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Lecture 6: Convergence modes and relationships
Notation
c = (c1, ...,ck ) ∈Rk , ‖c‖r = (∑k

j=1 |cj |r )1/r , r > 0.
If r ≥ 1, then ‖c‖r is the Lr -distance between 0 and c.
When r = 2, ‖c‖= ‖c‖2 =

√
cτc.

Definition 1.8 (Covergence modes)
Let X ,X1,X2, . . . be random k -vectors defined on a probability space.

(i) We say that the sequence {Xn} converges to X almost surely
(a.s.) and write Xn→a.s. X iff limn→∞ Xn = X a.s.

(ii) We say that {Xn} converges to X in probability and write Xn→p X
iff, for every fixed ε > 0,

lim
n→∞

P (‖Xn−X‖> ε) = 0.

(iii) We say that {Xn} converges to X in Lr (or in r th moment) with a
fixed r > 0 and write Xn→Lr X iff

lim
n→∞

E‖Xn−X‖rr = 0
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(iv) Let F , Fn, n = 1,2, ..., be c.d.f.’s on Rk and P, Pn, n = 1, ..., be
their corresponding probability measures.
We say that {Fn} converges to F weakly (or {Pn} converges to P
weakly) and write Fn→w F (or Pn→w P) iff, for each continuity
point x of F ,

lim
n→∞

Fn(x) = F (x).

We say that {Xn} converges to X in distribution (or in law) and
write Xn→d X iff FXn →w FX .

Remarks
→a.s.,→p,→Lr : How close is between Xn and X as n→ ∞?
FXn →w FX : FXn is close to FX
but Xn and X may not be close (they may be on different spaces)

Example 1.26.

Let θn = 1+n−1 and Xn be a random variable having the exponential
distribution E(0,θn) (Table 1.2), n = 1,2, ....
Let X be a random variable having the exponential distribution E(0,1).
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For any x > 0, as n→ ∞,

FXn(x) = 1−e−x/θn → 1−e−x = FX (x)

Since FXn(x)≡ 0≡ FX (x) for x ≤ 0, we have shown that Xn→d X .
Xn→p X?

Need further information about the random variables X and Xn.
We consider two cases in which different answers can be
obtained.

Case 1
Suppose that Xn ≡ θnX (then Xn has the given c.d.f.).
Xn−X = (θn−1)X = n−1X , which has the c.d.f.

(1−e−nx)I[0,∞)(x).

Then, Xn→p X because, for any ε > 0,

P (|Xn−X | ≥ ε) = e−nε → 0

(In fact, by Theorem 1.8(v), Xn→a.s. X )
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Also, Xn→Lp X for any p > 0, because

E |Xn−X |p = n−pEX p→ 0

Case 2
Suppose that Xn and X are independent random variables.
Since p.d.f.’s for Xn and −X are θ

−1
n e−x/θn I(0,∞)(x) and ex I(−∞,0)(x),

respectively, we have

P (|Xn−X | ≤ ε) =
∫

ε

−ε

∫
θ
−1
n e−x/θney−x I(0,∞)(x)I(−∞,x)(y)dxdy ,

which converges to (by the dominated convergence theorem)∫
ε

−ε

∫
e−xey−x I(0,∞)(x)I(−∞,x)(y)dxdy = 1−e−ε .

Thus,
P (|Xn−X | ≥ ε)→ e−ε > 0

for any ε > 0 and, therefore, Xn→p X does not hold.
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Proposition 1.16 (Pólya’s theorem)

If Fn→w F and F is continuous on Rk , then

lim
n→∞

sup
x∈Rk

|Fn(x)−F (x)|= 0.

This proposition implies the following useful result:
If Fn→w a continuous F and cn ∈Rk with cn→ c, then

Fn(cn)→ F (c).

Lemma 1.4
For random k -vectors X ,X1,X2, . . . on a probability space, Xn→a.s. X iff
for every ε > 0,

lim
n→∞

P

(
∞⋃

m=n
{‖Xm−X‖> ε}

)
= 0.

