Lecture 9: The law of large numbers and central limit theorem

Theorem 1.14

Let X_{1}, X_{2}, \ldots be independent random variables with finite expectations.
(i) (The SLLN). If there is a constant $p \in[1,2]$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{E\left|X_{i}\right|^{p}}{i p}<\infty \tag{1}
\end{equation*}
$$

then

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) \rightarrow_{\text {a.s. }} 0 .
$$

(ii) (The WLLN). If there is a constant $p \in[1,2]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{p}} \sum_{i=1}^{n} E\left|X_{i}\right|^{p}=0 \tag{2}
\end{equation*}
$$

then

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) \rightarrow_{p} 0
$$

Remarks

- Note that (1) implies (2) (Lemma 1.6).
- The result in Theorem 1.14(i) is called Kolmogorov's SLLN when $p=2$ and is due to Marcinkiewicz and Zygmund when $1 \leq p<2$.
- An obvious sufficient condition for (1) with $p \in(1,2]$ is $\sup _{n} E\left|X_{n}\right|^{p}<\infty$.
- The WLLN and SLLN have many applications in probability and statistics.

Example 1.32

Let f and g be continuous functions on $[0,1]$ satisfying $0 \leq f(x) \leq C g(x)$ for all x, where $C>0$ is a constant. We now show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\sum_{i=1}^{n} f\left(x_{i}\right)}{\sum_{i=1}^{n} g\left(x_{i}\right)} d x_{1} d x_{2} \cdots d x_{n}=\frac{\int_{0}^{1} f(x) d x}{\int_{0}^{1} g(x) d x} \tag{3}
\end{equation*}
$$

(assuming that $\int_{0}^{1} g(x) d x \neq 0$).

Example 1.32 (continued)

X_{1}, X_{2}, \ldots be i.i.d. random variables having the uniform distribution on $[0,1]$.
By Theorem 1.2,

$$
E\left[f\left(X_{1}\right)\right]=\int_{0}^{1} f(x) d x<\infty, \quad E\left[g\left(X_{1}\right)\right]=\int_{0}^{1} g(x) d x<\infty .
$$

By the SLLN (Theorem 1.13(ii)),

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \rightarrow_{\text {a.s. }} E\left[f\left(X_{1}\right)\right], \quad \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \rightarrow_{\text {a.s. }} E\left[g\left(X_{1}\right)\right],
$$

By Theorem 1.10(i),

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} f\left(X_{i}\right)}{\sum_{i=1}^{n} g\left(X_{i}\right)} \rightarrow_{\text {a.s. }} \frac{E\left[f\left(X_{1}\right)\right]}{E\left[g\left(X_{1}\right)\right]} . \tag{4}
\end{equation*}
$$

Since the random variable on the left-hand side of (4) is bounded by C, result (3) follows from the dominated convergence theorem and the fact that the left-hand side of (3) is the expectation of the random variable on the left-hand side of (4).

Example

Let $T_{n}=\sum_{i=1}^{n} X_{i}$, where X_{n} 's are independent random variables satisfying $P\left(X_{n}= \pm n^{\theta}\right)=0.5$ and $\theta>0$ is a constant.
We want to show that $T_{n} / n \rightarrow$ a.s. 0 when $\theta<0.5$.
For $\theta<0.5$,

$$
\sum_{n=1}^{\infty} \frac{E X_{n}^{2}}{n^{2}}=\sum_{n=1}^{\infty} \frac{n^{2 \theta}}{n^{2}}<\infty
$$

By the Kolmogorov strong law of large numbers, $T_{n} / n \rightarrow_{\text {a.s. }} 0$.

Example (Exercise 165)

Let X_{1}, X_{2}, \ldots be independent random variables.
Suppose that

$$
\frac{1}{\sigma_{n}} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) \rightarrow_{d} N(0,1)
$$

where $\sigma_{n}^{2}=\operatorname{var}\left(\sum_{j=1}^{n} X_{j}\right)$.

Example (Exercise 165)

We want to show that

$$
\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) \rightarrow_{p} 0 \quad \text { iff } \quad \sigma_{n} / n \rightarrow 0
$$

If $\sigma_{n} / n \rightarrow 0$, then by Slutsky's theorem,

$$
\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right)=\frac{\sigma_{n}}{n} \frac{1}{\sigma_{n}} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) \rightarrow_{d} 0
$$

Assume now σ_{n} / n does not converge to 0 but $n^{-1} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) \rightarrow_{p} 0$. Without loss of generality, assume that $\sigma_{n} / n \rightarrow c \in(0, \infty]$.
By Slutsky's theorem,

$$
\frac{1}{\sigma_{n}} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right)=\frac{n}{\sigma_{n}} \frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) \rightarrow_{p} 0
$$

This contradicts the fact that $\sum_{j=1}^{n}\left(X_{j}-E X_{j}\right) / \sigma_{n} \rightarrow_{d} N(0,1)$. Hence, $n^{-1} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right)$ does not converge to 0 in probability.

