In addition, the
filtering time for each packet is within 5µs. Compared with
the traditional approach [15], the proposed DPF protocol can
significantly reduce the communications overhead and the
connection setup time, while both the user and rule privacy
are guaranteed to be preserved.

The rest of the paper is organized as follows. In Section
II, we formally formulate the privacy preserving problem of
the deep packet filtering function. Section III introduces the
current off-the-self cryptographic solution and explain the dis-
advantages in SDNs. Inspired by Section III, we propose a new
DPF protocol in Section IV and formally prove the privacy
preserving properties in Section V. Then, the communication
overhead is discussed in Section VI. The implementation
results and efficiency analysis over an HP SDN/NFV platform
are presented in Section VII and VIII, respectively. Finally,
we conclude this paper in Section IX.

II. PROBLEM FORMATION

For DPF in SDNs, it is important for the network admin-
istrator to keep the filtering rules in private because the rules
are usually valuable assets. On the other hand, the user is
reluctant to reveal the data protected by the end-to-end security
protocol due to the content privacy. To fulfill the privacy needs
from both parties, we first define a private filtering function
as follows.

Let R = {γ1, γ2, ..., γn} be a set of filtering rules for a
specific field (e.g., a list of hostile URLs), where each γi ∈
{0, 1}m represents an m-bit string. Let msgt be the string of
the field in t-th packet (e.g., the URL string). Let F denote
the filtering function in a connection, where msgt’s are sent
as follows.

F = {ft}Tt=1

ft(msgt,R) =

{
msgt if msgt ∈ R
∅ if msgt /∈ R

The user and the network securely compute F with the
user’s input msgt’s and the network owner’s input R. After-
wards, the network obtains the output of F . Equipped with
the above function, the network is not able to acquire the
payload information unless it matches the filtering rules. For
the privacy of the network owner, it is impossible for the user
to acquire the rules from the network administrator.

In SDN environment, the controller that holds the rules
needs to protect the input R, while the VNFs that receives
user’s encrypted data are in charge of secure matching and
filtering. It is necessary for a protocol to 1) securely realize F ,
2) diminish the overheads of the controller while protecting the
rule set R, and 3) achieve real-time matching and filtering in
the VNFs. In the following, we first present a simple solution
of DPF for SDNs.

III. NAIVE CRYPTOGRAPHIC SOLUTION

In this section, we introduce the 1-out-of-2 oblivious trans-
fer protocol (OT) [14], a fundamental building block in secure
computation. Then, we present a straightforward solution
based on OT and explain its disadvantages in the SDN/NFV
system.

The 1-out-of-2 OT is a two-party secure protocol, where
a sender transfers two pieces of information, and a receiver
obtains only one of them. The sender is not able to identify
the received piece, and the receiver is also blind to the other
piece. The naive approach exploits the following OT protocol
to generate the encrypted rules and the encrypted data streams.

Definition 1: (21) -OTm
ℓ denotes m times of the 1-out-of-2

oblivious transfer protocol over ℓ-bit strings. A sender and a
receiver run the protocol with the following input and output.
Input: The sender’s input is m pairs of (xj

0, x
j
1) with xj

0, x
j
1 ∈

{0, 1}ℓ, and the receiver’s input is an m-bit vector y =
(y1, y2, ..., ym) with yj ∈ {0, 1}.
Output: The receiver’s output is xj

yj
’s with 1 ≤ j ≤ m.

During the protocol operation, the sender cannot learn the
receiver’s input, and the receiver only obtains the output.

A naive solution based on (21) -OTm
ℓ that securely realizes

the filtering function ft for packet msgt is explained as
follows.

1) The user (i.e., the sender) and the SDN controller (i.e.,the
receiver that executes (21) -OTm

ℓ for each rule γi with
γi ∈ {0, 1}m and 1 ≤ i ≤ n) operate as follows.

a) The user randomly generates n×m pairs of (xij
0 , x

ij
1)

with 1 ≤ i ≤ n and 1 ≤ j ≤ m as the input of the
sender.

b) The SDN controller inputs γi = bi1bi2...bim with bij ∈
{0, 1} and then obtains xij

bij
’s, the output of n times

(21) -OTm
ℓ .