UW-Madison (Statistics) Stat 709 Lecture 6 2018 5 / 16



beamer-tu-logo

Proof
It can be verified that

∞⋂
j=1

Aj = {ω : lim
n→∞

Xn(ω) = X (ω)}, Aj =
∞⋃

n=1

∞⋂
m=n
{‖Xm−X‖ ≤ j−1}

By Proposition 1.1(iii, continuity),

P(Aj) = lim
n→∞

P

(
∞⋂

m=n
{‖Xm−X‖ ≤ j−1}

)

= 1− lim
n→∞

P

(
∞⋃

m=n
{‖Xm−X‖> j−1}

)

P (
⋃

∞
m=n{‖Xm−X‖> ε})→ 0 for every ε > 0 iff P(Aj) = 1 for every j ,

which is equivalent to P(∩∞

j=1Aj) = 1 (i.e., Xn→a.s. X ), because

P(Aj)≥ P

(
∞⋂

j=1

Aj

)
= 1−P

(
∞⋃

j=1

Ac
j

)
≥ 1−

∞

∑
j=1

P(Ac
j )
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Lemma 1.5 (Borel-Cantelli lemma)
Let An be a sequence of events in a probability space and

limsup
n

An =
∞⋂

n=1

∞⋃
m=n

Am.

(i) If ∑
∞

n=1 P(An)< ∞, then P(limsupn An) = 0.
(ii) If A1,A2, ... are pairwise independent and ∑

∞

n=1 P(An) = ∞, then
P(limsupn An) = 1.

Proof of Lemma 1.5 (i)
By Proposition 1.1,

P
(
limsup

n→∞

An

)
= lim

n→∞
P

(
∞⋃

m=n
Am

)
≤ lim

n→∞

∞

∑
m=n

P(An) = 0

where the last equality follows from the condition
∞

∑
n=1

P(An)< ∞.
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Proof of Lemma 1.5 (ii)
We prove the case of independent An’s.
See Chung (1974, pp. 76-78) for the pairwise independence An’s.

P
(
limsup

n→∞

An

)
= lim

n→∞
P

(
∞⋃

m=n
Am

)
= 1− lim

n→∞
P

(
∞⋂

m=n
Ac

m

)
n+k

∏
m=n

P(Ac
m) =

n+k

∏
m=n

[1−P(Am)]≤
n+k

∏
m=n

exp{−P(Am)}= exp

{
−

n+k

∑
m=n

P(Am)

}
(1− t ≤ e−t = exp{t}).
Letting k → ∞,

∞

∏
m=n

P(Ac
m) = lim

k→∞

n+k

∏
m=n

P(Ac
m)≤ exp

{
−

∞

∑
m=n

P(Am)

}
= 0.

Hence,
lim
n→∞

P

(
∞⋂

m=n
Ac

m

)
= lim

n→∞

∞

∏
m=n

P(Ac
m) = 0.
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The notion of O( ·), o( ·), and stochastic O( ·) and o( ·)
In calculus, two sequences of real numbers, {an} and {bn}, satisfy

an = O(bn) iff |an| ≤ c|bn| for all n and a constant c
an = o(bn) iff an/bn→ 0 as n→ ∞

Definition 1.9
Let X1,X2, ... be random vectors and Y1,Y2, ... be random variables
defined on a common probability space.

(i) Xn = O(Yn) a.s. iff P(‖Xn‖= O(|Yn|)) = 1.
(ii) Xn = o(Yn) a.s. iff Xn/Yn→a.s. 0.
(iii) Xn = Op(Yn) iff, for any ε > 0, there is a constant Cε > 0 such that

sup
n

P(‖Xn‖ ≥ Cε |Yn|)< ε.

(iv) Xn = op(Yn) iff Xn/Yn→p 0.
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Discussions and properties
Since an = O(1) means that {an} is bounded, {Xn} is said to be
bounded in probability if Xn = Op(1).
Xn = op(Yn) implies Xn = Op(Yn)

Xn = Op(Yn) and Yn = Op(Zn) implies Xn = Op(Zn)

Xn = Op(Yn) does not imply Yn = Op(Xn)

If Xn = Op(Zn), then XnYn = Op(YnZn).
If Xn = Op(Zn) and Yn = Op(Zn), then Xn +Yn = Op(Zn).
The same conclusion can be obtained if Op( ·) and op( ·) are
replaced by O( ·) a.s. and o( ·) a.s., respectively.
If Xn→d X for a random variable X , then Xn = Op(1)
If E |Xn|= O(an), then Xn = Op(an), where an ∈ (0,∞).
If Xn→a.s. X , then supn |Xn|= Op(1).
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Relationship among convergence modes

Theorem 1.8
(i) If Xn→a.s. X , then Xn→p X . (The converse is not true.)
(ii) If Xn→Lr X for an r > 0, then Xn→p X . (The converse is not true.)
(iii) If Xn→p X , then Xn→d X . (The converse is not true.)
(iv) (Skorohod’s theorem). If Xn→d X , then there are random vectors

Y ,Y1,Y2, ... defined on a common probability space such that
PY = PX , PYn = PXn , n = 1,2,..., and Yn→a.s. Y .
(A useful result; a conditional converse of (i)-(iii).)

