Lecture 6: Convergence modes and relationships

Notation

$c=\left(c_{1}, \ldots, c_{k}\right) \in \mathscr{R}^{k},\|c\|_{r}=\left(\sum_{j=1}^{k}\left|c_{j}\right|^{r}\right)^{1 / r}, r>0$.
If $r \geq 1$, then $\|c\|_{r}$ is the L_{r}-distance between 0 and c.
When $r=2,\|c\|=\|c\|_{2}=\sqrt{c^{\tau} c}$.

Definition 1.8 (Covergence modes)

Let X, X_{1}, X_{2}, \ldots be random k-vectors defined on a probability space.
(i) We say that the sequence $\left\{X_{n}\right\}$ converges to X almost surely (a.s.) and write $X_{n} \rightarrow$ a.s. X iff $\lim _{n \rightarrow \infty} X_{n}=X$ a.s.
(ii) We say that $\left\{X_{n}\right\}$ converges to X in probability and write $X_{n} \rightarrow_{p} X$ iff, for every fixed $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left\|X_{n}-X\right\|>\varepsilon\right)=0
$$

(iii) We say that $\left\{X_{n}\right\}$ converges to X in L_{r} (or in r th moment) with a fixed $r>0$ and write $X_{n} \rightarrow L_{r} X$ iff

$$
\lim _{n \rightarrow \infty} E\left\|X_{n}-X\right\|_{r}^{r}=0
$$

(iv) Let $F, F_{n}, n=1,2, \ldots$, be c.d.f.'s on \mathscr{R}^{k} and $P, P_{n}, n=1, \ldots$, be their corresponding probability measures.
We say that $\left\{F_{n}\right\}$ converges to F weakly (or $\left\{P_{n}\right\}$ converges to P weakly) and write $F_{n} \rightarrow_{w} F$ (or $P_{n} \rightarrow_{w} P$) iff, for each continuity point x of F,

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

We say that $\left\{X_{n}\right\}$ converges to X in distribution (or in law) and write $X_{n} \rightarrow{ }_{d} X$ iff $F_{X_{n}}{ }_{w} F_{X}$.

Remarks

- $\rightarrow_{\text {a.s. }} \rightarrow_{p}, \rightarrow_{L_{r}}$: How close is between X_{n} and X as $n \rightarrow \infty$?
- $F_{X_{n}} \rightarrow_{w} F_{X}: F_{X_{n}}$ is close to F_{X} but X_{n} and X may not be close (they may be on different spaces)

Example 1.26.

Let $\theta_{n}=1+n^{-1}$ and X_{n} be a random variable having the exponential distribution $E\left(0, \theta_{n}\right)$ (Table 1.2), $n=1,2, \ldots$.
Let X be a random variable having the exponential distribution $E(0,1)$.

For any $x>0$, as $n \rightarrow \infty$,

$$
F_{X_{n}}(x)=1-e^{-x / \theta_{n}} \rightarrow 1-e^{-x}=F_{X}(x)
$$

Since $F_{X_{n}}(x) \equiv 0 \equiv F_{X}(x)$ for $x \leq 0$, we have shown that $X_{n} \rightarrow_{d} X$. $X_{n} \rightarrow_{p} X$?

- Need further information about the random variables X and X_{n}.
- We consider two cases in which different answers can be obtained.

Case 1

Suppose that $X_{n} \equiv \theta_{n} X$ (then X_{n} has the given c.d.f.). $X_{n}-X=\left(\theta_{n}-1\right) X=n^{-1} X$, which has the c.d.f.

$$
\left(1-e^{-n x}\right) l_{[0, \infty)}(x)
$$

Then, $X_{n} \rightarrow_{p} X$ because, for any $\varepsilon>0$,

$$
P\left(\left|X_{n}-X\right| \geq \varepsilon\right)=e^{-n \varepsilon} \rightarrow 0
$$

(In fact, by Theorem 1.8(v), $X_{n} \rightarrow_{\text {a.s. }} X$)

