Lecture 8: Convergence of transformations and law of large numbers

Transformation and convergence

- Transformation is an important tool in statistics.
- If X_{n} converges to X in some sense, we often need to check whether $g\left(X_{n}\right)$ converges to $g(X)$ in the same sense.
- The continuous mapping theorem provides an answer to the question in many problems.

Theorem 1.10. Continuous mapping theorem

Let X, X_{1}, X_{2}, \ldots be random k-vectors defined on a probability space and g be a measurable function from $\left(\mathscr{R}^{k}, \mathscr{B}^{k}\right)$ to $\left(\mathscr{R}^{\prime}, \mathscr{B}^{\prime}\right)$. Suppose that g is continuous a.s. P_{X}. Then
(i) $X_{n} \rightarrow_{\text {a.s. }} X$ implies $g\left(X_{n}\right) \rightarrow_{\text {a.s. }} g(X)$;
(ii) $X_{n} \rightarrow_{p} X$ implies $g\left(X_{n}\right) \rightarrow_{p} g(X)$;
(iii) $X_{n} \rightarrow_{d} X$ implies $g\left(X_{n}\right) \rightarrow_{d} g(X)$.

Proof

(i) can be established using a result in calculus.
(iii) follows from Theorem 1.9(i): for any bounded and continuous h, $E\left[h\left(g\left(X_{n}\right)\right)\right] \rightarrow E[h(g(X))]$, since $h \circ g$ is bounded and continuous.
We prove (ii) for the special case of $X=c$ (a constant).
From the continuity of g, for any $\varepsilon>0$, there is a $\delta_{\varepsilon}>0$ such that

$$
\|g(x)-g(c)\|<\varepsilon \quad \text { whenever }\|x-c\|<\delta_{\varepsilon} .
$$

Hence,

$$
\left\{\omega:\left\|g\left(X_{n}(\omega)\right)-g(c)\right\|<\varepsilon\right\} \supset\left\{\omega:\left\|X_{n}(\omega)-c\right\|<\delta_{\varepsilon}\right\}
$$

and

$$
P\left(\left\|g\left(X_{n}\right)-g(c)\right\| \geq \varepsilon\right) \leq P\left(\left\|X_{n}-c\right\| \geq \delta_{\varepsilon}\right) .
$$

Hence $g\left(X_{n}\right) \rightarrow_{p} g(c)$ follows from $X_{n} \rightarrow_{p} c$.
Is the previous arguement still valid when c is replaced by the random vector X in the general case? If not, how do we fix the proof?

Example 1.30.

(i) Let X_{1}, X_{2}, \ldots be random variables. If $X_{n} \rightarrow_{d} X$, where X has the $N(0,1)$ distribution, then $X_{n}^{2} \rightarrow_{d} Y$, where Y has the chi-square distribution χ_{1}^{2}.
(ii) Let $\left(X_{n}, Y_{n}\right)$ be random 2-vectors satisfying $\left(X_{n}, Y_{n}\right) \rightarrow_{d}(X, Y)$, where X and Y are independent random variables having the $N(0,1)$ distribution. Then $X_{n} / Y_{n} \rightarrow_{d} X / Y$, which has the Cauchy distribution $C(0,1)$.
(iii) Under the conditions in part (ii), $\max \left\{X_{n}, Y_{n}\right\} \rightarrow_{d} \max \{X, Y\}$, which has the c.d.f. $[\Phi(x)]^{2}(\Phi(x)$ is the c.d.f. of $N(0,1))$.

In Example 1.30(ii) and (iii), the condition that $\left(X_{n}, Y_{n}\right) \rightarrow_{d}(X, Y)$ cannot be relaxed to $X_{n} \rightarrow_{d} X$ and $Y_{n} \rightarrow_{d} Y$ (exercise); i.e., we need the convergence of the joint c.d.f. of $\left(X_{n}, Y_{n}\right)$.
This is different when \rightarrow_{d} is replaced by \rightarrow_{p} or $\rightarrow_{\text {a.s. }}$.
The next result, which plays an important role in statistics, establishes the convergence in distribution of $X_{n}+Y_{n}$ or $X_{n} Y_{n}$ when no information regarding the joint c.d.f. of $\left(X_{n}, Y_{n}\right)$ is provided.

