
beamer-tu-logo

Lecture 3: Densities, moments, inequalities, and
generating functions
Example 1.12.
Let X be a random variable on (Ω,F ,P) whose c.d.f. FX has a
Lebesgue p.d.f. fX and FX (c) < 1, where c is a fixed constant.
Let Y = min{X ,c}, i.e., Y is the smaller of X and c.
Note that Y−1((−∞,x ]) = Ω if x ≥ c and Y−1((−∞,x ]) = X−1((∞,x ]) if
x < c.
Hence Y is a random variable and the c.d.f. of Y is

FY (x) =

{
1 x ≥ c
FX (x) x < c.

This c.d.f. is discontinuous at c, since FX (c) < 1.
Thus, it does not have a Lebesgue p.d.f.
It is not discrete either.
Does PY , the probability measure corresponding to FY , have a p.d.f.
w.r.t. some measure?
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Example 1.12 (continued)
Consider the point mass probability measure on (R,B):

δc(A) =

{
1 c ∈ A
0 c 6∈ A

A ∈B

Then PY �m + δc , where m is the Lebesgue measure, and the p.d.f.
of PY is

fY (x) =
dPY

d(m + δc)
(x) =


0 x > c
1−FX (c) x = c
fX (x) x < c.

To show this, it suffices to show that∫
(−∞,x ]

fY (t)d(m + δc) = PY ((−∞,x ]) for any x ∈R

(why?)
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Example 1.12 (continued)
For x < c,∫

(−∞,x ]
fY (t)d(m + δc) =

∫
(−∞,x ]

fX (t)dm +
∫
(−∞,x ]

fX (t)δc

=
∫
(−∞,x ]

fX (t)dm = PX ((−∞,x ]) = PY ((−∞,x ])

For x ≥ c, ∫
(−∞,x ]

fY (t)d(m + δc) =
∫
(−∞,c]

fY (t)d(m + δc)

=
∫
(−∞,c)

fX (t)d(m + δc) +
∫
{c}

[1−FX (c)]d(m + δc)

=
∫
(−∞,c)

fX (t)dm +
∫
{c}

[1−FX (c)]dδc

= FX (c) + [1−FX (c)] = 1 = PY ((−∞,x ])
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Example 1.14.
Let X be a random variable with c.d.f. FX and Lebesgue p.d.f. fX , and
Y = X 2.
Since Y−1((−∞,x ]) is empty if x < 0, FY (x) = 0 if x < 0.
Since Y−1((−∞,x ]) = X−1([−

√
x ,
√

x ]) if x ≥ 0, the c.d.f. of Y is

FY (x) = P ◦Y−1((−∞,x ]) = P ◦X−1([−
√

x ,
√

x ]) = FX (
√

x)−FX (−
√

x)

Hence, the Lebesgue p.d.f. of FY is

fY (x) =
1

2
√

x
[fX (
√

x) + fX (−
√

x)]I(0,∞)(x)

In particular, if
fX (x) =

1√
2π

e−x2/2,

the Lebesgue p.d.f. of the standard normal distribution N(0,1), then

fY (x) =
1√
2πx

e−x/2I(0,∞)(x),

which is the Lebesgue p.d.f. for the chi-square distribution χ2
1 (Table

1.2).
This is actually an important result in statistics.
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Proposition 1.8 (Transformation)
Let X be a random k -vector with a Lebesgue p.d.f. fX and let
Y = g(X ), where g is a Borel function from (Rk ,Bk ) to (Rk ,Bk ).
Let A1, ...,Am be disjoint sets in Bk such that Rk − (A1∪·· ·∪Am) has
Lebesgue measure 0 and g on Aj is one-to-one with a nonvanishing
Jacobian, i.e., the determinant Det(∂g(x)/∂x) 6= 0 on Aj , j = 1, ...,m.
Then Y has the following Lebesgue p.d.f.:

fY (x) =
m

∑
j=1

∣∣Det
(
∂hj(x)/∂x

)∣∣ fX (hj(x)
)
,

where hj is the inverse function of g on Aj , j = 1, ...,m.

