Lecture 3: Densities, moments, inequalities, and generating functions

Example 1.12.

Let X be a random variable on (Ω, \mathscr{F}, P) whose c.d.f. F_{X} has a Lebesgue p.d.f. f_{X} and $F_{X}(c)<1$, where c is a fixed constant. Let $Y=\min \{X, c\}$, i.e., Y is the smaller of X and c. Note that $Y^{-1}((-\infty, x])=\Omega$ if $x \geq c$ and $Y^{-1}((-\infty, x])=X^{-1}((\infty, x])$ if $x<c$.
Hence Y is a random variable and the c.d.f. of Y is

$$
F_{Y}(x)= \begin{cases}1 & x \geq c \\ F_{X}(x) & x<c\end{cases}
$$

This c.d.f. is discontinuous at c, since $F_{X}(c)<1$.
Thus, it does not have a Lebesgue p.d.f.
It is not discrete either.
Does P_{Y}, the probability measure corresponding to F_{Y}, have a p.d.f. w.r.t. some measure?

Example 1.12 (continued)

Consider the point mass probability measure on $(\mathscr{R}, \mathscr{B})$:

$$
\delta_{c}(A)=\left\{\begin{array}{ll}
1 & c \in A \\
0 & c \notin A
\end{array} \quad A \in \mathscr{B}\right.
$$

Then $P_{Y} \ll m+\delta_{C}$, where m is the Lebesgue measure, and the p.d.f. of P_{Y} is

$$
f_{Y}(x)=\frac{d P_{Y}}{d\left(m+\delta_{c}\right)}(x)= \begin{cases}0 & x>c \\ 1-F_{X}(c) & x=c \\ f_{X}(x) & x<c .\end{cases}
$$

To show this, it suffices to show that

$$
\int_{(-\infty, x]} f_{Y}(t) d\left(m+\delta_{C}\right)=P_{Y}((-\infty, x]) \quad \text { for any } x \in \mathscr{R}
$$

(why?)

Example 1.12 (continued)

For $x<c$,

$$
\begin{gathered}
\int_{(-\infty, x]} f_{Y}(t) d\left(m+\delta_{c}\right)=\int_{(-\infty, x]} f_{X}(t) d m+\int_{(-\infty, x]} f_{X}(t) \delta_{C} \\
=\int_{(-\infty, x]} f_{X}(t) d m=P_{X}((-\infty, x])=P_{Y}((-\infty, x])
\end{gathered}
$$

For $x \geq c$,

$$
\begin{gathered}
\int_{(-\infty, x]} f_{Y}(t) d\left(m+\delta_{c}\right)=\int_{(-\infty, c]} f_{Y}(t) d\left(m+\delta_{c}\right) \\
=\int_{(-\infty, c)} f_{X}(t) d\left(m+\delta_{c}\right)+\int_{\{c\}}\left[1-F_{X}(c)\right] d\left(m+\delta_{c}\right) \\
=\int_{(-\infty, c)} f_{X}(t) d m+\int_{\{c\}}\left[1-F_{X}(c)\right] d \delta_{c} \\
=F_{X}(c)+\left[1-F_{X}(c)\right]=1=P_{Y}((-\infty, x])
\end{gathered}
$$

Example 1.14.

Let X be a random variable with c.d.f. F_{X} and Lebesgue p.d.f. f_{X}, and $Y=X^{2}$.
Since $Y^{-1}((-\infty, x])$ is empty if $x<0, F_{Y}(x)=0$ if $x<0$.
Since $Y^{-1}((-\infty, x])=X^{-1}([-\sqrt{x}, \sqrt{x}])$ if $x \geq 0$, the c.d.f. of Y is
$F_{Y}(x)=P \circ Y^{-1}((-\infty, x])=P \circ X^{-1}([-\sqrt{x}, \sqrt{x}])=F_{X}(\sqrt{x})-F_{X}(-\sqrt{x})$
Hence, the Lebesgue p.d.f. of F_{Y} is

$$
\left.f_{Y}(x)=\frac{1}{2 \sqrt{x}}\left[f_{X}(\sqrt{x})+f_{X}(-\sqrt{x})\right]\right]_{(0, \infty)}(x)
$$

In particular, if

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

the Lebesgue p.d.f. of the standard normal distribution $N(0,1)$, then

$$
f_{Y}(x)=\frac{1}{\sqrt{2 \pi x}} e^{-x / 2} l_{(0, \infty)}(x),
$$

which is the Lebesgue p.d.f. for the chi-square distribution χ_{1}^{2} (Table 1.2).