Theorem 1.11 (Slutsky's theorem)

Let $X, X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots$ be random variables on a probability space. Suppose that $X_{n} \rightarrow_{d} X$ and $Y_{n} \rightarrow_{p} c$, where c is a constant. Then
(i) $X_{n}+Y_{n} \rightarrow_{d} X+c$;
(ii) $Y_{n} X_{n}{ }_{d} c X$;
(iii) $X_{n} / Y_{n} \rightarrow_{d} X / c$ if $c \neq 0$.

Proof

We prove (i) only.
The proofs of (ii) and (iii) are left as exercises.
Let $t \in \mathscr{R}$ and $\varepsilon>0$ be fixed constants.
Then

$$
\begin{aligned}
F_{X_{n}+Y_{n}}(t) & =P\left(X_{n}+Y_{n} \leq t\right) \\
& \leq P\left(\left\{X_{n}+Y_{n} \leq t\right\} \cap\left\{\left|Y_{n}-c\right|<\varepsilon\right\}\right)+P\left(\left|Y_{n}-c\right| \geq \varepsilon\right) \\
& \leq P\left(X_{n} \leq t-c+\varepsilon\right)+P\left(\left|Y_{n}-c\right| \geq \varepsilon\right)
\end{aligned}
$$

Proof (continued)

Similarly,

$$
F_{X_{n}+Y_{n}}(t) \geq P\left(X_{n} \leq t-c-\varepsilon\right)-P\left(\left|Y_{n}-c\right| \geq \varepsilon\right)
$$

If $t-c, t-c+\varepsilon$, and $t-c-\varepsilon$ are continuity points of F_{X}, then it follows from the previous two inequalities and the hypotheses of the theorem that

$$
F_{X}(t-c-\varepsilon) \leq \liminf _{n} F_{X_{n}+Y_{n}}(t) \leq \underset{n}{\limsup } F_{X_{n}+Y_{n}}(t) \leq F_{X}(t-c+\varepsilon)
$$

Since ε can be arbitrary (why?),

$$
\lim _{n \rightarrow \infty} F_{X_{n}+Y_{n}}(t)=F_{X}(t-c)
$$

The result follows from $F_{X+c}(t)=F_{X}(t-c)$.
An application of Theorem 1.11 is given in the proof of the following important result.

Theorem 1.12

Let X_{1}, X_{2}, \ldots and $Y=\left(Y_{1}, \ldots, Y_{k}\right)$ be random k-vectors satisfying

$$
a_{n}\left(X_{n}-c\right) \rightarrow_{d} Y
$$

where $c \in \mathscr{R}^{k}$ and $\left\{a_{n}\right\}$ is a sequence of positive numbers with $\lim _{n \rightarrow \infty} a_{n}=\infty$.
Let g be a function from \mathscr{R}^{k} to \mathscr{R}.
(i) If g is differentiable at c, then

$$
a_{n}\left[g\left(X_{n}\right)-g(c)\right] \rightarrow_{d}[\nabla g(c)]^{\tau} Y
$$

where $\nabla g(x)$ denotes the k-vector of partial derivatives of g at x.
(ii) Suppose that g has continuous partial derivatives of order $m>1$ in a neighborhood of c, with all the partial derivatives of order j, $1 \leq j \leq m-1$, vanishing at c, but with the m th-order partial derivatives not all vanishing at c.
Then

$$
\left.a_{n}^{m}\left[g\left(X_{n}\right)-g(c)\right] \rightarrow_{d} \frac{1}{m!} \sum_{i_{1}=1}^{k} \cdots \sum_{i_{m}=1}^{k} \frac{\partial^{m} g}{\partial x_{i_{1}} \cdots \partial x_{i_{m}}}\right|_{x=c} Y_{i_{1}} \cdots Y_{i_{m}}
$$