2) The SDN controller computes ηi = xi1
bi1

⊕xi2
bi2

⊕...⊕xim
bim

with 1 ≤ i ≤ n and installs all ηi’s in the VNF.
3) Given msgt = c1c2...cm with cj ∈ {0, 1}, the user

computes δi = xi1
c1 ⊕xi2

c2 ⊕ ...⊕xim
cm with 1 ≤ i ≤ n, and

all δi’s are then directed to the VNF for rule matching.
4) The VNF checks if δi = ηi holds. If it holds, the VNF

learns that the t-th incoming packet violates the rule γi.

Fig. 2. The system model over the SDN/NFV platform

Otherwise, the network is not able to acquire the content
of msgt.

In Step 1) of the above protocol, it is worth noting that n
times (21) -OTm

ℓ for each packet is the bottleneck of the DPF
service. The recent works [2][13] accelerate the OT protocol
by exploiting the OT extension technique so that it only takes
sub-seconds and a few megabytes transmission to execute
thousands of (21) -OTm

ℓ . Nevertheless, it is expected that the
above improvement is not sufficient to meet the requirement
of DPF in large-scale SDNs. Moreover, the naive protocol
is inclined to incur high overheads for the SDN controller
because the controller is necessary to receive and install
different ηi’s when each packet forwarding occurs. Hence,
in the following section, we design a new DPF protocol that
effectively reduces the controller overheads and increases the
filtering speed in VNFs at the same time, while both user
privacy and rule privacy are guaranteed to be preserved.

IV. THE PROPOSED PROTOCOL

In this section, we describe the system model and the details
of the proposed protocol.

A. System Model and Protocol Operation

Fig. 2 presents the system model. The network administrator
manages the controller and VNFs, while each user intends to
deliver a private data stream. The proposed protocol includes
two phases: setup phase and process phase. The setup phase
only needs to be performed once before the end-to-end secure
channel is built, while and the VNFs then facilitates the
filtering rules in the process phase.
Setup Phase. First, the SDN controller informs the user of the
header fields that are required to be examined. Then, the user
and the SDN controller run an interactive protocol to encrypt a
set of the rules, where the user inputs the self-generated key,
and the controller inputs a set of filtering rules. During the
protocol operation, each party (i.e., the user and controller)
is not able to learn the input of the other. At the end of the
protocol, the SDN controller obtains the encrypted rules and

installs them in the VNFs to perform filtering.
The Process Phase. First, for each forwarding packet, the user
encrypts the fields with the same key, attaches the encrypted
fields (called tokens) to the encrypted packet, and then sends
the packet. After the packet is directed to a VNF, if the token
attached in the encrypted packet matches the corresponding
encrypted rules, the VNF drops the encrypted packet as
specified in the rule. Otherwise, it keeps forwarding the packet.

In the following, we explain the details of the two phases.

B. The Setup Phase

Let R = {γ1, γ2, ..., γn} denote the rule set with n rules for
the SDN controller, where each rule γi ∈ {0, 1}m is an m-bit
string. The user performs the following interactive protocol
with the SDN controller as follows.

1) The user randomly generates a key set K =
{(k1,0, k1,1), (k2,0, k2,1), ..., (km,0, km,1), r}, where each
pair of (kj,0, kj,1) ∈R {0, 1}2ℓ and r ∈R {0, 1}ℓ are
random strings with ℓ bits.