The central limit theorem

The WLLN and SLLN may not be useful in approximating the distributions of (normalized) sums of independent random variables.
We need to use the central limit theorem (CLT), which plays a fundamental role in statistical asymptotic theory.

Theorem 1.15 (Lindeberg's CLT)

Let $\left\{X_{n j}, j=1, \ldots, k_{n}\right\}$ be independent random variables with $k_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
0<\sigma_{n}^{2}=\operatorname{var}\left(\sum_{j=1}^{k_{n}} x_{n j}\right)<\infty, \quad n=1,2, \ldots
$$

If

$$
\begin{equation*}
\frac{1}{\sigma_{n}^{2}} \sum_{j=1}^{k_{n}} E\left[\left(X_{n j}-E X_{n j}\right)^{2} I_{\left\{\left|X_{n j}-E X_{n j}\right|>\varepsilon \sigma_{n}\right\}}\right] \rightarrow 0 \quad \text { for any } \varepsilon>0 \tag{5}
\end{equation*}
$$

then

$$
\frac{1}{\sigma_{n}} \sum_{j=1}^{k_{n}}\left(X_{n j}-E X_{n j}\right) \rightarrow_{d} N(0,1)
$$

Proof

Considering $\left(X_{n j}-E X_{n j}\right) / \sigma_{n}$, without loss of generality we may assume $E X_{n j}=0$ and $\sigma_{n}^{2}=1$ in this proof.
Let $t \in \mathscr{R}$ be given.
From the inequality

$$
\left|e^{\sqrt{-1} t x}-\left(1+\sqrt{-1} t x-t^{2} x^{2} / 2\right)\right| \leq \min \left\{|t x|^{2},|t x|^{3}\right\}
$$

the ch.f. of $X_{n j}$ satisfies

$$
\left|\phi_{X_{n j}}(t)-\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right| \leq E\left(\min \left\{\left|t X_{n j}\right|^{2},\left|t X_{n j}\right|^{3}\right\}\right)
$$

where $\sigma_{n j}^{2}=\operatorname{var}\left(X_{n j}\right)$.
For any $\varepsilon>0$, the right-hand side of the previous expression is bounded by

$$
E\left(\left|t X_{n j}\right|^{3} I_{\left\{\left|X_{n j}\right|<\varepsilon\right\}}\right)+E\left(\left|t X_{n j}\right|^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon\right\}}\right),
$$

which is bounded by

$$
\varepsilon|t|^{3} \sigma_{n j}^{2}+t^{2} E\left(X_{n j}^{2} \|_{\left\{\left|X_{n j}\right| \geq \varepsilon\right\}}\right)
$$

Proof (continued)

Summing over j and using $\sigma_{n}^{2}=1$, we obtain that

$$
\begin{aligned}
\sum_{j=1}^{k_{n}} \mid \phi_{X_{n j}}(t)- & \left(1-t^{2} \sigma_{n j}^{2} / 2\right) \mid \leq \sum_{j=1}^{k_{n}}\left\{\varepsilon|t|^{3} \sigma_{n j}^{2}+t^{2} E\left(X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon\right\}}\right)\right\} \\
& =\varepsilon|t|^{3}+t^{2} \sum_{j=1}^{k_{n}} E\left(X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon\right\}}\right) \rightarrow \varepsilon|t|^{3}
\end{aligned}
$$

by condition (5).
Also by condition (5) and $\sigma_{n}^{2}=1$,

$$
\max _{j \leq k_{n}} \frac{\sigma_{n j}^{2}}{\sigma_{n}^{2}} \leq \varepsilon^{2}+\max _{j \leq k_{n}} E\left(X_{n j}^{2} I_{\left\{\left|X_{n j}\right|>\varepsilon\right\}}\right) \rightarrow \varepsilon^{2}
$$

Since $\varepsilon>0$ is arbitrary and t is fixed,

$$
\sum_{j=1}^{k_{n}}\left|\phi_{X_{n j}}(t)-\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right| \rightarrow 0
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{j \leq k_{n}} \frac{\sigma_{n j}^{2}}{\sigma_{n}^{2}}=0 \tag{6}
\end{equation*}
$$