Proof

We prove (i) only.
Let

$$
Z_{n}=a_{n}\left[g\left(X_{n}\right)-g(c)\right]-a_{n}[\nabla g(c)]^{\tau}\left(X_{n}-c\right)
$$

If we can show that $Z_{n}=o_{p}(1)$, then by $a_{n}\left(X_{n}-c\right) \rightarrow_{d} Y$, Theorem 1.9 (iii), and Theorem 1.11(i), result (i) holds.

The differentiability of g at c implies that for any $\varepsilon>0$, there is a $\delta_{\varepsilon}>0$ such that

$$
\left|g(x)-g(c)-[\nabla g(c)]^{\tau}(x-c)\right| \leq \varepsilon\|x-c\|
$$

whenever $\|x-c\|<\delta_{\varepsilon}$.
Then for a fixed $\eta>0$,

$$
P\left(\left|Z_{n}\right| \geq \eta\right) \leq P\left(\left\|X_{n}-c\right\| \geq \delta_{\varepsilon}\right)+P\left(a_{n}\left\|X_{n}-c\right\| \geq \eta / \varepsilon\right)
$$

Since $a_{n} \rightarrow \infty, a_{n}\left(X_{n}-c\right) \rightarrow_{d} Y$ and Theorem 1.11(ii) imply $X_{n} \rightarrow_{p} c$. By Theorem 1.10(iii), $a_{n}\left(X_{n}-c\right) \rightarrow_{d} Y$ implies $a_{n}\left\|X_{n}-c\right\| \rightarrow_{d}\|Y\|$. Without loss of generality, we can assume that η / ε is a continuity point of $F_{\|Y\| \|}$.

Proof (continued)

Then

$$
\begin{aligned}
\limsup _{n} P\left(\left|Z_{n}\right| \geq \eta\right) & \leq \lim _{n \rightarrow \infty} P\left(\left\|X_{n}-c\right\| \geq \delta_{\varepsilon}\right) \\
& +\lim _{n \rightarrow \infty} P\left(a_{n}\left\|X_{n}-c\right\| \geq \eta / \varepsilon\right) \\
& =P(\|Y\| \geq \eta / \varepsilon)
\end{aligned}
$$

$Z_{n} \rightarrow_{p} 0$ follows since ε can be arbitrary.

Remarks

- In statistics, we often need a nondegenerated limiting distribution of $a_{n}\left[g\left(X_{n}\right)-g(c)\right]$ so that probabilities involving $a_{n}\left[g\left(X_{n}\right)-g(c)\right]$ can be approximated by the c.d.f. of $[\nabla g(c)]^{\tau} Y$, under Theorem 1.12(i).
- When $\nabla g(c)=0$, Theorem $1.12(i)$ indicates that the limiting distribution of $a_{n}\left[g\left(X_{n}\right)-g(c)\right]$ is degenerated. In such cases the result in Theorem 1.12(ii) may be useful.

Corollary 1.1 (the δ-method)

Assume the conditions of Theorem 1.12.
If Y has the $N_{k}(0, \Sigma)$ distribution, then

$$
a_{n}\left[g\left(X_{n}\right)-g(c)\right] \rightarrow_{d} N\left(0,[\nabla g(c)]^{\tau} \Sigma \nabla g(c)\right) .
$$

Example 1.31

Let $\left\{X_{n}\right\}$ be a sequence of random variables satisfying

$$
\sqrt{n}\left(X_{n}-c\right) \rightarrow_{d} N(0,1)
$$

Consider the function $g(x)=x^{2}$.
If $c \neq 0$, then an application of Corollary 1.1 gives that

$$
\sqrt{n}\left(X_{n}^{2}-c^{2}\right) \rightarrow_{d} N\left(0,4 c^{2}\right)
$$

If $c=0, g^{\prime}(c)=0$ but $g^{\prime \prime}(c)=2$.
Hence, an application of Theorem 1.12(ii) gives that

$$
n X_{n}^{2} \rightarrow_{d}[N(0,1)]^{2}
$$

which has the chi-square distribution χ_{1}^{2} (Example 1.14).
The last result can also be obtained by applying Theorem 1.10(iii).