In Example 1.14, A1 = (−∞,0), A2 = (0,∞), g(x) = x2, h1(x) =−
√

x ,
h2(x) =

√
x , and |dhj(x)/dx |= 1/(2

√
x).

Example 1.15
Let X = (X1,X2) be a random 2-vector having a joint Lebesgue p.d.f. fX .
Consider first the transformation g(x) = (x1,x1 + x2).
Using Proposition 1.8, one can show that the joint p.d.f. of g(X ) is

fg(X)(x1,y) = fX (x1,y −x1),
UW-Madison (Statistics) Stat 709 Lecture 3 2018 5 / 16



beamer-tu-logo

where y = x1 + x2 (note that the Jacobian equals 1).
The marginal p.d.f. of Y = X1 + X2 is then

fY (y) =
∫

fX (x1,y −x1)dx1.

In particular, if X1 and X2 are independent, then

fY (y) =
∫

fX1(x1)fX2(y −x1)dx1.

Next, consider the transformation h(x1,x2) = (x1/x2,x2), assuming that
X2 6= 0 a.s.
Using Proposition 1.8, one can show that the joint p.d.f. of h(X ) is

fh(X)(z,x2) = |x2|fX (zx2,x2),

where z = x1/x2.
The marginal p.d.f. of Z = X1/X2 is

fZ (z) =
∫
|x2|fX (zx2,x2)dx2.

In particular, if X1 and X2 are independent, then

fZ (z) =
∫
|x2|fX1(zx2)fX2(x2)dx2.
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Example 1.16A (F-distribution)
Let X1 and X2 be independent random variables having the chi-square
distributions χ2

n1
and χ2

n2
(Table 1.2), respectively.

The p.d.f. of Z = X1/X2 is

fZ (z) =
zn1/2−1I(0,∞)(z)

2(n1+n2)/2Γ(n1/2)Γ(n2/2)

∫
∞

0
x (n1+n2)/2−1

2 e−(1+z)x2/2dx2

=
Γ[(n1 + n2)/2]

Γ(n1/2)Γ(n2/2)

zn1/2−1

(1 + z)(n1+n2)/2 I(0,∞)(z)

Using Proposition 1.8, one can show that the p.d.f. of
Y = (X1/n1)/(X2/n2) = (n2/n1)Z

is the p.d.f. of the F-distribution Fn1,n2 given in Table 1.2.

Example 1.16B (t-distribution)
Let U1 be a random variable having the standard normal distribution
N(0,1) and U2 a random variable having the chi-square distribution χ2

n .
Using the same argument, one can show that if U1 and U2 are
independent, then the distribution of T = U1/

√
U2/n is the

t-distribution tn given in Table 1.2.
UW-Madison (Statistics) Stat 709 Lecture 3 2018 7 / 16



beamer-tu-logo

Noncentral chi-square distribution

Let X1, ...,Xn be independent random variables and Xi = N(µi ,σ
2).

The distribution of Y = (X 2
1 + · · ·+ X 2

n )/σ2 is called the noncentral
chi-square distribution and denoted by χ2

n (δ ), where
δ = (µ2

1 + · · ·+ µ2
n )/σ2 is the noncentrality parameter.

χ2
k (δ ) with δ = 0 is called a central chi-square distribution.

It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

e−δ/2
∞

∑
j=0

(δ/2)j

j!
f2j+n(x)

where fk (x) is the Lebesgue p.d.f. of the chi-square distribution χ2
k .

If Y1, ...,Yk are independent random variables and Yi has the
noncentral chi-square distribution χ2

ni
(δi), i = 1, ...,k , then

Y = Y1 + · · ·+ Yk has the noncentral chi-square distribution
χ2

n1+···+nk
(δ1 + · · ·+ δk ).