2) For each rule γi, the user and the SDN controller executes
the following steps.

a) The user randomly generates a vector (ri1, r
i
2, ..., r

i
m),

where the vector satisfies r = ri1 ⊕ ri2 ⊕ ...⊕ rim. Then
the user computes the pairs (κi

j,0, κ
i
j,1)’s according to

the following equations,

κi
j,0 = kj,0 ⊕ rij

κi
j,1 = kj,1 ⊕ rij

, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

b) The user and the SDN controller run a (21) -OTm
ℓ ,

where the user plays the sender with the input
(κi

j,0, κ
i
j,1)’s, and the SDN controller acts as the re-

ceiver with the input γi. At the end, the SDN controller
obtains κi

j,bij
’s, where the rule γi = bi1bi2....bim

represents a binary string with bij ∈ {0, 1}.
c) The SDN controller computes γ̂i ∈ {0, 1}ℓ as follows,

where γ̂i denotes the ciphertext of γi with the encryp-
tion key K denoted as EK(γi).

γ̂i := κi
1,bi1

⊕ κi
2,bi2

⊕ ...⊕ κi
m,bim

= k1,bi1 ⊕ k2,bi2 ⊕ ...⊕ km,bim ⊕ r
= EK(γi)

3) After n times repetition of the above steps, the SDN con-
troller obtains a set of encoded rules R̂ = {γ̂1, γ̂2, ..., γ̂n}
and installs R̂ in the designated VNF.

C. The Process Phase

Before sending out each encrypted packet, the user
generates the token from the specific fields in the header of
the packet for rule matching. Let msgt ∈ {0, 1}m denote
the data of the matching fields in the t-th packet. The
phase includes the procedures of token generation and rule
matching, which are explained as follows.

1) The user computes EK/r(msgt) in the following equa-
tion, where msgt = c1c2...cm for each cj ∈ {0, 1}.

EK/r(msgt) = k1,c1 ⊕ k2,c2 ⊕ ...⊕ km,cm

2) The user computes and attaches the token (αt, βt) to
the t-th encrypted packet, where ωt ∈ {0, 1}ℓ denotes
a random string and H : {0, 1}ℓ → {0, 1}λ denotes a
one-way cryptographic hash function.

αt = H(EK/r(msgt)⊕ ωt)
βt = r ⊕ ωt

3) The VNF then matches the token (αt, βt) with the cor-
responding rule set R̂ = {γ̂1 γ̂2, ..., γ̂n}. If the equation
αt = H(γ̂i ⊕ βt) holds, the VNF learns msgt = γi
and drops the t-th encrypted packet. Otherwise, the VNF
keeps forwarding the packet.

V. PRIVACY ANALYSIS

In this section, we first describe the attack model and then
provide the formal privacy proof. More specifically, we prove
that the privacy of the rules is successfully protected against
the user in the setup phase, and the content of the packets
remains unknown to the network if no rule is matched in the
process phase.

A. Attack Model

In a two-party secure computation protocol, the attacker is
one of the participants who attempts to obtain the information
of the other’s input. A participant who can learn more infor-
mation than the designated output is regarded as a successful
attacker. The ability of the attacker A is explained as follows.
A passive and static attacker A = (A1,A2) is an entity
who corrupts one of the participants at the beginning of the
protocol and honestly follows the protocol. The subroutine
A1 is a corrupted user who knows the traffic data. The other
subroutine A2 is a corrupted network administrator who knows
the rule set and acquires the output of the filtering function.
Both subroutines can observe the transmitted data of the
protocol, called the view, during the protocol operation.

B. Theoretic Proof

The goal of the privacy is to ensure that one (the user or
the network administrator) does not leak any input information
to the other. The strategy of the proof is to show that the
information leakage of the proposed protocol is identical to
that of the ideal one, which relies on a trusted third part.
An attacker in the ideal one is called a simulator because
its strategy is to simulate the view of the attacker in the real
world. If the simulation is indistinguishable from the proposed
protocol with respect to the attacker’s view, it implies that the
proposed protocol is as secure as the ideal one. The details of
the proof are explained as follows.

The protocol withstanding the above attack model can ensure the user
privacy and the rule privacy, increasing the incentive to deploy the DPF
service. However, in practical situations, a stronger attacker may exist, such
as an uncooperative user who deliberately dodges the filtering process. In this
paper, we only focus on the privacy of the protocol under the curious-but-
honest attacker and leave the above strong attackers in the future works.

