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Lecture 2: Integration theory and Radon-Nikodym
derivative
a.e. and a.s. statements
A statement holds a.e. ν if it holds for all ω in Nc with ν(N) = 0.
If ν is a probability, then a.e. may be replaced by a.s.

Proposition 1.6
Let (Ω,F ,ν) be a measure space and f and g be Borel functions.

(i) If f ≤ g a.e., then
∫

fdν ≤
∫

gdν , provided that the integrals exist.
(ii) If f ≥ 0 a.e. and

∫
fdν = 0, then f = 0 a.e.

Proof of (ii)

Let A = {f > 0} and An = {f ≥ n−1}, n = 1,2, ....
Then An ⊂ A for any n and limn→∞ An = ∪An = A (why?).
By Proposition 1.1(iii), limn→∞ ν(An) = ν(A).
Using part (i) and Proposition 1.5, we obtain that, for any n,

n−1
ν(An) =

∫
n−1IAndν ≤

∫
fIAndν ≤

∫
fdν = 0

Hence ν(A) = 0 and f = 0 a.e.
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Exchange limit and integration
{fn : n = 1,2, ...}: a sequence of Borel functions.
Can we exchange the limit and integration, i.e.,∫

lim
n→∞

fndν = lim
n→∞

∫
fndν?

Example 1.7
Consider (R,B) and the Lebesgue measure.
Define fn(x) = nI[0,n−1](x), n = 1,2, ....
Then limn→∞ fn(x) = 0 for all x but x = 0.
Since a single point has Lebesgue measure 0,

∫
limn→∞ fn(x)dx = 0.

On the other hand,
∫

fn(x)dx = 1 for any n and limn→∞

∫
fn(x)dx = 1.

Theorem 1.1
Let f1, f2, ... be a sequence of Borel functions on (Ω,F ,ν).

(i) (Fatou’s lemma). If fn ≥ 0, then
∫

liminfn fndν ≤ liminfn
∫

fndν .
(ii) (Dominated convergence theorem). If limn→∞ fn = f a.e. and
|fn| ≤ g a.e. for integrable g, then

∫
limn→∞ fndν = limn→∞

∫
fndν .

(iii) (Monotone convergence theorem). If 0≤ f1 ≤ f2 ≤ ·· · and
limn→∞ fn = f a.e., then

∫
limn→∞ fndν = limn→∞

∫
fndν .
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Partial proof of Theorem 1.1
Part (i) and part (iii) are equivalent (exercise)
See the textbook for a proof of part (iii).
We now prove part (ii) (the DCT) using Faton’s lemma (part (iii))
By the condition, g + fn ≥ 0 and g− fn ≥ 0
By Faton’s lemma and the fact that limn fn = f ,∫

(g + f )dν =
∫

liminf
n

(g + fn)dν ≤ liminf
n

∫
(g + fn)dν∫

(g− f )dν =
∫

liminf
n

(g− fn)dν ≤ liminf
n

∫
(g− fn)dν

The last expression is the same as∫
(f −g)dν ≥ limsup

n

∫
(fn−g)dν

Since g is integrable, all integrals are finite and we can cancel
∫

gdν in
the above inequalities.
Then ∫

fdν ≤ liminf
n

∫
fndν ≤ limsup

n

∫
fndν ≤

∫
fdν
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Example
Let fn(x) = n

x+n , x ∈ Ω = [0,1], n = 1,2, ...
Then limn fn(x) = 1.
To apply the DCT, note that 0≤ fn(x)≤ 1.
To apply the MCT, note that 0≤ fn(x)≤ fn+1(x).
Hence, limn

∫
fn(x)dx =

∫
limn fn(x)dx =

∫
dx = 1.

Example 1.8 (Interchange of differentiation and integration)
Let (Ω,F ,ν) be a measure space and, for any fixed θ ∈R, let f (ω,θ)
be a Borel function on Ω.
Suppose that ∂ f (ω,θ)/∂θ exists a.e. for θ ∈ (a,b)⊂R and that
|∂ f (ω,θ)/∂θ | ≤ g(ω) a.e., where g is an integrable function on Ω.
Then, for each θ ∈ (a,b), ∂ f (ω,θ)/∂θ is integrable and, by Theorem
1.1(ii),

d
dθ

∫
f (ω,θ)dν =

∫
∂ f (ω,θ)

∂θ
dν .
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Theorem 1.2 (Change of variables)
Let f be measurable from (Ω,F ,ν) to (Λ,G ) and g be Borel on (Λ,G ).
Then ∫

Ω
g ◦ fdν =

∫
Λ

gd(ν ◦ f−1),

i.e., if either integral exists, then so does the other, and the two are the
same.