Proof (continued)

This implies that $1-t^{2} \sigma_{n j}^{2}$ are all between 0 and 1 for large enough n. Using the inequality

$$
\left|a_{1} \cdots a_{m}-b_{1} \cdots b_{m}\right| \leq \sum_{j=1}^{m}\left|a_{j}-b_{j}\right|
$$

for any complex numbers a_{j} 's and b_{j} 's with $\left|a_{j}\right| \leq 1$ and $\left|b_{j}\right| \leq 1$, $j=1, \ldots, m$, we obtain that

$$
\left|\prod_{j=1}^{k_{n}} e^{-t^{2} \sigma_{n j}^{2} / 2}-\prod_{j=1}^{k_{n}}\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right| \leq \sum_{j=1}^{k_{n}}\left|e^{-t^{2} \sigma_{n j}^{2} / 2}-\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right|
$$

which is bounded by

$$
t^{4} \sum_{j=1}^{k_{n}} \sigma_{n j}^{4} \leq t^{4} \max _{j \leq k_{n}} \sigma_{n j}^{2} \rightarrow 0
$$

since $\left|e^{x}-1-x\right| \leq x^{2} / 2$ if $|x| \leq \frac{1}{2}$ and $\sum_{j=1}^{k_{n}} \sigma_{n j}^{2}=\sigma_{n}^{2}=1$.

Proof (continued)

Then

$$
\begin{aligned}
\left|\prod_{j=1}^{k_{n}} \phi_{X_{n j}}(t)-\prod_{j=1}^{k_{n}} e^{-t^{2} \sigma_{n j}^{2} / 2}\right| \leq & \sum_{j=1}^{k_{n}}\left|\phi_{x_{n j}}(t)-e^{-t^{2} \sigma_{n j}^{2} / 2}\right| \\
\leq & \sum_{j=1}^{k_{n}}\left|\phi_{x_{n j}}(t)-\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right| \\
& +\sum_{j=1}^{k_{n}}\left|e^{-t^{2} \sigma_{n j}^{2} / 2}-\left(1-t^{2} \sigma_{n j}^{2} / 2\right)\right| \\
\rightarrow & 0
\end{aligned}
$$

as previously shown.
Thus,

$$
\prod_{j=1}^{k_{n}} \phi_{X_{n j}}(t)=\prod_{j=1}^{k_{n}} e^{-t^{2} \sigma_{n j}^{2} / 2}+o(1)=e^{-t^{2} / 2}+o(1)
$$

i.e., the ch.f. of $\sum_{j=1}^{k_{n}} X_{n j}$ converges to the ch.f. of $N(0,1)$ for every t. By Theorem 1.9(ii), the result follows.

- Condition (5) is called Lindeberg's condition.
- From the proof, Lindeberg's condition implies (6), which is called Feller's condition.
- Feller's condition (6) means that all terms in the sum $\sigma_{n}^{2}=\sum_{j=1}^{k_{n}} \sigma_{n j}^{2}$ are uniformly negligible as $n \rightarrow \infty$.
- If Feller's condition is assumed, then Lindeberg's condition is not only sufficient but also necessary for the result in Theorem 1.15, which is the well-known Lindeberg-Feller CLT.
- A proof can be found in Billingsley (1995, pp. 359-361).
- Note that neither Lindeberg's condition nor Feller's condition is necessary for the result in Theorem 1.15 (Exercise 158).

Liapounov's condition

A sufficient condition for Lindeberg's condition is the following Liapounov's condition, which is somewhat easier to verify:

$$
\begin{equation*}
\frac{1}{\sigma_{n}^{2+\delta}} \sum_{j=1}^{k_{n}} E\left|X_{n j}-E X_{n j}\right|^{2+\delta} \rightarrow 0 \text { for some } \delta>0 \tag{7}
\end{equation*}
$$

Example 1.33

Let X_{1}, X_{2}, \ldots be independent random variables.
Suppose that X_{i} has the binomial distribution $\operatorname{Bi}\left(p_{i}, 1\right), i=1,2, \ldots$, and that $\sigma_{n}^{2}=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$.
For each $i, E X_{i}=p_{i}$ and
$E\left|X_{i}-E X_{i}\right|^{3}=\left(1-p_{i}\right)^{3} p_{i}+p_{i}^{3}\left(1-p_{i}\right) \leq 2 p_{i}\left(1-p_{i}\right)$.
Hence $\sum_{i=1}^{n} E\left|X_{i}-E X_{i}\right|^{3} \leq 2 \sigma_{n}^{2}$, i.e., Liapounov's condition (7) holds
with $\delta=1$.
Thus, by Theorem 1.15,

$$
\begin{equation*}
\frac{1}{\sigma_{n}} \sum_{i=1}^{n}\left(X_{i}-p_{i}\right) \rightarrow_{d} N(0,1) \tag{8}
\end{equation*}
$$

It can be shown (exercise) that the condition $\sigma_{n} \rightarrow \infty$ is also necessary for result (8).