Theorem 1: Based on the security of the oblivious transfer
protocol and the cryptographic one-way hash function, the
network administrator in the proposed protocol reveals no
information of the rule set R, and the user in the proposed
protocol reveals no information of msgt if msgt /∈ R under
the static and passive attacker A = (A1,A2).

Proof: We divide the privacy proof into two parts: the
rule privacy and the user privacy.

For the rule privacy, the user acts as the attacker A1 who
attempts to learn the rule information. The view of A1 in
the proposed protocol is the same as that of the sender in
the (21) -OTm

ℓ protocol. Since (21) -OTm
ℓ has been formally

proved, the user learns nothing as the sender in the oblivious
transfer protocol.

For the user privacy, the network administrator is
the attacker A2 who tries to learn the information of
msgt when msgt /∈ R occurs. The view of A2 is
(κi

1,bi1
, κi

2,bi2
, ..., κi

m,bim
)’s with each γi = bi1bi2...bim in the

setup phase and (αt, βt)’s in the process phase, respectively.
The simulator S in the ideal world acts as the user in
the real protocol to simulate the network owner’s following
view, where the hash function is treated as a random oracle
controlled by S. In the setup phase, S generates the m pairs
of random strings, (κ̃i

j,0, κ̃
i
j,1) ∈R {0, 1}2ℓ for each γi ∈ R as

the sender’s input of (21) -OTm
ℓ . By following the protocol,

A2 computes γ̃i := κ̃i
1,bi1

⊕ κ̃i
2,bi2

⊕ ... ⊕ κ̃i
m,bim

. In the
process phase, S randomly generates α̃t ∈R {0, 1}λ and
β̃t ∈R {0, 1}ℓ. After obtaining (α̃t, β̃t)’s, the network owner
will query the random oracle for the hash value of γ̃i ⊕ β̃t.
Then, the oracle responds ht

i ∈R {0, 1}λ/α̃t to the query.
In the following, we prove that the view of A2 in the

simulation is indistinguishable from that in the real protocol. In
the setup phase, the receiving κi

j,bij
’s that contains the random

factor rij’s in the real protocol and κ̃i
j,bij

’s in the simulation are
both uniformly distributed over {0, 1}ℓ. In the process phase,
αt’s and βt’s in the real protocol are uniformly distributed over
{0, 1}λ and {0, 1}ℓ similar to α̃t’s and β̃t’s. The reason is that
(αt, βt) contains the random factor ωt, and H is considered
as a random oracle. For the matching result of msgt /∈ R,
the response ht

i from the simulator ensures that the inequality
α̃t ̸= H(γ̃i ⊕ β̃t) always holds. Therefore, the attacker A2

cannot distinguish the real protocol from the simulation.

VI. DISCUSSION

The (21) -OTm
ℓ extension requires 2mℓ-bit transmissions for

each party. In DPF-OT, each packet runs n times (21) -OTm
ℓ .

Compare with DPF-OT, our proposed DPF-ET only needs
to run once in the setup phase, while the user does not
interact with the network in the process phase. By contrast,
BlindBox runs AES-128 secure computation based on Yao’s
garbled circuit protocol in the setup phase that invokes the
transmission of AES-128 garbled circuit and OT operation.
An AES-128 circuit includes 9100 non-xor gates [12], and
each non-xor gates requires 64 bytes to represent a garbled
gate. Therefore, the size of an AES-128 garbled circuit is over
500KB. Compared to BlindBox, our DPF-ET does not incur

TABLE I
COMPARISON OF COMMUNICATIONS OVERHEAD

The Setup Phase The Process Phase
(/pkt)

DPF-OT(User TX) - 2m× ℓ× n=1MB
DPF-OT(Network TX) - 2m× ℓ× n=1MB
BlindBox(User TX) (AES GC+2m×

