Lecture 2: Integration theory and Radon-Nikodym derivative

a.e. and a.s. statements

A statement holds a.e. v if it holds for all ω in N^{C} with $v(N)=0$.
If v is a probability, then a.e. may be replaced by a.s.

Proposition 1.6

Let (Ω, \mathscr{F}, v) be a measure space and f and g be Borel functions.
(i) If $f \leq g$ a.e., then $\int f d v \leq \int g d v$, provided that the integrals exist.
(ii) If $f \geq 0$ a.e. and $\int f d v=0$, then $f=0$ a.e.

Proof of (ii)

Let $A=\{f>0\}$ and $A_{n}=\left\{f \geq n^{-1}\right\}, n=1,2, \ldots$.
Then $A_{n} \subset A$ for any n and $\lim _{n \rightarrow \infty} A_{n}=\cup A_{n}=A$ (why?).
By Proposition 1.1 (iii), $\lim _{n \rightarrow \infty} v\left(A_{n}\right)=v(A)$.
Using part (i) and Proposition 1.5, we obtain that, for any n,

$$
n^{-1} v\left(A_{n}\right)=\int n^{-1} I_{A_{n}} d v \leq \int f I_{A_{n}} d v \leq \int f d v=0
$$

Exchange limit and integration

$\left\{f_{n}: n=1,2, \ldots\right\}$: a sequence of Borel functions.
Can we exchange the limit and integration, i.e.,

$$
\int \lim _{n \rightarrow \infty} f_{n} d v=\lim _{n \rightarrow \infty} \int f_{n} d v ?
$$

Example 1.7

Consider (\mathscr{R}, \mathscr{B}) and the Lebesgue measure.
Define $f_{n}(x)=n l_{\left[0, n^{-1}\right]}(x), n=1,2, \ldots$.
Then $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all x but $x=0$.
Since a single point has Lebesgue measure $0, \int \lim _{n \rightarrow \infty} f_{n}(x) d x=0$.
On the other hand, $\int f_{n}(x) d x=1$ for any n and $\lim _{n \rightarrow \infty} \int f_{n}(x) d x=1$.

Theorem 1.1

Let f_{1}, f_{2}, \ldots be a sequence of Borel functions on (Ω, \mathscr{F}, v).
(i) (Fatou's lemma). If $f_{n} \geq 0$, then $\int \liminf { }_{n} f_{n} d v \leq \liminf _{n} \int f_{n} d v$.
(ii) (Dominated convergence theorem). If $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. and $\left|f_{n}\right| \leq g$ a.e. for integrable g, then $\int \lim _{n \rightarrow \infty} f_{n} d v=\lim _{n \rightarrow \infty} \int f_{n} d v$.
(iii) (Monotone convergence theorem). If $0 \leq f_{1} \leq f_{2} \leq \cdots$ and $\lim _{n \rightarrow \infty} f_{n}=f$ a.e., then $\int \lim _{n \rightarrow \infty} f_{n} d v=\lim _{n \rightarrow \infty} \int f_{n} d v$.

Partial proof of Theorem 1.1

Part (i) and part (iii) are equivalent (exercise)
See the textbook for a proof of part (iii).
We now prove part (ii) (the DCT) using Faton's lemma (part (iii))
By the condition, $g+f_{n} \geq 0$ and $g-f_{n} \geq 0$
By Faton's lemma and the fact that $\lim _{n} f_{n}=f$,

$$
\begin{aligned}
& \int(g+f) d v=\int \liminf _{n}\left(g+f_{n}\right) d v \leq \liminf _{n} \int\left(g+f_{n}\right) d v \\
& \int(g-f) d v=\int \liminf _{n}\left(g-f_{n}\right) d v \leq \liminf _{n} \int\left(g-f_{n}\right) d v
\end{aligned}
$$

The last expression is the same as

$$
\int(f-g) d v \geq \underset{n}{\limsup } \int\left(f_{n}-g\right) d v
$$

Since g is integrable, all integrals are finite and we can cancel $\int g d v$ in the above inequalities.
Then

$$
\int f d v \leq \liminf _{n} \int f_{n} d v \leq \limsup _{n} \int f_{n} d v \leq \int f d v
$$

Example

Let $f_{n}(x)=\frac{n}{x+n}, x \in \Omega=[0,1], n=1,2, \ldots$
Then $\lim _{n} f_{n}(x)=1$.
To apply the DCT, note that $0 \leq f_{n}(x) \leq 1$.
To apply the MCT, note that $0 \leq f_{n}(x) \leq f_{n+1}(x)$.
Hence, $\lim _{n} \int f_{n}(x) d x=\int \lim _{n} f_{n}(x) d x=\int d x=1$.