Remarks
For Riemann integrals,

∫
g(y)dy =

∫
g(f (x))f ′(x)dx , y = f (x).

For a random variable X on (Ω,F ,P), EX =
∫

Ω XdP =
∫
R xdPX ,

PX = P ◦X−1

Let Y be a random vector from Ω to Rk and g be Borel on Rk .
Example: Y = (X1,X2) and g(Y ) = X1 + X2.
E(X1 + X2) = EX1 + EX2 (why?) =

∫
R xdPX1 +

∫
R xdPX2 .

We need to handle two integrals involving PX1 and PX2 .
On the other hand, E(X1 + X2) =

∫
R xdPX1+X2 involving one integral

w.r.t. PX1+X2 , which is not easy to obtain unless we have some
knowledge about the joint c.d.f. of (X1,X2).
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Theorem 1.3 (Fubini’s theorem)
Let νi be a σ -finite measure on (Ωi ,Fi), i = 1,2, and f be a Borel
function on ∏

2
i=1(Ωi ,Fi) with f ≥ 0 or

∫
|f |ν1×ν2 < ∞.

Then
g(ω2) =

∫
Ω1

f (ω1,ω2)dν1

exists a.e. ν2 and defines a Borel function on Ω2 whose integral w.r.t.
ν2 exists, and∫

Ω1×Ω2

f (ω1,ω2)dν1×ν2 =
∫

Ω2

[∫
Ω1

f (ω1,ω2)dν1

]
dν2.

Extensions to ∏
k
i=1(Ωi ,Fi) is straightforward.

Fubini’s theorem is very useful in
1 evaluating multi-dimensional integrals (exchanging the order of

integrals);
2 proving a function is measurable;
3 proving some results by relating a one dimensional integral to a

multi-dimensional integral
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Radon-Nikodym derivative

Absolutely continuous
Let λ and ν be two measures on a measurable space (Ω,F ,ν).
We say λ is absolutely continuous w.r.t. ν and write λ � ν iff

ν(A) = 0 implies λ (A) = 0.

Let f be a nonnegative Borel function and

λ (A) =
∫

A
fdν , A ∈F

Then λ is a measure and λ � ν .
Computing λ (A) can be done through integration w.r.t. a well-known
measure.
λ � ν is also almost sufficient for the existence of f with
λ (A) =

∫
A fdν , A ∈F .
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Theorem 1.4 (Radon-Nikodym theorem)
Let ν and λ be two measures on (Ω,F ) and ν be σ -finite. If λ � ν ,
then there exists a nonnegative Borel function f on Ω such that

λ (A) =
∫

A
fdν , A ∈F .

Furthermore, f is unique a.e. ν , i.e., if λ (A) =
∫

A gdν for any A ∈F ,
then f = g a.e. ν .

Remarks
The function f is called the Radon-Nikodym derivative or density
of λ w.r.t. ν and is denoted by dλ/dν .
Consequence: If f is Borel on (Ω,F ) and

∫
A fdν = 0 for any

A ∈F , then f = 0 a.e.
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Probability density function
If
∫

fdν = 1 for an f ≥ 0 a.e. ν , then λ is a probability measure and f is
called its probability density function (p.d.f.) w.r.t. ν .
For any probability measure P on (Rk ,Bk ) corresponding to a c.d.f. F
or a random vector X , if P has a p.d.f. f w.r.t. a measure ν , then f is
also called the p.d.f. of F or X w.r.t. ν .

Example 1.10 (Discrete c.d.f. and p.d.f.)
Let a1 < a2 < · · · be a sequence of real numbers and let pn, n = 1,2, ...,
be a sequence of positive numbers such that ∑

∞

n=1 pn = 1.
Then

F (x) =

{
∑

n
i=1 pi an ≤ x < an+1, n = 1,2, ...

0 −∞ < x < a1.

is a stepwise c.d.f.
It has a jump of size pn at each an and is flat between an and an+1,
n = 1,2, ....
Such a c.d.f. is called a discrete c.d.f.
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Example 1.10 (continued)
The corresponding probability measure is

P(A) = ∑
i:ai∈A

pi , A ∈F ,

where F = the set of all subsets (power set).
Let ν be the counting measure on the power set.
Then

P(A) =
∫

A
fdν = ∑

ai∈A
f (ai), A⊂ Ω,

where f (ai) = pi , i = 1,2, ....
That is, f is the p.d.f. of P or F w.r.t. ν .
Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure.
A p.d.f. w.r.t. counting measure is called a discrete p.d.f.
A discrete p.d.f. f corresponds to a discrete c.d.f. F and the value f (x)
is the jump size of F at x ∈R.
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Example 1.11
Let F be a c.d.f.
Assume that F is differentiable in the usual sense in calculus.
Let f be the derivative of F . From calculus,

F (x) =
∫ x

−∞

f (y)dy , x ∈R.