ℓ)× n=501MB
|RS|=5B

BlindBox(Network TX) 2m× ℓ× n=1MB -
DPF-ET(User TX) 2m× ℓ× n=1MB λ+ ℓ=24B
DPF-ET(Network TX) 2m×ℓ×|R|=1MB -
1 m=32 bits: the bit length of a rule
2 ℓ=128 bits: the bit length of an OT string
4 n=1000: the size of a rule table
5 λ=64 bits: the output length of H
6 AES GC ≈500KB: the size of an AES-128 garbled circuit
7 |RS|=40 bits: the modular length for computing a message digest

high communications overheads for a large rule set in the setup
phase.

In the setup phase, a traffic sender prepares the keys for data
encryption and runs the (21) -OTm

ℓ extension to install the rules
in VNFs via the SDN controller. DPF-ET only needs 2 MB in
total for 1000 rules, but BlindBox requires 500 MB. Therefore,
BlindBox incurs a much larger overhead on the SDN controller
to interpret the messages. After the setup phase, a sender
operates XOR on packet payloads with the keys generated
in the setup phase and a random seed (βt) generated for each
single packet. Then, the sender hashes the payloads and inserts
(αt, βt) into the beginning of the payloads before sending the
packet.

Compared to the DPF-OT (introduced in Section III), the
forwarding procedure of the DPF-EF is much faster, because
the the DPF-OT needs to finish OT operations on all rules
for each packet, and each OT operation requires 2 MB trans-
mission in total. Therefore, 2 GB messages are required for a
packet when the size of the rule table is 1000. In other words,
the OT operations are expensive and incur high overheads on
the SDN controller. Furthermore, the forwarding procedure of
DPF-EF is also faster than Blindbox, because Blindbox needs
to encrypt all rules with AES, which is slower than XOR.

VII. IMPLEMENTATION

We implement the proposed protocol in an OpenFlow
experimental network with five HP servers (HP DL320e Gen8)
and five HP OpenFlow switches (three HP 5406zl and two
HP 3800) to evaluate the performance of DPF-ET. One of
the servers acts as the traffic sender, while another server is
configured as the SDN controller. In addition, we implement
the proposed DPF-ET as virtualized network functions (VNFs)
running in the other servers attached to SDN switches, which
are managed by a service-chain platform (SCP) [22]. Packets
are first forwarded to an attached VNF and sent back to the
SDN switch if the packets are not dropped by DFP rules
as shown in Figure 1. In each VNF, we run Click Software
Router [21] to properly manage the traffic. To communicate
with the SDN controller, we add a communication module
in Click Software Router to open a socket connecting to the
controller and receive the matching rules from the controller.

For the protocol implementation, we adopt the VMAC64
[24] in the Crypto++ library [26] as the hash function with the
output length as λ = 64 bits. VMAC64 requires an additional
key as the input, so we assume that the user and the network
share a secret key in the setup phase. We also compare the
proposed protocol with the open-source implementation [25]
of the OT [10] and OT extension protocols [7], where ℓ = 128
and m = 32 for the OT operation in the experiment.

In our implementation, the test traffic is generated randomly,
and the traffic sender encrypts the payloads and inserts the
tokens, i.e., 64-bit αt’s and 128-bit βt’s, in the head of the
packet payloads. DPF VNFs are deployed and attached to
the OpenFlow switches. After receiving the packets, DPF-EF
fetches (αt, βt)’s from the beginning of the payloads and then
scans the rule table. For each rule in the rule table, DPF-EF
hashes and operates XOR on the rule with βt and compares the
rule with αt. If one of the rules matches αt, DPF-EF drops the
packet. Otherwise, it passes the packet back to the OpenFlow
switches. Both the traffic sender and VNF with DPF-ET are
deployed in HP servers with Intel Xeon CPU E3-1230 3.3
GHz and 4 GB memory.