Noncentral t-distribution and F-distribution will be introduced in
discussion session
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Moments
If EX k is finite, where k is a positive integer, EX k is called the k th
moment of X or PX .
If E |X |a < ∞ for some real number a, E |X |a is called the ath
absolute moment of X or PX .
If µ = EX , E(X −µ)k is called the k th central moment of X or PX .
Var(X ) = E(X −EX )2 is called the variance of X or PX .
For random matrix M = (Mij), EM = (EMij)

For random vector X , Var(X ) = E(X −EX )(X −EX )τ is its
covariance matrix, whose (i , j)th element, i 6= j , is called the
covariance of Xi and Xj and denoted by Cov(Xi ,Xj).
[Cov(Xi ,Xj)]2 ≤ Var(Xi)Var(Xj), i 6= j
For random vector X , Var(X ) is nonnegative definite
If Cov(Xi ,Xj) = 0, then Xi and Xj are said to be uncorrelated.
Independence implies uncorrelation, not converse
If X is random and c is fixed, then E(cτX ) = cτE(X ) and
Var(cτX ) = cτVar(X )c.
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Three useful inequalities

Cauchy-Schwartz inequality: [E(XY )]2 ≤ EX 2EY 2 for random
variables X and Y
Jensen’s inequality: f (EX )≤ Ef (X ) for a random vector X and
convex function f (f ′′ ≥ 0)
Chebyshev’s inequality: Let X be a random variable and ϕ a
nonnegative and nondecreasing function on [0,∞), ϕ(−t) = ϕ(t).
Then, for each constant t ≥ 0,

ϕ(t)P (|X | ≥ t)≤
∫
{|X |≥t}

ϕ(X )dP ≤ Eϕ(X )

Example 1.18.
If X is a nonconstant positive random variable with finite mean, then

(EX )−1 < E(X−1) and E(logX ) < log(EX ),

since t−1 and − log t are convex functions on (0,∞).
If f and g are positive integrable functions on a measure space with a
σ -finite measure ν and

∫
fdν ≥

∫
gdν > 0, then∫

f log(f/g)dν ≥ 0.
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Definition 1.5 (Moment generating and characteristic functions)
Let X be a random k -vector.

(i) The moment generating function (m.g.f.) of X or PX is defined as

ψX (t) = Eetτ X , t ∈Rk .

(ii) The characteristic function (ch.f.) of X or PX is defined as

φX (t) = Ee
√
−1tτ X = E [cos(tτX )] +

√
−1E [sin(tτX )], t ∈Rk

Properties of m.g.f. and ch.f.

If the m.g.f. is finite in a neighborhood of 0 ∈Rk , then
moments of X of any order are finite,
φX (t) can be obtained by replacing t in ψX (t) by

√
−1t

If Y = AτX + c, where A is a k ×m matrix and c ∈Rm, then
ψY (u) = ecτ u

ψX (Au) and φY (u) = e
√
−1cτ u

φX (Au), u ∈Rm

For independent X1, ...,Xk ,
ψ∑i Xi (t) = ∏

i
ψXi (t) and φ∑i Xi (t) = ∏

i
φXi (t), t ∈Rk

For X = (X1, ...,Xk ) with m.g.f. ψX finite in a neighborhood of 0,
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ψX (t) = ∑
(r1,...,rk )

µr1,...,rk t r1
1 · · · t

rk
k

r1! · · · rk !
µr1,...,rk = E(X r1

1 · · ·X
rk
k )

E(X r1
1 · · ·X

rk
k ) =

∂ r1+···+rk ψX (t)
∂ t r1

1 · · ·∂ t rk
k

∣∣∣∣
t=0

∂ψX (t)
∂ t

∣∣∣∣
t=0

= EX ,
∂ 2ψX (t)

∂ t∂ tτ

∣∣∣∣
t=0

= E(XX τ )

If E |X r1
1 · · ·X

rk
k |< ∞ for nonnegative integers r1, ..., rk , then

∂ r1+···+rk φX (t)
∂ t r1

1 · · ·∂ t rk
k

∣∣∣∣
t=0

= (−1)(r1+···+rk )/2E(X r1
1 · · ·X

rk
k )

∂φX (t)
∂ t

∣∣∣∣
t=0

=
√
−1EX ,

∂ 2φX (t)
∂ t∂ tτ

∣∣∣∣
t=0

=−E(XX τ )

Special case of k = 1:

ψX (t) =
∞

∑
i=0

E(X i)t i

i!
if ψ(t) < ∞

E(X i) = ψ
(i)(0) =

dψ i
X (t)

dt i

∣∣∣∣
t=0

, φ
(i)
X (0) = (−1)i/2E(X i)
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Example 1.19.