Also, $X_{n} \rightarrow L_{p} X$ for any $p>0$, because

$$
E\left|X_{n}-X\right|^{p}=n^{-p} E X^{p} \rightarrow 0
$$

Case 2

Suppose that X_{n} and X are independent random variables.
Since p.d.f.'s for X_{n} and $-X$ are $\theta_{n}^{-1} e^{-x / \theta_{n}} I_{(0, \infty)}(x)$ and $e^{x} I_{(-\infty, 0)}(x)$, respectively, we have

$$
P\left(\left|X_{n}-X\right| \leq \varepsilon\right)=\int_{-\varepsilon}^{\varepsilon} \int \theta_{n}^{-1} e^{-x / \theta_{n}} e^{y-x} l_{(0, \infty)}(x) I_{(-\infty, x)}(y) d x d y
$$

which converges to (by the dominated convergence theorem)

$$
\int_{-\varepsilon}^{\varepsilon} \int e^{-x} e^{y-x} I_{(0, \infty)}(x) I_{(-\infty, x)}(y) d x d y=1-e^{-\varepsilon}
$$

Thus,

$$
P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \rightarrow e^{-\varepsilon}>0
$$

for any $\varepsilon>0$ and, therefore, $X_{n} \rightarrow_{p} X$ does not hold.

Proposition 1.16 (Pólya's theorem)

If $F_{n} \rightarrow_{w} F$ and F is continuous on \mathscr{R}^{k}, then

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathscr{R}^{k}}\left|F_{n}(x)-F(x)\right|=0
$$

This proposition implies the following useful result:
If $F_{n} \rightarrow_{w}$ a continuous F and $c_{n} \in \mathscr{R}^{k}$ with $c_{n} \rightarrow c$, then

$$
F_{n}\left(c_{n}\right) \rightarrow F(c)
$$

Lemma 1.4

For random k-vectors X, X_{1}, X_{2}, \ldots on a probability space, $X_{n} \rightarrow_{\text {a.s. }} X$ iff for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty}\left\{\left\|X_{m}-X\right\|>\varepsilon\right\}\right)=0
$$

Proof

It can be verified that

$$
\bigcap_{j=1}^{\infty} A_{j}=\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}, \quad A_{j}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty}\left\{\left\|X_{m}-X\right\| \leq j^{-1}\right\}
$$

By Proposition 1.1(iii, continuity),

$$
\begin{aligned}
P\left(A_{j}\right) & =\lim _{n \rightarrow \infty} P\left(\bigcap_{m=n}^{\infty}\left\{\left\|X_{m}-X\right\| \leq j^{-1}\right\}\right) \\
& =1-\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty}\left\{\left\|X_{m}-X\right\|>j^{-1}\right\}\right)
\end{aligned}
$$

$P\left(\cup_{m=n}^{\infty}\left\{\left\|X_{m}-X\right\|>\varepsilon\right\}\right) \rightarrow 0$ for every $\varepsilon>0$ iff $P\left(A_{j}\right)=1$ for every j, which is equivalent to $P\left(\cap_{j=1}^{\infty} A_{j}\right)=1$ (i.e., $X_{n} \rightarrow$ a.s. X), because

$$
P\left(A_{j}\right) \geq P\left(\bigcap_{j=1}^{\infty} A_{j}\right)=1-P\left(\bigcup_{j=1}^{\infty} A_{j}^{c}\right) \geq 1-\sum_{j=1}^{\infty} P\left(A_{j}^{c}\right)
$$

Lemma 1.5 (Borel-Cantelli lemma)

Let A_{n} be a sequence of events in a probability space and

$$
\limsup _{n} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m} .
$$

(i) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\limsup A_{n}\right)=0$.
(ii) If A_{1}, A_{2}, \ldots are pairwise independent and $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$, then $P\left(\limsup A_{n}\right)=1$.