This is actually an important result in statistics.

Let X be a random k-vector with a Lebesgue p.d.f. f_{X} and let $Y=g(X)$, where g is a Borel function from $\left(\mathscr{R}^{k}, \mathscr{B}^{k}\right)$ to $\left(\mathscr{R}^{k}, \mathscr{B}^{k}\right)$. Let A_{1}, \ldots, A_{m} be disjoint sets in \mathscr{B}^{k} such that $\mathscr{R}^{k}-\left(A_{1} \cup \cdots \cup A_{m}\right)$ has Lebesgue measure 0 and g on A_{j} is one-to-one with a nonvanishing Jacobian, i.e., the determinant $\operatorname{Det}(\partial g(x) / \partial x) \neq 0$ on $A_{j}, j=1, \ldots, m$. Then Y has the following Lebesgue p.d.f.:

$$
f_{Y}(x)=\sum_{j=1}^{m}\left|\operatorname{Det}\left(\partial h_{j}(x) / \partial x\right)\right| f_{X}\left(h_{j}(x)\right),
$$

where h_{j} is the inverse function of g on $A_{j}, j=1, \ldots, m$.
In Example 1.14, $A_{1}=(-\infty, 0), A_{2}=(0, \infty), g(x)=x^{2}, h_{1}(x)=-\sqrt{x}$, $h_{2}(x)=\sqrt{x}$, and $\left|d h_{j}(x) / d x\right|=1 /(2 \sqrt{x})$.

Example 1.15

Let $X=\left(X_{1}, X_{2}\right)$ be a random 2 -vector having a joint Lebesgue p.d.f. f_{X}. Consider first the transformation $g(x)=\left(x_{1}, x_{1}+x_{2}\right)$. Using Proposition 1.8 , one can show that the joint p.d.f. of $g(X)$ is

$$
f_{g(X)}\left(x_{1}, y\right)=f_{X}\left(x_{1}, y-x_{1}\right)
$$

where $y=x_{1}+x_{2}$ (note that the Jacobian equals 1).
The marginal p.d.f. of $Y=X_{1}+X_{2}$ is then

$$
f_{Y}(y)=\int f_{X}\left(x_{1}, y-x_{1}\right) d x_{1} .
$$

In particular, if X_{1} and X_{2} are independent, then

$$
f_{Y}(y)=\int f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(y-x_{1}\right) d x_{1} .
$$

Next, consider the transformation $h\left(x_{1}, x_{2}\right)=\left(x_{1} / x_{2}, x_{2}\right)$, assuming that $X_{2} \neq 0$ a.s.
Using Proposition 1.8, one can show that the joint p.d.f. of $h(X)$ is

$$
f_{h(x)}\left(z, x_{2}\right)=\left|x_{2}\right| f_{x}\left(z x_{2}, x_{2}\right),
$$

where $z=x_{1} / x_{2}$.
The marginal p.d.f. of $Z=X_{1} / X_{2}$ is

$$
f_{Z}(z)=\int\left|x_{2}\right| f_{X}\left(z x_{2}, x_{2}\right) d x_{2} .
$$

In particular, if X_{1} and X_{2} are independent, then

$$
f_{z}(z)=\int\left|x_{2}\right| f_{x_{1}}\left(z x_{2}\right) f_{x_{2}}\left(x_{2}\right) d x_{2} .
$$

Example 1.16A (F-distribution)