VIII. EVALUATION

In the following, we evaluate the proposed protocol with
the following performance metrics. (1)The speed of packet
matching. How fast can our solution match packets? (2) The
overhead of different components. We measure the time spent
on different parts of our solution. (3) The speed for packet
encryption. How fast can a sender encrypt and send packets?
We compare the proposed protocol with the traditional DPF
without traffic encryption and the DPF with OT encryption
(DPF-OT) introduced in Section III, which is also imple-
mented in VNFs.

A. Payload Matching

In DPF-ET, we first XOR and hash all entries in the rule
table and then match each packet payload with the entries.
Based on the matching result, the packet will be dropped or
forwarded. In this section, we analyze the overhead of packet
encryption and the time for DPF in VNFs. Fig. 3 shows the
matching speed in terms of packets per second with different
table sizes. When the table size increases, it is necessary for
DPF-ET to spend more time to properly handle the table
entries. Nevertheless, the speed of our DPF is able to process
15k to 114k packets per second, while DPF-OT can serve
only 92 to 823 packets per second. The traditional DPF can
reach 52k to 287k packets per second, but the user privacy
is violated. Therefore, if the packet length is 1400 bytes (i.e.,
the common packet length in the Internet), DPF-ET is able to
handle the traffic as fast as 1.2 Gbps when the table size is
1000.

B. Overhead Analysis at the Network Side

To identify the bottleneck of DPF-ET, we divided DPF-ET
into four parts: XOR, hash, matching, and packet handling.
Packet handling includes reading packets from NIC, payload

Fig. 3. The performance with different table sizes.

Fig. 4. The overhead of different components in DPF-ET

interpretation, and sending them back to the NIC. When
a packet comes in, DPF-ET first interprets and fetches its
payload and then scans the rule table. For each table entry,
the rule is first handled by XOR and hash functions, and then
the packet payload is compared with the rule. Figure 4 presents
the time for each operation spent on a packet when the size of
the rule table is 1000. The result manifests that the overhead
in the network is higher than the overhead in the user. For
the network side, the rule table is necessary to be scanned for
rule matching, and both XOR and hash run 1000 times for
each packet according to the process phase in DPF-ET. XOR
spends less time than the others, but hash requires more time.

C. Overhead Analysis at the User Side

In the following, we evaluate the speed to encrypt the
packets on the sender’s side. Figure 4 shows the time in µs for
each operation on each packet, and all operations are less then
1 µs. Therefore, the result manifests that the sender spends
most time on packet processing, and both XOR and hash time
can be ignored. Moreover, when the packet length is 1400-
byte, the sending rate can achieve 10 Gbps.

D. Overhead Analysis in the Setup Phase

In the setup phase, the SDN controller performs rule en-
cryption with the client before installing the encrypted rules
in VNFs. To encrypt the rules, it is necessary to finish
OT operations in Step 2 of Section IV, together with some
extra XOR operations in DPF-ET. TABLE II shows the time
required to install 1000 rules. The result manifests that OT
operations take much longer time, and DPF-ET only incurs
limited overheads with the overall setup time around 300 ms.
Thus, DPF-ET is very efficient for DPF in SDNs.

TABLE II
PROCESS TIME IN THE SETUP PHASE.

Time
OT 200 ms
Other OPs 1.232 ms

TABLE III
SETUP TIME COMPARISON.

Time
DPF-ET 201.2 ms
BlindBox 9500 ms

Compared with BlindBox, DPF-ET requires much less setup
time as shown in TABLE III. BlindBox requires 9.5 seconds,
while DPF-ET only needs 201.2 ms. The high setup time in
BlindBox is induced from the high volume of communications
(502 MB V.S. 2 MB) and computation. By contrast, DPF is
only involved in Setup Phase for each private connection, and
DPF-ET thereby has much lower setup overheads and is able
to support much more connections in SDNs.