Proof of Lemma 1.5 (i)

By Proposition 1.1,

$$
P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty} A_{m}\right) \leq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} P\left(A_{n}\right)=0
$$

where the last equality follows from the condition

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty .
$$

Proof of Lemma 1.5 (i)

We prove the case of independent A_{n} 's.
See Chung (1974, pp. 76-78) for the pairwise independence A_{n} 's.

$$
P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty} A_{m}\right)=1-\lim _{n \rightarrow \infty} P\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right)
$$

$\prod_{m=n}^{n+k} P\left(A_{m}^{c}\right)=\prod_{m=n}^{n+k}\left[1-P\left(A_{m}\right)\right] \leq \prod_{m=n}^{n+k} \exp \left\{-P\left(A_{m}\right)\right\}=\exp \left\{-\sum_{m=n}^{n+k} P\left(A_{m}\right)\right\}$
$\left(1-t \leq e^{-t}=\exp \{t\}\right)$.
Letting $k \rightarrow \infty$,

$$
\prod_{m=n}^{\infty} P\left(A_{m}^{c}\right)=\lim _{k \rightarrow \infty} \prod_{m=n}^{n+k} P\left(A_{m}^{c}\right) \leq \exp \left\{-\sum_{m=n}^{\infty} P\left(A_{m}\right)\right\}=0
$$

Hence,

$$
\lim _{n \rightarrow \infty} P\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right)=\lim _{n \rightarrow \infty} \prod_{m=n}^{\infty} P\left(A_{m}^{c}\right)=0
$$

The notion of $O(\cdot), O(\cdot)$, and stochastic $O(\cdot)$ and $O(\cdot)$
In calculus, two sequences of real numbers, $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, satisfy

- $a_{n}=O\left(b_{n}\right)$ iff $\left|a_{n}\right| \leq c\left|b_{n}\right|$ for all n and a constant c
- $a_{n}=o\left(b_{n}\right)$ iff $a_{n} / b_{n} \rightarrow 0$ as $n \rightarrow \infty$

Definition 1.9

Let X_{1}, X_{2}, \ldots be random vectors and Y_{1}, Y_{2}, \ldots be random variables defined on a common probability space.
(i) $X_{n}=O\left(Y_{n}\right)$ a.s. iff $P\left(\left\|X_{n}\right\|=O\left(\left|Y_{n}\right|\right)\right)=1$.
(ii) $X_{n}=o\left(Y_{n}\right)$ a.s. iff $X_{n} / Y_{n} \rightarrow_{\text {a.s. }} 0$.
(iii) $X_{n}=O_{p}\left(Y_{n}\right)$ iff, for any $\varepsilon>0$, there is a constant $C_{\varepsilon}>0$ such that

$$
\sup _{n} P\left(\left\|X_{n}\right\| \geq C_{\varepsilon}\left|Y_{n}\right|\right)<\varepsilon
$$

(iv) $X_{n}=o_{p}\left(Y_{n}\right)$ iff $X_{n} / Y_{n} \rightarrow_{p} 0$.

Discussions and properties

- Since $a_{n}=O(1)$ means that $\left\{a_{n}\right\}$ is bounded, $\left\{X_{n}\right\}$ is said to be bounded in probability if $X_{n}=O_{p}(1)$.
- $X_{n}=o_{p}\left(Y_{n}\right)$ implies $X_{n}=O_{p}\left(Y_{n}\right)$
- $X_{n}=O_{p}\left(Y_{n}\right)$ and $Y_{n}=O_{p}\left(Z_{n}\right)$ implies $X_{n}=O_{p}\left(Z_{n}\right)$
- $X_{n}=O_{p}\left(Y_{n}\right)$ does not imply $Y_{n}=O_{p}\left(X_{n}\right)$
- If $X_{n}=O_{p}\left(Z_{n}\right)$, then $X_{n} Y_{n}=O_{p}\left(Y_{n} Z_{n}\right)$.
- If $X_{n}=O_{p}\left(Z_{n}\right)$ and $Y_{n}=O_{p}\left(Z_{n}\right)$, then $X_{n}+Y_{n}=O_{p}\left(Z_{n}\right)$.
- The same conclusion can be obtained if $O_{p}(\cdot)$ and $o_{p}(\cdot)$ are replaced by $O(\cdot)$ a.s. and $O(\cdot)$ a.s., respectively.
- If $X_{n} \rightarrow{ }_{d} X$ for a random variable X, then $X_{n}=O_{p}(1)$
- If $E\left|X_{n}\right|=O\left(a_{n}\right)$, then $X_{n}=O_{p}\left(a_{n}\right)$, where $a_{n} \in(0, \infty)$.
- If $X_{n} \rightarrow_{\text {a.s. }} X$, then $\sup _{n}\left|X_{n}\right|=O_{p}(1)$.