Example: Ratio estimator

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid bivariate random vectors with finite $2 n d$ order momemnts
$\bar{X}_{n}=n^{-1} \sum_{i} X_{i}, \bar{Y}_{n}=n^{-1} \sum_{i} Y_{i}$
$\mu_{x}=E\left(X_{1}\right), \mu_{y}=E\left(Y_{1}\right) \neq 0, \sigma_{x}^{2}=\operatorname{Var}\left(X_{1}\right), \sigma_{y}^{2}=\operatorname{Var}\left(Y_{1}\right)$,
$\sigma_{x y}=\operatorname{Cov}\left(X_{1}, Y_{1}\right)$
By the CLT,

$$
\sqrt{n}\left(\binom{\bar{x}_{n}}{\bar{Y}_{n}}-\binom{\mu_{x}}{\mu_{y}}\right) \rightarrow_{d} N_{2}\left(0,\left(\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right)\right)
$$

By the δ-method, $g(x, y)=x / y, \partial g / \partial x=y^{-1}, \partial g / \partial y=-x y^{-2}$

$$
\begin{gathered}
\sqrt{n}\left(\frac{\bar{X}_{n}}{\bar{Y}_{n}}-\frac{\mu_{x}}{\mu_{y}}\right) \rightarrow_{d} N\left(0, \sigma^{2}\right) \\
\sigma^{2}=\left(\mu_{y}^{-1},-\mu_{x} \mu_{y}^{-2}\right)\left(\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y}^{2}
\end{array}\right)\binom{\mu_{y}^{-1}}{-\mu_{x} \mu_{y}^{-2}}=\frac{\sigma_{x}^{2}}{\mu_{y}^{2}}-\frac{\mu_{x} \sigma_{x y}}{\mu_{y}^{3}}+\frac{\mu_{x}^{2} \sigma_{y}^{2}}{\mu_{y}^{4}}
\end{gathered}
$$

The law of large numbers

- The law of large numbers concerns the limiting behavior of a sum of random variables.
- The weak law of large numbers (WLLN) refers to convergence in probability.
- The strong law of large numbers (SLLN) refers to a.s. convergence.
- The WLLN and SLLN play important roles in establishing consistency of estimators in large sample statistical inference.

Lemma 1.6. (Kronecker's lemma)

Let $x_{n} \in \mathscr{R}, a_{n} \in \mathscr{R}, 0<a_{n} \leq a_{n+1}, n=1,2, \ldots$, and $a_{n} \rightarrow \infty$. If the series $\sum_{n=1}^{\infty} x_{n} / a_{n}$ converges, then $a_{n}^{-1} \sum_{i=1}^{n} x_{i} \rightarrow 0$.

Our first result gives the WLLN and SLLN for a sequence of independent and identically distributed (i.i.d.) random variables.

Theorem 1.13

Let X_{1}, X_{2}, \ldots be i.i.d. random variables.
(i) (The WLLN). A necessary and sufficient condition for the existence of a sequence of real numbers $\left\{a_{n}\right\}$ for which

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}-a_{n} \rightarrow_{p} 0
$$

is that $n P\left(\left|X_{1}\right|>n\right) \rightarrow 0$, in which case we may take

$$
a_{n}=E\left(X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right) .
$$

(ii) (The SLLN). A necessary and sufficient condition for the existence of a constant c for which

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow_{\text {a.s. }} c
$$

is that $E\left|X_{1}\right|<\infty$, in which case $c=E X_{1}$ and

$$
\frac{1}{n} \sum_{i=1}^{n} c_{i}\left(X_{i}-E X_{1}\right) \rightarrow_{\text {a.s. }} 0
$$

for any bounded sequence of real numbers $\left\{c_{i}\right\}$.