Let X_{1} and X_{2} be independent random variables having the chi-square distributions $\chi_{n_{1}}^{2}$ and $\chi_{n_{2}}^{2}$ (Table 1.2), respectively.
The p.d.f. of $Z=X_{1} / X_{2}$ is

$$
\begin{aligned}
f_{Z}(z) & =\frac{z^{n_{1} / 2-1} l_{(0, \infty)}(z)}{2^{\left(n_{1}+n_{2}\right) / 2} \Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)} \int_{0}^{\infty} x_{2}^{\left(n_{1}+n_{2}\right) / 2-1} e^{-(1+z) x_{2} / 2} d x_{2} \\
& =\frac{\Gamma\left[\left(n_{1}+n_{2}\right) / 2\right]}{\Gamma\left(n_{1} / 2\right) \Gamma\left(n_{2} / 2\right)} \frac{z^{n_{1} / 2-1}}{(1+z)^{\left(n_{1}+n_{2}\right) / 2}} l_{(0, \infty)}(z)
\end{aligned}
$$

Using Proposition 1.8, one can show that the p.d.f. of

$$
Y=\left(X_{1} / n_{1}\right) /\left(X_{2} / n_{2}\right)=\left(n_{2} / n_{1}\right) Z
$$

is the p.d.f. of the F-distribution $F_{n_{1}, n_{2}}$ given in Table 1.2.

Example 1.16B (t-distribution)

Let U_{1} be a random variable having the standard normal distribution $N(0,1)$ and U_{2} a random variable having the chi-square distribution χ_{n}^{2}. Using the same argument, one can show that if U_{1} and U_{2} are independent, then the distribution of $T=U_{1} / \sqrt{U_{2} / n}$ is the t -distribution t_{n} given in Table 1.2.

Noncentral chi-square distribution

Let X_{1}, \ldots, X_{n} be independent random variables and $X_{i}=N\left(\mu_{i}, \sigma^{2}\right)$. The distribution of $Y=\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) / \sigma^{2}$ is called the noncentral chi-square distribution and denoted by $\chi_{n}^{2}(\delta)$, where $\delta=\left(\mu_{1}^{2}+\cdots+\mu_{n}^{2}\right) / \sigma^{2}$ is the noncentrality parameter. $\chi_{k}^{2}(\delta)$ with $\delta=0$ is called a central chi-square distribution. It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

$$
e^{-\delta / 2} \sum_{j=0}^{\infty} \frac{(\delta / 2)^{j}}{j!} f_{2 j+n}(x)
$$

where $f_{k}(x)$ is the Lebesgue p.d.f. of the chi-square distribution χ_{k}^{2}.
If Y_{1}, \ldots, Y_{k} are independent random variables and Y_{i} has the noncentral chi-square distribution $\chi_{n_{i}}^{2}\left(\delta_{i}\right), i=1, \ldots, k$, then $Y=Y_{1}+\cdots+Y_{k}$ has the noncentral chi-square distribution
$\chi_{n_{1}+\cdots+n_{k}}^{2}\left(\delta_{1}+\cdots+\delta_{k}\right)$.
Noncentral t-distribution and F-distribution will be introduced in discussion session

- If $E X^{k}$ is finite, where k is a positive integer, $E X^{k}$ is called the k th moment of X or P_{X}.
- If $E|X|^{a}<\infty$ for some real number $a, E|X|^{a}$ is called the ath absolute moment of X or P_{X}.
- If $\mu=E X, E(X-\mu)^{k}$ is called the k th central moment of X or P_{X}.
- $\operatorname{Var}(X)=E(X-E X)^{2}$ is called the variance of X or P_{X}.
- For random matrix $M=\left(M_{i j}\right), E M=\left(E M_{i j}\right)$
- For random vector $X, \operatorname{Var}(X)=E(X-E X)(X-E X)^{\tau}$ is its covariance matrix, whose (i, j)th element, $i \neq j$, is called the covariance of X_{i} and X_{j} and denoted by $\operatorname{Cov}\left(X_{i}, X_{j}\right)$.
- $\left[\operatorname{Cov}\left(X_{i}, X_{j}\right)\right]^{2} \leq \operatorname{Var}\left(X_{i}\right) \operatorname{Var}\left(X_{j}\right), \quad i \neq j$
- For random vector $X, \operatorname{Var}(X)$ is nonnegative definite
- If $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$, then X_{i} and X_{j} are said to be uncorrelated.
- Independence implies uncorrelation, not converse
- If X is random and c is fixed, then $E\left(c^{\tau} X\right)=c^{\tau} E(X)$ and $\operatorname{Var}\left(c^{\tau} X\right)=c^{\tau} \operatorname{Var}(X) c$.