X = N(µ,σ2)

ψX (t) =
1√
2πσ

∫
etxe−(x−µ)2/2σ2

dx
x −µ

σ
= y

=
1√
2π

∫
et(σy+µ)e−y2/2dy =

eµt+σ2t2/2
√

2π

∫
e−(y−σ t)2/2dy = eµt+σ2t2/2

A direct calculation shows that
EX = ψ ′X (0) = µ

EX 2 = ψ ′′X (0) = σ2 + µ2

EX 3 = ψ
(3)
X (0) = 3σ2µ + µ3

EX 4 = ψ
(4)
X (0) = 3σ4 + 6σ2µ2 + µ4

If µ = 0, then EX p = 0 when p is an odd integer
EX p = (p−1)(p−3) · · ·3 ·1σp when p is an even integer
The cumulant generating function of X is

κX (t) = log ψX (t) = µt + σ
2t2/2

κ1 = µ, κ2 = σ2, and κr = 0 for r = 3,4, ....
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Example 1.19 (continued): A random variable X has finite E(X k )
for k = 1,2..., but ψX (t) = ∞, for any t 6= 0

Pn: the probability measure for N(0,n2) with p.d.f. fn, n = 1,2, ...
P = ∑

∞

n=1 2−nPn is a probability measure with Lebesgue p.d.f.
∑

∞

n=1 2−nfn (Exercise 35)
Let X be a random variable having distribution P.
It follows from Fubini’s theorem that X has finite moments of any order;
for even k ,

E(X k ) =
∫

xkdP =
∫ ∞

∑
n=1

xk2−ndPn =
∞

∑
n=1

2−n
∫

xkdPn

=
∞

∑
n=1

2−n(k −1)(k −3) · · ·1nk < ∞

and E(X k ) = 0 for odd k .
By Fubini’s theorem again, for any t 6= 0,

ψX (t) =
∫

etxdP =
∞

∑
n=1

2−n
∫

etxdPn =
∞

∑
n=1

2−nen2t2/2 = ∞
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Theorem 1.6. (Uniqueness)
Let X and Y be random k -vectors.

(i) If φX (t) = φY (t) for all t ∈Rk , then PX = PY .
(ii) If ψX (t) = ψY (t) < ∞ for all t in a neighborhood of 0, then PX = PY .

Proof
See the textbook.

Example 1.20
Let Xi , i = 1, ...,k , be independent random variables and Xi have the
gamma distribution Γ(αi ,γ) (Table 1.2), i = 1, ...,k .
From Table 1.2, Xi has the m.g.f. ψXi (t) = (1− γt)−αi , t < γ−1,
i = 1, ...,k .
Then, the m.g.f. of Y = X1 + · · ·+ Xk is equal to

ψY (t) = ∏
i

ψXi (t) = ∏
i

(1− γt)−αi = (1− γt)−(α1+···+αk ), t < γ
−1.

From Table 1.2, the gamma distribution Γ(α1 + · · ·+ αk ,γ) has the
m.g.f. ψY (t) and, hence, is the distribution of Y (by Theorem 1.6).
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Can the moments determine a distribution?
Can two random variables with different distributions have the same
moments of any order?

X1 has pdf f1(x) = 1√
2πx

e−(logx)2/2, x ≥ 0

X2 has pdf f2(x) = f1(x)[1 + sin(2π logx)], x ≥ 0

For any positive integer n,

E(X n
1 ) =

1√
2π

∫
∞

0
xn−1e−(logx)2/2dx =

1√
2π

∫
∞

−∞

eny−y2/2dy = en2/2

E(X n
2 ) = E(X n

1 ) +
en2/2
√

2π

∫
∞

−∞

e−s2/2 sin(2πs)ds = E(X n
1 )

This shows that X1 and X2 have the same moments of order
n = 1,2, ..., but they have different distributions.

MX (t) =
∫

∞

0

etx
√

2πx
e−(logx)2/2dx = ∞, t > 0

MX (t) =
∫

∞

0

etx
√

2πx
e−(logx)2/2dx ≤

∫
∞

0

1√
2πx

e−(logx)2/2dx = 1, t ≤ 0
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