Proof of Theorem 1.13(i)

We prove the sufficiency.
The proof of necessity can be found in Petrov (1975).
Consider a sequence of random variables obtained by truncating X_{j} 's at n :

$$
Y_{n j}=X_{j}\left\{_{\left\{\left|X_{j}\right| \leq n\right\}} .\right.
$$

Let

$$
T_{n}=X_{1}+\cdots+X_{n}, \quad Z_{n}=Y_{n 1}+\cdots+Y_{n n} .
$$

Then

$$
P\left(T_{n} \neq Z_{n}\right) \leq \sum_{j=1}^{n} P\left(Y_{n j} \neq X_{j}\right)=n P\left(\left|X_{1}\right|>n\right) \rightarrow 0 .
$$

For any $\varepsilon>0$, it follows from Chebyshev's inequality that

$$
P\left(\left|\frac{Z_{n}-E Z_{n}}{n}\right|>\varepsilon\right) \leq \frac{\operatorname{var}\left(Z_{n}\right)}{\varepsilon^{2} n^{2}}=\frac{\operatorname{var}\left(Y_{n 1}\right)}{\varepsilon^{2} n} \leq \frac{E Y_{n 1}^{2}}{\varepsilon^{2} n},
$$

where the last equality follows from the fact that $Y_{n j}, j=1, \ldots, n$, are i.i.d.

Proof of Theorem 1.13(i) (continued)

From integration by parts, we obtain that

$$
\frac{E Y_{n 1}^{2}}{n}=\frac{1}{n} \int_{[0, n]} x^{2} d F_{\left|X_{1}\right|}(x)=\frac{2}{n} \int_{0}^{n} x P\left(\left|X_{1}\right|>x\right) d x-n P\left(\left|X_{1}\right|>n\right)
$$

which converges to 0 since $n P\left(\left|X_{1}\right|>n\right) \rightarrow 0$ (why?).
This proves that $\left(Z_{n}-E Z_{n}\right) / n \rightarrow_{p} 0$, which together with $P\left(T_{n} \neq Z_{n}\right) \rightarrow 0$ and the fact that $E Y_{n j}=E\left(X_{1} I_{\left\{\left|X_{1}\right| \leq n\right\}}\right)$ imply the result.

Proof of Theorem 1.13(ii)

The proof for sufficiency is given in the textbook.
We prove the necessity.
Suppose that $T_{n} / n \rightarrow_{\text {a.s. }}$ holds for some $c \in \mathscr{R}, T_{n}=X_{1}+\cdots+X_{n}$.
Then

$$
\frac{X_{n}}{n}=\frac{T_{n}}{n}-c-\frac{n-1}{n}\left(\frac{T_{n-1}}{n-1}-c\right)+\frac{c}{n} \rightarrow_{\text {a.s. }} 0
$$

Proof of Theorem 1.13 (i)

From Exercise 114, $X_{n} / n \rightarrow$ a.s. 0 and the i.i.d. assumption on X_{n} 's imply

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}\right| \geq n\right)=\sum_{n=1}^{\infty} P\left(\left|X_{1}\right| \geq n\right)<\infty,
$$

which implies $E\left|X_{1}\right|<\infty$ (Exercise 54).
From the proved sufficiency, $c=E X_{1}$.

Remarks

- If $E\left|X_{1}\right|<\infty$, then $a_{n}=E\left(X_{1}\left\{_{\left\{\left|X_{1}\right| \leq n\right\}}\right) \rightarrow E X_{1}\right.$ and result the WLLN is actually established in Example 1.28 in a much simpler way.
- On the other hand, if $E\left|X_{1}\right|<\infty$, then a stronger result, the SLLN, can be obtained.
- Some results for the case of $E\left|X_{1}\right|=\infty$ can be found in Exercise 148 and Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily identically distributed random variables.