Three useful inequalities

- Cauchy-Schwartz inequality: $[E(X Y)]^{2} \leq E X^{2} E Y^{2}$ for random variables X and Y
- Jensen's inequality: $f(E X) \leq E f(X)$ for a random vector X and convex function $f\left(f^{\prime \prime} \geq 0\right)$
- Chebyshev's inequality: Let X be a random variable and φ a nonnegative and nondecreasing function on $[0, \infty), \varphi(-t)=\varphi(t)$. Then, for each constant $t \geq 0$,

$$
\varphi(t) P(|X| \geq t) \leq \int_{\{|X| \geq t\}} \varphi(X) d P \leq E \varphi(X)
$$

Example 1.18.

If X is a nonconstant positive random variable with finite mean, then

$$
(E X)^{-1}<E\left(X^{-1}\right) \quad \text { and } \quad E(\log X)<\log (E X),
$$

since t^{-1} and $-\log t$ are convex functions on $(0, \infty)$. If f and g are positive integrable functions on a measure space with a σ-finite measure v and $\int f d v \geq \int g d v>0$, then

$$
\int f \log (f / g) d v \geq 0
$$

Definition 1.5 (Moment generating and characteristic functions)

Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or P_{X} is defined as

$$
\psi_{X}(t)=E e^{t^{\tau} X}, \quad t \in \mathscr{R}^{k} .
$$

(ii) The characteristic function (ch.f.) of X or P_{X} is defined as

$$
\phi_{X}(t)=E e^{\sqrt{-1} t^{\tau} X}=E\left[\cos \left(t^{\tau} X\right)\right]+\sqrt{-1} E\left[\sin \left(t^{\tau} X\right)\right], \quad t \in \mathscr{R}^{k}
$$

Properties of m.g.f. and ch.f.

- If the m.g.f. is finite in a neighborhood of $0 \in \mathscr{R}^{k}$, then
- moments of X of any order are finite,
- $\phi_{X}(t)$ can be obtained by replacing t in $\psi_{X}(t)$ by $\sqrt{-1} t$
- If $Y=A^{\tau} X+c$, where A is a $k \times m$ matrix and $c \in \mathscr{R}^{m}$, then

$$
\psi_{Y}(u)=e^{c^{\tau} u} \psi_{X}(A u) \quad \text { and } \quad \phi_{Y}(u)=e^{\sqrt{-1} c^{\tau} u_{X}} \phi_{X}(A u), \quad u \in \mathscr{R}^{m}
$$

- For independent X_{1}, \ldots, X_{k},

$$
\psi_{\sum_{i} X_{i}}(t)=\prod_{i} \psi_{X_{i}}(t) \quad \text { and } \quad \phi_{\sum_{i} X_{i}}(t)=\prod_{i} \phi_{X_{i}}(t), \quad t \in \mathscr{R}^{k}
$$

- For $X=\left(X_{1}, \ldots, X_{k}\right)$ with m.g.f. ψ_{X} finite in a neighborhood of 0 ,

$$
\begin{aligned}
& \psi_{X}(t)=\sum_{\left(r_{1}, \ldots, r_{k}\right)} \frac{\mu_{r_{1}, \ldots, r_{r}} t_{1}^{r_{1}} \cdots t_{k}^{r_{k}}}{r_{1}!\cdots r_{k}!} \quad \mu_{r_{1}, \ldots, r_{k}}=E\left(X_{1}^{r_{1}} \cdots X_{k}^{r_{k}}\right) \\
& E\left(X_{1}^{r_{1}} \cdots X_{k}^{r_{k}}\right)=\left.\frac{\partial^{r_{1}+\cdots+r_{k}} \psi_{X}(t)}{\partial t_{1}^{r_{1}} \cdots \partial t_{k}^{r_{k}}}\right|_{t=0} \\
& \left.\frac{\partial \psi_{X}(t)}{\partial t}\right|_{t=0}=E X,\left.\quad \frac{\partial^{2} \psi_{X}(t)}{\partial t \partial t^{\tau}}\right|_{t=0}=E\left(X X^{\tau}\right)
\end{aligned}
$$