The following are useful corollaries of Theorem 1.15 and Theorem 1.9 (iii).

For i.i.d. random k-vectors X_{1}, \ldots, X_{n} with a finite $\Sigma=\operatorname{var}\left(X_{1}\right)$,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-E X_{1}\right) \rightarrow_{d} N_{k}(0, \Sigma)
$$

Corollary 1.3

Let $X_{n i} \in \mathscr{R}^{m_{i}}, i=1, \ldots, k_{n}$, be independent random vectors with $m_{i} \leq m$ (a fixed integer), $n=1,2, \ldots, k_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and $\inf _{i, n} \lambda_{-}\left[\operatorname{var}\left(X_{n i}\right)\right]>0$, where $\lambda_{-}[A]$ is the smallest eigenvalue of A.
Let $c_{n i} \in \mathscr{R}^{m_{i}}$ be vectors such that

$$
\lim _{n \rightarrow \infty}\left(\max _{1 \leq i \leq k_{n}}\left\|c_{n i}\right\|^{2} / \sum_{i=1}^{k_{n}}\left\|c_{n i}\right\|^{2}\right)=0
$$

(i) If $\sup _{i, n} E\left\|X_{n i}\right\|^{2+\delta}<\infty$ for some $\delta>0$, then

$$
\begin{equation*}
\sum_{i=1}^{k_{n}} c_{n i}^{\tau}\left(X_{n i}-E X_{n i}\right) /\left[\sum_{i=1}^{k_{n}} \operatorname{var}\left(c_{n i}^{\tau} X_{n i}\right)\right]^{1 / 2} \rightarrow_{d} N(0,1) \tag{9}
\end{equation*}
$$

(ii) If whenever $m_{i}=m_{j}, 1 \leq i<j \leq k_{n}, n=1,2, \ldots, X_{n i}$ and $X_{n j}$ have the same distribution with $E\left\|X_{n i}\right\|^{2}<\infty$, then (9) holds.

Remarks

- Proving Corollary 1.3 is a good exercise.
- Applications of these corollaries can be found in later chapters.
- More results on the CLT can be found, for example, in Serfling (1980) and Shorack and Wellner (1986).

More on Pólya's theorem

Let Y_{n} be a sequence of random variables, $\left\{\mu_{n}\right\}$ and $\left\{\sigma_{n}\right\}$ be sequences of real numbers such that $\sigma_{n}>0$ for all n, and

$$
\left(Y_{n}-\mu_{n}\right) / \sigma_{n} \rightarrow_{d} N(0,1) .
$$

Then, by Proposition 1.16,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x}\left|F_{\left(Y_{n}-\mu_{n}\right) / \sigma_{n}}(x)-\Phi(x)\right|=0, \tag{10}
\end{equation*}
$$

where Φ is the c.d.f. of $N(0,1)$.

Asymptotic normality

(10) implies that for any sequence of real numbers $\left\{c_{n}\right\}$,

$$
\lim _{n \rightarrow \infty}\left|P\left(Y_{n} \leq c_{n}\right)-\Phi\left(\frac{c_{n}-\mu_{n}}{\sigma_{n}}\right)\right|=0
$$

i.e., $P\left(Y_{n} \leq c_{n}\right)$ can be approximated by $\Phi\left(\frac{c_{n}-\mu_{n}}{\sigma_{n}}\right)$, regardless of whether $\left\{c_{n}\right\}$ has a limit.
Since $\Phi\left(\frac{t-\mu_{n}}{\sigma_{n}}\right)$ is the c.d.f. of $N\left(\mu_{n}, \sigma_{n}^{2}\right), Y_{n}$ is said to be asymptotically distributed as $N\left(\mu_{n}, \sigma_{n}^{2}\right)$ or simply asymptotically normal.

Examples

- For example, $\sum_{i=1}^{k_{n}} c_{n i}^{\tau} X_{n i}$ in Corollary 1.3 is asymptotically normal.
- This can be extended to random vectors.

For example, $\sum_{i=1}^{n} X_{i}$ in Corollary 1.2 is asymptotically distributed as $N_{k}\left(n E X_{1}, n \Sigma\right)$.