Example 1.8 (Interchange of differentiation and integration)

Let (Ω, \mathscr{F}, v) be a measure space and, for any fixed $\theta \in \mathscr{R}$, let $f(\omega, \theta)$ be a Borel function on Ω.
Suppose that $\partial f(\omega, \theta) / \partial \theta$ exists a.e. for $\theta \in(a, b) \subset \mathscr{R}$ and that $|\partial f(\omega, \theta) / \partial \theta| \leq g(\omega)$ a.e., where g is an integrable function on Ω.
Then, for each $\theta \in(a, b), \partial f(\omega, \theta) / \partial \theta$ is integrable and, by Theorem 1.1 (ii),

$$
\frac{d}{d \theta} \int f(\omega, \theta) d v=\int \frac{\partial f(\omega, \theta)}{\partial \theta} d v
$$

Theorem 1.2 (Change of variables)

Let f be measurable from (Ω, \mathscr{F}, v) to (Λ, \mathscr{G}) and g be Borel on (Λ, \mathscr{G}). Then

$$
\int_{\Omega} g \circ f d v=\int_{\Lambda} g d\left(v \circ f^{-1}\right),
$$

i.e., if either integral exists, then so does the other, and the two are the same.

Remarks

- For Riemann integrals, $\int g(y) d y=\int g(f(x)) f^{\prime}(x) d x, y=f(x)$.
- For a random variable X on $(\Omega, \mathscr{F}, P), E X=\int_{\Omega} X d P=\int_{\mathscr{R}} x d P_{X}$, $P_{X}=P \circ X^{-1}$
- Let Y be a random vector from Ω to \mathscr{R}^{k} and g be Borel on \mathscr{R}^{k}.
- Example: $Y=\left(X_{1}, X_{2}\right)$ and $g(Y)=X_{1}+X_{2}$.
- $E\left(X_{1}+X_{2}\right)=E X_{1}+E X_{2}$ (why?) $=\int_{\mathscr{R}} x d P_{X_{1}}+\int_{\mathscr{R}} x d P_{X_{2}}$.
- We need to handle two integrals involving $P_{X_{1}}$ and $P_{X_{2}}$.
- On the other hand, $E\left(X_{1}+X_{2}\right)=\int_{\mathscr{R}} x d P_{X_{1}+X_{2}}$ involving one integral w.r.t. $P_{X_{1}+X_{2}}$, which is not easy to obtain unless we have some knowledge about the joint c.d.f. of $\left(X_{1}, X_{2}\right)$.

Theorem 1.3 (Fubini's theorem)

Let v_{i} be a σ-finite measure on $\left(\Omega_{i}, \mathscr{F}_{i}\right), i=1,2$, and f be a Borel function on $\prod_{i=1}^{2}\left(\Omega_{i}, \mathscr{F}_{i}\right)$ with $f \geq 0$ or $\int|f| v_{1} \times v_{2}<\infty$.
Then

$$
g\left(\omega_{2}\right)=\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) d v_{1}
$$

exists a.e. v_{2} and defines a Borel function on Ω_{2} whose integral w.r.t. v_{2} exists, and

$$
\int_{\Omega_{1} \times \Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) d v_{1} \times v_{2}=\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) d v_{1}\right] d v_{2} .
$$

Extensions to $\prod_{i=1}^{k}\left(\Omega_{i}, \mathscr{F}_{i}\right)$ is straightforward.
Fubini's theorem is very useful in
(1) evaluating multi-dimensional integrals (exchanging the order of integrals);
(2) proving a function is measurable;
(3) proving some results by relating a one dimensional integral to a multi-dimensional integral

Radon-Nikodym derivative

Absolutely continuous

Let λ and v be two measures on a measurable space (Ω, \mathscr{F}, v). We say λ is absolutely continuous w.r.t. v and write $\lambda \ll v$ iff

$$
v(A)=0 \quad \text { implies } \quad \lambda(A)=0
$$

Let f be a nonnegative Borel function and

$$
\lambda(A)=\int_{A} f d v, \quad A \in \mathscr{F}
$$

Then λ is a measure and $\lambda \ll v$.
Computing $\lambda(A)$ can be done through integration w.r.t. a well-known measure.
$\lambda \ll v$ is also almost sufficient for the existence of f with
$\lambda(A)=\int_{A} f d v, \quad A \in \mathscr{F}$.