- If $E\left|X_{1}^{r_{1}} \cdots X_{k}^{r_{k}}\right|<\infty$ for nonnegative integers r_{1}, \ldots, r_{k}, then

$$
\begin{aligned}
& \left.\frac{\partial^{r_{1}+\cdots+r_{k}} \phi_{X}(t)}{\partial t_{1}^{r_{1} \cdots \partial} t_{k}^{r_{k}}}\right|_{t=0}=(-1)^{\left(r_{1}+\cdots+r_{k}\right) / 2} E\left(X_{1}^{r_{1}} \cdots X_{k}^{r_{k}}\right) \\
& \left.\frac{\partial \phi_{X}(t)}{\partial t}\right|_{t=0}=\sqrt{-1} E X,\left.\quad \frac{\partial^{2} \phi_{X}(t)}{\partial t \partial t^{\tau}}\right|_{t=0}=-E\left(X X^{\tau}\right)
\end{aligned}
$$

- Special case of $k=1$:

$$
\begin{array}{cl}
\psi_{X}(t)=\sum_{i=0}^{\infty} \frac{E\left(X^{i}\right) t^{i}}{i!} & \text { if } \psi(t)<\infty \\
E\left(X^{i}\right)=\psi^{(i)}(0)=\left.\frac{d \psi_{X}^{i}(t)}{d t^{i}}\right|_{t=0}, & \phi_{X}^{(i)}(0)=(-1)^{i / 2} E\left(X^{i}\right)
\end{array}
$$

Example 1.19.

$$
X=N\left(\mu, \sigma^{2}\right)
$$

$$
\psi_{X}(t)=\frac{1}{\sqrt{2 \pi} \sigma} \int e^{t x} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \quad \frac{x-\mu}{\sigma}=y
$$

$=\frac{1}{\sqrt{2 \pi}} \int e^{t(\sigma y+\mu)} e^{-y^{2} / 2} d y=\frac{e^{\mu t+\sigma^{2} t^{2} / 2}}{\sqrt{2 \pi}} \int e^{-(y-\sigma t)^{2} / 2} d y=e^{\mu t+\sigma^{2} t^{2} / 2}$
A direct calculation shows that
$E X=\psi_{X}^{\prime}(0)=\mu$
$E X^{2}=\psi_{X}^{\prime \prime}(0)=\sigma^{2}+\mu^{2}$
$E X^{3}=\psi_{X}^{(3)}(0)=3 \sigma^{2} \mu+\mu^{3}$
$E X^{4}=\psi_{X}^{(4)}(0)=3 \sigma^{4}+6 \sigma^{2} \mu^{2}+\mu^{4}$
If $\mu=0$, then $E X^{p}=0$ when p is an odd integer
$E X^{p}=(p-1)(p-3) \cdots 3 \cdot 1 \sigma^{p}$ when p is an even integer
The cumulant generating function of X is

$$
\kappa_{X}(t)=\log \psi_{X}(t)=\mu t+\sigma^{2} t^{2} / 2
$$

$\kappa_{1}=\mu, \kappa_{2}=\sigma^{2}$, and $\kappa_{r}=0$ for $r=3,4, \ldots$.