IX. CONCLUSION

In this paper, we proposed DPF-ET, a privacy-preserving
deep packet filtering protocol that allows the network owner
performing efficient rule filtering over encrypted traffic data in
SDN/NFV environment. With regard to privacy, the network
owner does not able to learn the packet data, while the
users cannot acquire the filtering rules. The implementation
results on an HP SDN/NFV system manifest that DPF-ET only
invokes 2MB communication overhead in the setup phase and
takes 5 µs per packet in the process phase for matching a 1K
rule set with a 32-bit rule length.

REFERENCES

[1] R. Alshammari and A. N. Zincir-Heywood, ”Machine Learning based
encrypted traffic classification: identifying SSH and Skype,” IEEE Sym-
posium on Computational Intelligence for Security and Defense Appli-
cations, pp. 1-8, 2009.

[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, ”More efficient
oblivious transfer and extensions for faster secure computation,” In
Proceedings of the ACM SIGSAC conference on Computer and Com-
munications Security, pp. 535-548, 2013.

[3] M. Bellare and P. Rogaway, ”Random oracles are practical: a paradigm for
designing efficient protocols,” In Proceedings of the 1st ACM conference
on Computer and communications security, pp. 62-73, ACM Press, 1993.

[4] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, ”Universally Composable
Two-Party and Multi-Party Secure Computation,” In Proceedings of ACM
Symposium on Theory of Computing (pp. 494-503), 2002.

[5] A. Dainotti, A. Pescape and K. C. Claffy, ”Issues and future directions
in traffic classification,” IEEE Network, 26(1),pp. 35-40, 2012.

[6] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, ”Bohatei: flexible and
elastic DDoS defense,” 24th USENIX Security, pp.817-832, 2015.

[7] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, ”Extending oblivious
transfers efficiently,” In Advances in Cryptology-CRYPTO03, Vol. 2729
of LNCS, pp. 145-161. Springer, 2003.

[8] N. McKeown et al., ”OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review 38(2), pp.
69-74, 2008.

[9] S. A. Mehdi, J. Khalid, and S. A. Khayam, Revisiting traffic anomaly
detection using software defined networking, in Proc. 14th Int. Symp.
Recent Advances in Intrusion Detection (RAID), 2011, vol. 6961, pp.
161V180.

[10] M. Naor and B. Pinkas, ”Efficient oblivious transfer protocols,” Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics, 2001.

[11] T. T. Nguyen and G. Armitage, ”A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, 10(4), pp. 56-76, 208.

[12] B. Pinkas, T. Schneider, N. P. Smart, S. C. Williams, ”Secure two-party
computation is practical,” In Advances in CryptologyVASIACRYPT, pp.
250-267, 2009.

[13] B. Pinkas, T. Schneider, and M. Zohner, ”Faster private set intersection
based on OT extension,” Usenix Security, Vol. 14, pp. 797-812, 2014.

[14] M. O. Rabin, ”How to exchange secrets with oblivious transfer,” TR-81
edition, 1981, Aiken Computation Lab, Harvard University.

[15] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, ”BlindBox: Deep
Packet Inspection over Encrypted Traffic,” SIGCOMM Conference, 2015.

[16] A. C. Yao, ”How to Generate and Exchange Secrets,” In Proc. IEEE
FOCS, 1986.

[17] Exfiltration Prevention, http://www.filetransferconsulting.com/exfiltration-
definition-security-risk-prevention/

[18] talktalk HomeSafe, http://www.talktalk.co.uk/security/faq/
[19] SSL Visibility and Management, https://www.bluecoat.com/products/ssl-

decryption-visibility-and-management
[20] Network Functions Virtualisation, https://portal.etsi.org/NFV/NFV White Paper.pdf
[21] Click Software Router, http://read.cs.ucla.edu/click/click
[22] Service-Chain Platform, http://islab.iis.sinica.edu.tw/dokuwiki/
[23] Hash Algorithm Benchmark, http://www.cryptopp.com/benchmarks-

amd64.html
[24] VMAC website, http://www.fastcrypto.org/vmac/
[25] OT extension implementation https://github.com/encryptogroup/OTExtension
[26] Crypto++ library https://www.cryptopp.com/