Theorem 1.4 (Radon-Nikodym theorem)

Let v and λ be two measures on (Ω, \mathscr{F}) and v be σ-finite. If $\lambda \ll v$, then there exists a nonnegative Borel function f on Ω such that

$$
\lambda(A)=\int_{A} f d v, \quad A \in \mathscr{F} .
$$

Furthermore, f is unique a.e. v, i.e., if $\lambda(A)=\int_{A} g d v$ for any $A \in \mathscr{F}$, then $f=g$ a.e. v.

Remarks

- The function f is called the Radon-Nikodym derivative or density of λ w.r.t. v and is denoted by $d \lambda / d v$.
- Consequence: If f is Borel on (Ω, \mathscr{F}) and $\int_{A} f d v=0$ for any $A \in \mathscr{F}$, then $f=0$ a.e.

Probability density function

If $\int f d v=1$ for an $f \geq 0$ a.e. v, then λ is a probability measure and f is called its probability density function (p.d.f.) w.r.t. v.
For any probability measure P on $\left(\mathscr{R}^{k}, \mathscr{B}^{k}\right)$ corresponding to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure v, then f is also called the p.d.f. of F or X w.r.t. v.

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let $a_{1}<a_{2}<\cdots$ be a sequence of real numbers and let $p_{n}, n=1,2, \ldots$, be a sequence of positive numbers such that $\sum_{n=1}^{\infty} p_{n}=1$.
Then

$$
F(x)= \begin{cases}\sum_{i=1}^{n} p_{i} & a_{n} \leq x<a_{n+1}, \quad n=1,2, \ldots \\ 0 & -\infty<x<a_{1}\end{cases}
$$

is a stepwise c.d.f.
It has a jump of size p_{n} at each a_{n} and is flat between a_{n} and a_{n+1}, $n=1,2, \ldots$.
Such a c.d.f. is called a discrete c.d.f.

Example 1.10 (continued)

The corresponding probability measure is

$$
P(A)=\sum_{i: a_{i} \in A} p_{i}, \quad A \in \mathscr{F},
$$

where $\mathscr{F}=$ the set of all subsets (power set).
Let v be the counting measure on the power set.
Then

$$
P(A)=\int_{A} f d v=\sum_{a_{i} \in A} f\left(a_{i}\right), \quad A \subset \Omega,
$$

where $f\left(a_{i}\right)=p_{i}, i=1,2, \ldots$.
That is, f is the p.d.f. of P or F w.r.t. v.
Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure.
A p.d.f. w.r.t. counting measure is called a discrete p.d.f.
A discrete p.d.f. f corresponds to a discrete c.d.f. F and the value $f(x)$ is the jump size of F at $x \in \mathscr{R}$.

Example 1.11

Let F be a c.d.f.
Assume that F is differentiable in the usual sense in calculus.
Let f be the derivative of F. From calculus,

$$
F(x)=\int_{-\infty}^{x} f(y) d y, \quad x \in \mathscr{R} .
$$

Let P be the probability measure corresponding to F.
Then

$$
\begin{equation*}
P(A)=\int_{A} f d m \quad \text { for any } A \in \mathscr{B} \tag{1}
\end{equation*}
$$

where m is the Lebesgue measure on \mathscr{R}.
f is the p.d.f. of P or F w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in calculus.

How do we prove (1)?

Proof of (1): π - and λ-system (Exercise 5)

Let $\mathscr{C}=\{(-\infty, x]: x \in \mathscr{R}\}$
\mathscr{C} is a π-system: $A \in \mathscr{C}$ and $B \in \mathscr{C}$ imply $A \cap B \in \mathscr{C}$.
$\sigma(\mathscr{C})=\mathscr{B}$
Let $\mathscr{D}=\left\{A \in \mathscr{B}: P(B)=\int f d m\right\}$
$\mathscr{C} \subset \mathscr{D}$.
The result follows (i.e., $\sigma(\mathscr{C}) \subset \mathscr{D}$) if we can show \mathscr{D} is a λ-system: $\emptyset \in \mathscr{D}$ (obvious)
$B \in \mathscr{D}$ implies $B^{c} \in \mathscr{D}$ (need to verify)
$B_{i} \in \mathscr{D}$ and B_{i} 's are disjoint imply $\cup_{i} B_{i} \in \mathscr{D}$ (need to verify)
If $B \in \mathscr{D}$, then

$$
\begin{aligned}
P\left(B^{c}\right) & =1-P(B)=1-\int_{B} f d m=\int f d m-\int I_{B} f d m \\
& =\int\left(1-I_{B}\right) f d m=\int I_{B} f d m=\int_{B^{c}} f d m .
\end{aligned}
$$

This shows $B^{c} \in \mathscr{D}$.