Example 1.19 (continued): A random variable X has finite $E\left(X^{k}\right)$ for $k=1,2 \ldots$, but $\psi_{\chi}(t)=\infty$, for any $t \neq 0$
P_{n} : the probability measure for $N\left(0, n^{2}\right)$ with p.d.f. $f_{n}, n=1,2, \ldots$ $P=\sum_{n=1}^{\infty} 2^{-n} P_{n}$ is a probability measure with Lebesgue p.d.f.
$\sum_{n=1}^{\infty} 2^{-n} f_{n}$ (Exercise 35)
Let X be a random variable having distribution P.
It follows from Fubini's theorem that X has finite moments of any order; for even k,

$$
\begin{aligned}
E\left(X^{k}\right) & =\int x^{k} d P=\int \sum_{n=1}^{\infty} x^{k} 2^{-n} d P_{n}=\sum_{n=1}^{\infty} 2^{-n} \int x^{k} d P_{n} \\
& =\sum_{n=1}^{\infty} 2^{-n}(k-1)(k-3) \cdots 1 n^{k}<\infty
\end{aligned}
$$

and $E\left(X^{\kappa}\right)=0$ for odd k.
By Fubini's theorem again, for any $t \neq 0$,

$$
\psi_{X}(t)=\int e^{t x} d P=\sum_{n=1}^{\infty} 2^{-n} \int e^{t x} d P_{n}=\sum_{n=1}^{\infty} 2^{-n} e^{n^{2} t^{2} / 2}=\infty
$$

Theorem 1.6. (Uniqueness)

Let X and Y be random k-vectors.
(i) If $\phi_{X}(t)=\phi_{Y}(t)$ for all $t \in \mathscr{R}^{k}$, then $P_{X}=P_{Y}$.
(ii) If $\psi_{X}(t)=\psi_{Y}(t)<\infty$ for all t in a neighborhood of 0 , then $P_{X}=P_{Y}$.

Proof

See the textbook.

Example 1.20

Let $X_{i}, i=1, \ldots, k$, be independent random variables and X_{i} have the gamma distribution $\Gamma\left(\alpha_{i}, \gamma\right)$ (Table 1.2), $i=1, \ldots, k$. From Table 1.2, X_{i} has the m.g.f. $\psi_{X_{i}}(t)=(1-\gamma t)^{-\alpha_{i}}, t<\gamma^{-1}$, $i=1, \ldots, k$.
Then, the m.g.f. of $Y=X_{1}+\cdots+X_{k}$ is equal to

$$
\psi_{Y}(t)=\prod_{i} \psi_{X_{i}}(t)=\prod_{i}(1-\gamma t)^{-\alpha_{i}}=(1-\gamma t)^{-\left(\alpha_{1}+\cdots+\alpha_{k}\right)}, \quad t<\gamma^{-1}
$$

From Table 1.2, the gamma distribution $\Gamma\left(\alpha_{1}+\cdots+\alpha_{k}, \gamma\right)$ has the m.g.f. $\psi_{Y}(t)$ and, hence, is the distribution of Y (by Theorem 1.6).

Can the moments determine a distribution?

Can two random variables with different distributions have the same moments of any order?

$$
\begin{array}{lcc}
X_{1} \text { has pdf } & f_{1}(x)=\frac{1}{\sqrt{2 \pi x}} e^{-(\log x)^{2} / 2,}, & x \geq 0 \\
X_{2} \text { has pdf } & f_{2}(x)=f_{1}(x)[1+\sin (2 \pi \log x)], & x \geq 0
\end{array}
$$

For any positive integer n,

$$
\begin{gathered}
E\left(X_{1}^{n}\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} x^{n-1} e^{-(\log x)^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{n y-y^{2} / 2} d y=e^{n^{2} / 2} \\
E\left(X_{2}^{n}\right)=E\left(X_{1}^{n}\right)+\frac{e^{n^{2} / 2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-s^{2} / 2} \sin (2 \pi s) d s=E\left(X_{1}^{n}\right)
\end{gathered}
$$

This shows that X_{1} and X_{2} have the same moments of order $n=1,2, \ldots$, but they have different distributions.

$$
\begin{gathered}
M_{X}(t)=\int_{0}^{\infty} \frac{e^{t x}}{\sqrt{2 \pi x}} e^{-(\log x)^{2} / 2} d x=\infty, \quad t>0 \\
M_{X}(t)=\int_{0}^{\infty} \frac{e^{t x}}{\sqrt{2 \pi x}} e^{-(\log x)^{2} / 2} d x \leq \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi x}} e^{-(\log x)^{2} / 2} d x=1, \quad t \leq 0
\end{gathered}
$$