Relationship among convergence modes

Theorem 1.8

(i) If $X_{n} \rightarrow_{\text {a.s. }} X$, then $X_{n} \rightarrow_{p} X$. (The converse is not true.)
(ii) If $X_{n} \rightarrow_{L_{r}} X$ for an $r>0$, then $X_{n} \rightarrow_{p} X$. (The converse is not true.)
(iii) If $X_{n} \rightarrow_{p} X$, then $X_{n} \rightarrow_{d} X$. (The converse is not true.)
(iv) (Skorohod's theorem). If $X_{n} \rightarrow_{d} X$, then there are random vectors Y, Y_{1}, Y_{2}, \ldots defined on a common probability space such that $P_{Y}=P_{X}, P_{Y_{n}}=P_{X_{n}}, n=1,2, \ldots$, and $Y_{n} \rightarrow$ a.s. Y.
(A useful result; a conditional converse of (i)-(iii).)
(v) If, for every $\varepsilon>0, \sum_{n=1}^{\infty} P\left(\left\|X_{n}-X\right\| \geq \varepsilon\right)<\infty$, then $X_{n} \rightarrow_{\text {a.s. }} X$.
(A conditional converse of (i): $P\left(\left\|X_{n}-X\right\| \geq \varepsilon\right)$ tends to 0 fast enough.)
(vi) If $X_{n} \rightarrow_{p} X$, then there is a subsequence $\left\{X_{n_{j}}, j=1,2, \ldots\right\}$ such that $X_{n_{j}} \rightarrow_{\text {a.s. }} X$ as $j \rightarrow \infty$. (A partial converse of (i).)

Theorem 1.8 (continued)

(vii) If $X_{n} \rightarrow_{d} X$ and $P(X=c)=1$, where $c \in \mathscr{R}^{k}$ is a constant vector, then $X_{n} \rightarrow_{p} c$. (A conditional converse of (i).)
(viii) Suppose that $X_{n} \rightarrow_{d} X$.

Then, for any $r>0$,

$$
\lim _{n \rightarrow \infty} E\left\|X_{n}\right\|_{r}^{r}=E\|X\|_{r}^{r}<\infty
$$

[we call this moment convergence (MC)]
iff $\left\{\left\|X_{n}\right\|_{r}^{r}\right\}$ is uniformly integrable (UI) in the sense that

$$
\lim _{t \rightarrow \infty} \sup _{n} E\left(\left\|X_{n}\right\|_{r}^{r} I_{\left\{\left\|X_{n}\right\|_{r}>t\right\}}\right)=0 .
$$

(A conditional converse of (ii).)
In particular, $X_{n}{L_{r}} X$ if and only if $\left\{\left\|X_{n}-X\right\|_{r}^{r}\right\}$ is UI

Discussions on uniform integrability

- If there is only one random vector, then UI is

$$
\lim _{t \rightarrow \infty} E\left(\|X\|_{r}^{r} I_{\left\{\|X\|_{r}>t\right\}}\right)=0
$$

which is equivalent to the integrability of $\|X\|_{r}^{r}$ (dominated convergence theorem).

- Sufficient conditions for uniform integrability:

$$
\sup _{n} E\left\|X_{n}\right\|_{r}^{r+\delta}<\infty \quad \text { for a } \delta>0
$$

$$
\begin{aligned}
& \text { This is because } \\
& \qquad \begin{aligned}
\lim _{t \rightarrow \infty} \sup _{n} E\left(\left\|X_{n}\right\|_{r}^{r} I_{\left\{\left\|X_{n}\right\|_{r}>t\right\}}\right) & \leq \lim _{t \rightarrow \infty} \sup _{n} E\left(\left\|X_{n}\right\|_{r}^{r} I_{\left\{\left\|X_{n}\right\|_{r}>t\right\}} \frac{\left\|X_{n}\right\|_{r}^{\delta}}{t^{\delta}}\right) \\
& \leq \lim _{t \rightarrow \infty} \frac{1}{t^{\delta}} \sup _{n} E\left(\left\|X_{n}\right\|_{r}^{r+\delta}\right) \\
& =0
\end{aligned}
\end{aligned}
$$

- Exercises 117-120.