If $B_{i} \in \mathscr{D}$ and B_{i} 's are disjoint, then

$$
\begin{gathered}
\int_{\cup_{i} B_{i}} f d m=\int \iota_{L_{i} B_{i}} f d m=\int \sum_{i} I_{B_{i}} f d m=\sum_{i} \int I_{B_{i}} f d m \\
=\sum_{i} \int_{B_{i}} f d m=\sum_{i} P\left(B_{i}\right)=P\left(\cup_{i} B_{i}\right) .
\end{gathered}
$$

Thus, $\cup_{i} B_{i} \in \mathscr{D}$.

Example 1.11 (continued)

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is that F is absolute continuous in the sense that for any $\varepsilon>0$, there exists a $\delta>0$ such that for each finite collection of disjoint bounded open intervals $\left(a_{i}, b_{i}\right), \Sigma\left(b_{i}-a_{i}\right)<\delta$ implies $\sum\left[F\left(b_{i}\right)-F\left(a_{i}\right)\right]<\varepsilon$.
Absolute continuity is weaker than differentiability, but is stronger than continuity.

Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let v be a σ-finite measure on a measure space (Ω, \mathscr{F}). All other measures discussed in (i)-(iii) are defined on (Ω, \mathscr{F}).
(i) If λ is a measure, $\lambda<v$, and $f \geq 0$, then

$$
\int f d \lambda=\int f \frac{d \lambda}{d v} d v
$$

(Notice how the $d v$'s "cancel" on the right-hand side.)
(ii) If $\lambda_{i}, i=1,2$, are measures and $\lambda_{i} \ll v$, then $\lambda_{1}+\lambda_{2} \ll v$ and

$$
\frac{d\left(\lambda_{1}+\lambda_{2}\right)}{d v}=\frac{d \lambda_{1}}{d v}+\frac{d \lambda_{2}}{d v} \quad \text { a.e. } v .
$$

Proposition 1.7 (continued)

(iii) (Chain rule). If τ is a measure, λ is a σ-finite measure, and $\tau \ll \lambda \ll v$, then

$$
\frac{d \tau}{d v}=\frac{d \tau}{d \lambda} \frac{d \lambda}{d v} \quad \text { a.e. } v
$$

In particular, if $\lambda \ll v$ and $v \ll \lambda$ (in which case λ and v are equivalent), then

$$
\frac{d \lambda}{d v}=\left(\frac{d v}{d \lambda}\right)^{-1} \quad \text { a.e. } v \text { or } \lambda
$$

(iv) Let $\left(\Omega_{i}, \mathscr{F}_{i}, v_{i}\right)$ be a measure space and v_{i} be σ-finite, $i=1$, 2 . Let λ_{i} be a σ-finite measure on $\left(\Omega_{i}, \mathscr{F}_{i}\right)$ and $\lambda_{i} \ll v_{i}, i=1,2$. Then $\lambda_{1} \times \lambda_{2} \ll v_{1} \times v_{2}$ and

$$
\frac{d\left(\lambda_{1} \times \lambda_{2}\right)}{d\left(v_{1} \times v_{2}\right)}\left(\omega_{1}, \omega_{2}\right)=\frac{d \lambda_{1}}{d v_{1}}\left(\omega_{1}\right) \frac{d \lambda_{2}}{d v_{2}}\left(\omega_{2}\right) \quad \text { a.e. } v_{1} \times v_{2}
$$

Proof of Proposition 1.7 (i)

- If $f=I_{B}$ is an indicator function, then

$$
\int f d \lambda=\int_{B} d \lambda=\lambda(B)=\int_{B} \frac{d \lambda}{d v} d v=\int f \frac{d \lambda}{d v} d v
$$

- If $f=\sum_{j} a_{j} I_{B_{j}} \geq 0$ (a nonnegative simple function), then

$$
\begin{gathered}
\int f d \lambda=\int \sum_{j} a_{j} I_{B_{j}} d \lambda=\sum_{j} a_{j} \int I_{B_{j}} d \lambda=\sum_{j} a_{j} \int I_{B_{j}} \frac{d \lambda}{d v} d v \\
=\int \sum_{j} a_{j} I_{B_{j}} \frac{d \lambda}{d v} d v=\int f \frac{d \lambda}{d v} d v
\end{gathered}
$$

- For general $f \geq 0$, there exists an increasing sequence of nonnegative simple functions $\varphi_{k} \rightarrow f$ and

$$
\int f d \lambda=\lim _{k} \int \varphi_{k} d \lambda=\lim _{k} \int \varphi_{k} \frac{d \lambda}{d v} d v=\int f \frac{d \lambda}{d v} d v
$$