(v) If, for every ε > 0, ∑
∞

n=1 P(‖Xn−X‖ ≥ ε)< ∞, then Xn→a.s. X .
(A conditional converse of (i): P(‖Xn−X‖ ≥ ε) tends to 0 fast
enough.)

(vi) If Xn→p X , then there is a subsequence {Xnj , j = 1,2, ...} such that
Xnj →a.s. X as j → ∞. (A partial converse of (i).)
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Theorem 1.8 (continued)

(vii) If Xn→d X and P(X = c) = 1, where c ∈Rk is a constant vector,
then Xn→p c. (A conditional converse of (i).)

(viii) Suppose that Xn→d X .
Then, for any r > 0,

lim
n→∞

E‖Xn‖rr = E‖X‖rr < ∞

[we call this moment convergence (MC)]
iff {‖Xn‖rr} is uniformly integrable (UI) in the sense that

lim
t→∞

sup
n

E
(
‖Xn‖rr I{‖Xn‖r>t}

)
= 0.

(A conditional converse of (ii).)
In particular, Xn→Lr X if and only if {‖Xn−X‖rr} is UI
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Discussions on uniform integrability
If there is only one random vector, then UI is

lim
t→∞

E
(
‖X‖rr I{‖X‖r>t}

)
= 0,

which is equivalent to the integrability of ‖X‖rr (dominated
convergence theorem).
Sufficient conditions for uniform integrability:

sup
n

E‖Xn‖r+δ
r < ∞ for a δ > 0

This is because
lim
t→∞

sup
n

E
(
‖Xn‖rr I{‖Xn‖r>t}

)
≤ lim

t→∞
sup

n
E

(
‖Xn‖rr I{‖Xn‖r>t}

‖Xn‖δ
r

tδ

)

≤ lim
t→∞

1
tδ

sup
n

E
(
‖Xn‖r+δ

r

)
= 0

Exercises 117-120.
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Proof of Theorem 1.8
(i) The result follows from Lemma 1.4.
(ii) The result follows from Chebyshev’s inequality with ϕ(t) = |t |r .
(iii) Assume k = 1. (The general case is proved in the textbook.)

Let x be a continuity point of FX and ε > 0 be given.
Then FX (x− ε) = P

(
X ≤ x − ε

)
≤ P

(
Xn ≤ x

)
+P

(
X ≤ x− ε,Xn > x

)
≤ FXn(x)+P (|Xn−X |> ε) .

Letting n→ ∞, we obtain that

FX (x− ε)≤ liminf
n

FXn(x).

Switching Xn and X in the previous argument, we can show that

FX (x + ε)≥ limsup
n

FXn(x).

Since ε is arbitrary and FX is continuous at x ,

FX (x) = lim
n→∞

FXn(x).
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Proof (continued)
(iv) The proof of this part can be found in Billingsley (1995, pp.

333-334).
(v) Let An = {‖Xn−X‖ ≥ ε}. The result follows from Lemma 1.4,

Lemma 1.5(i), and Proposition 1.1(iii).
(vi) Xn→p X means limn→∞ P(‖Xn−X‖> ε) = 0 for every ε > 0.

That is, for every ε > 0, P(‖Xn−X‖> ε)< ε for n > nε (nε is an
integer depending on ε).
For every j = 1,2, ..., there is a positive integer nj such that

P(‖Xnj −X‖> 2−j)< 2−j .

For any ε > 0, there is a kε such that for j ≥ kε ,
P(‖Xnj −X‖> ε)< P(‖Xnj −X‖> 2−j).
Since ∑

∞

j=1 2−j = 1, it follows from the result in (v) that Xnj →a.s. X
as j → ∞.

(vii) The proof for this part is left as an exercise.
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Properties of the quotient random variables

Proposition A1
Suppose X , X1,X2, . . . , are positive random variables. Then Xn→a.s. X
if and only if for every ε > 0, limn→∞ P{supk≥n

Xk
X > 1+ ε}= 0, and

limn→∞ P{supk≥n
X
Xk

> 1+ ε}= 0.

Proposition A2
Suppose X , X1,X2, . . . , are positive random variables. If
∑

∞

n=1 P(Xn/X > 1+ ε)< ∞ and ∑
∞

n=1 P(X/Xn > 1+ ε)< ∞, then
Xn→a.s. X .

Homework
1. Prove these two propositions.
2. Construct two random variable sequences such that these two

propositions can apply.
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