Proof of Theorem 1.8

(i) The result follows from Lemma 1.4.
(ii) The result follows from Chebyshev's inequality with $\varphi(t)=|t|^{r}$.
(iii) Assume $k=1$. (The general case is proved in the textbook.) Let x be a continuity point of F_{X} and $\varepsilon>0$ be given.
Then

$$
\begin{aligned}
F_{X}(x-\varepsilon) & =P(X \leq x-\varepsilon) \\
& \leq P\left(X_{n} \leq x\right)+P\left(X \leq x-\varepsilon, X_{n}>x\right) \\
& \leq F_{X_{n}}(x)+P\left(\left|X_{n}-X\right|>\varepsilon\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain that

$$
F_{X}(x-\varepsilon) \leq \liminf _{n} F_{X_{n}}(x)
$$

Switching X_{n} and X in the previous argument, we can show that

$$
F_{X}(x+\varepsilon) \geq \limsup _{n} F_{X_{n}}(x)
$$

Since ε is arbitrary and F_{X} is continuous at x,

$$
F_{X}(x)=\lim _{n \rightarrow \infty} F_{X_{n}}(x)
$$

Proof (continued)

(iv) The proof of this part can be found in Billingsley (1995, pp. 333-334).
(v) Let $A_{n}=\left\{\left\|X_{n}-X\right\| \geq \varepsilon\right\}$. The result follows from Lemma 1.4, Lemma 1.5(i), and Proposition 1.1(iii).
(vi) $X_{n} \rightarrow_{p} X$ means $\lim _{n \rightarrow \infty} P\left(\left\|X_{n}-X\right\|>\varepsilon\right)=0$ for every $\varepsilon>0$. That is, for every $\varepsilon>0, P\left(\left\|X_{n}-X\right\|>\varepsilon\right)<\varepsilon$ for $n>n_{\varepsilon}\left(n_{\varepsilon}\right.$ is an integer depending on ε).
For every $j=1,2, \ldots$, there is a positive integer n_{j} such that

$$
P\left(\left\|X_{n_{j}}-X\right\|>2^{-j}\right)<2^{-j}
$$

For any $\varepsilon>0$, there is a k_{ε} such that for $j \geq k_{\varepsilon}$,

$$
P\left(\left\|X_{n_{j}}-X\right\|>\varepsilon\right)<P\left(\left\|X_{n_{j}}-X\right\|>2^{-j}\right)
$$

Since $\sum_{j=1}^{\infty} 2^{-j}=1$, it follows from the result in (v) that $X_{n_{j}} \rightarrow_{\text {a.s. }} X$ as $j \rightarrow \infty$.
(vii) The proof for this part is left as an exercise.

Properties of the quotient random variables

Proposition A1

Suppose X, X_{1}, X_{2}, \ldots, are positive random variables. Then $X_{n} \rightarrow_{\text {a.s. }} X$ if and only if for every $\varepsilon>0, \lim _{n \rightarrow \infty} P\left\{\sup _{k \geq n} \frac{X_{k}}{X}>1+\varepsilon\right\}=0$, and $\lim _{n \rightarrow \infty} P\left\{\sup _{k \geq n} \frac{X}{X_{k}}>1+\varepsilon\right\}=0$.

Proposition A2

Suppose X, X_{1}, X_{2}, \ldots, are positive random variables. If $\sum_{n=1}^{\infty} P\left(X_{n} / X>1+\varepsilon\right)<\infty$ and $\sum_{n=1}^{\infty} P\left(X / X_{n}>1+\varepsilon\right)<\infty$, then $X_{n} \rightarrow$ a.s. X.

Homework

1. Prove these two propositions.
2. Construct two random variable sequences such that these two propositions can apply.