Let P be the probability measure corresponding to F .
Then

P(A) =
∫

A
fdm for any A ∈B, (1)

where m is the Lebesgue measure on R.
f is the p.d.f. of P or F w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in
calculus.

How do we prove (1)?
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Proof of (1): π- and λ -system (Exercise 5)
Let C = {(−∞,x ] : x ∈R}
C is a π-system: A ∈ C and B ∈ C imply A∩B ∈ C .
σ(C ) = B
Let D = {A ∈B : P(B) =

∫
fdm}

C ⊂D .
The result follows (i.e., σ(C )⊂D) if we can show D is a λ -system:
/0 ∈D (obvious)
B ∈D implies Bc ∈D (need to verify)
Bi ∈D and Bi ’s are disjoint imply ∪iBi ∈D (need to verify)

If B ∈D , then

P(Bc) = 1−P(B) = 1−
∫

B
fdm =

∫
fdm−

∫
IBfdm

=
∫

(1− IB)fdm =
∫

IBc fdm =
∫

Bc
fdm.

This shows Bc ∈D .
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If Bi ∈D and Bi ’s are disjoint, then∫
∪i Bi

fdm =
∫

I∪i Bi fdm =
∫

∑
i

IBi fdm = ∑
i

∫
IBi fdm

= ∑
i

∫
Bi

fdm = ∑
i

P(Bi) = P (∪iBi) .

Thus, ∪iBi ∈D .

Example 1.11 (continued)
A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.
A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t.
Lebesgue measure is that F is absolute continuous in the sense that
for any ε > 0, there exists a δ > 0 such that for each finite collection of
disjoint bounded open intervals (ai ,bi), ∑(bi −ai) < δ implies
∑[F (bi)−F (ai)] < ε.
Absolute continuity is weaker than differentiability, but is stronger than
continuity.
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Remarks
A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
Note that every c.d.f. is differentiable a.e. Lebesgue measure
(Chung, 1974, Chapter 1).
Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)
Let ν be a σ -finite measure on a measure space (Ω,F ).
All other measures discussed in (i)-(iii) are defined on (Ω,F ).

(i) If λ is a measure, λ � ν , and f ≥ 0, then∫
fdλ =

∫
f
dλ

dν
dν .

(Notice how the dν ’s “cancel" on the right-hand side.)
(ii) If λi , i = 1,2, are measures and λi � ν , then λ1 + λ2� ν and

d(λ1 + λ2)

dν
=

dλ1

dν
+

dλ2

dν
a.e. ν .
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Proposition 1.7 (continued)
(iii) (Chain rule). If τ is a measure, λ is a σ -finite measure, and

τ � λ � ν , then
dτ

dν
=

dτ

dλ

dλ

dν
a.e. ν .

In particular, if λ � ν and ν � λ (in which case λ and ν are
equivalent), then

dλ

dν
=

(
dν

dλ

)−1

a.e. ν or λ .

(iv) Let (Ωi ,Fi ,νi) be a measure space and νi be σ -finite, i = 1,2. Let
λi be a σ -finite measure on (Ωi ,Fi) and λi � νi , i = 1,2. Then
λ1×λ2� ν1×ν2 and

d(λ1×λ2)

d(ν1×ν2)
(ω1,ω2) =

dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1×ν2.
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Proof of Proposition 1.7(i)
If f = IB is an indicator function, then∫

fdλ =
∫

B
dλ = λ (B) =

∫
B

dλ

dν
dν =

∫
f
dλ

dν
dν

If f = ∑j aj IBj j ≥ 0 (a nonnegative simple function), then

∫
fdλ =

∫
∑
j

aj IBj dλ = ∑
j

aj

∫
IBj dλ = ∑

j
aj

∫
IBj

dλ

dν
dν

=
∫

∑
j

aj IBj

dλ

dν
dν =

∫
f
dλ

dν
dν

For general f ≥ 0, there exists an increasing sequence of
nonnegative simple functions ϕk → f and∫

fdλ = lim
k

∫
ϕkdλ = lim

k

∫
ϕk

dλ

dν
dν =

∫
f
dλ

dν
dν
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