
beamer-tu-logo

Lecture 11: Sufficiency and minimal sufficiency
Data reduction without loss of information
A statistic T (X ) provides a reduction of the σ -field σ(X )
Does such a reduction results in any loss of information about P?
If a statistic T (X ) is fully as informative as the original sample X , then
statistical analyses can be done using T (X ) that is simpler than X .
The next concept describes what we mean by fully informative.

Definition 2.4 (Sufficiency)
Let X be a sample from an unknown population P ∈P, where P is a
family of populations.
A statistic T (X ) is said to be sufficient for P ∈P (or for θ ∈Θ when
P = {Pθ : θ ∈Θ} is a parametric family) iff the conditional distribution
of X given T is known (does not depend on P or θ ).

Once we compute a sufficient statistic T (X ), the original data X do
not contain any further information about P and can be discarded.
The concept of sufficiency depends on the given family P.
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Example 2.10
X = (X1, ...,Xn) and X1, ...,Xn are i.i.d. from the binomial distribution
Consider the statistic T (X ) = ∑

n
i=1 Xi , which is the number of ones in X .

For any realization x of X , x is a sequence of n ones and zeros.
T contains all information about θ , since θ is the probability of an
occurrence of a one in x and given T = t , what is left in the data set x
is the redundant information about the positions of t ones.
Let t = 0,1, ...,n and Bt = {(x1, ...,xn) : xi = 0,1, ∑

n
i=1 xi = t}.

To show T is sufficient for θ , we compute, for x ∈ Bt ,

P(X = x ,T = t) =
n

∏
i=1

P(Xi = xi) = θ
t (1−θ)n−t

n

∏
i=1

I{0,1}(xi).

It is 0 if x 6∈ Bt .
Then

P(T = t) =

(
n
t

)
θ

t (1−θ)n−t I{0,1,...,n}(t),

P(X = x |T = t) =
P(X = x ,T = t)

P(T = t)
=

1(n
t

) IBt (x)

is a known p.d.f. (does not depend on θ ).
Hence T (X ) is sufficient for θ ∈ (0,1) according to Definition 2.4.
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How to find a sufficient statistic?
Finding a sufficient statistic by means of the definition is not convenient
It involves guessing a statistic T that might be sufficient and computing
the conditional distribution of X given T = t .
For families of populations having p.d.f.’s, a simple way of finding
sufficient statistics is to use the factorization theorem.
Theorem 2.2 (The factorization theorem)
Suppose that X is a sample from P ∈P and P is a family of
probability measures on (Rn,Bn) dominated by a σ -finite measure ν .
Then T (X ) is sufficient for P ∈P iff there are nonnegative Borel
functions h (which does not depend on P) on (Rn,Bn) and gP (which
depends on P) on the range of T such that

dP
dν

(x) = gP

(
T (x)

)
h(x).

Lemma 2.1
If a family P is dominated by a σ -finite measure, then P is dominated
by a probability measure Q = ∑

∞

i=1 ciPi , where ci ’s are nonnegative
constants with ∑

∞

i=1 ci = 1 and Pi ∈P.
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Proof of Theorem 2.2
(i) Suppose that T is sufficient for P ∈P.
For any A ∈Bn, P(A|T ) does not depend on P.
Let Q be the probability measure in Lemma 2.1.
By Fubini’s theorem and Exercise 35 of §1.6, for any B ∈ σ(T ),

Q(A∩B) =
∞

∑
j=1

cjPj(A∩B) =
∫

B

∞

∑
j=1

cjP(A|T )dPj =
∫

B
P(A|T )dQ

Hence, P(A|T ) = EQ(IA|T ) a.s. Q, where EQ(IA|T ) denotes the
conditional expectation of IA given T w.r.t. Q.
For any A ∈Bn, with gP (T ) = dP/dQ on the space (Rn,σ(T ),Q),

P(A) =
∫

P(A|T )dP =
∫

EQ(IA|T )dP =
∫

EQ(IA|T )gP (T )dQ

=
∫

EQ[IAgP (T )|T ]dQ =
∫

IAgP (T )dQ =
∫

A
gP (T )

dQ
dν

dν

Hence,
dP
dν

(x) = gP

(
T (x)

)
h(x) (1)

holds with h = dQ/dν .
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Proof of Theorem 2.2 (continued)
(ii) Suppose that (1) holds.

dP
dQ

=
dP
dν

/
∞

∑
i=1

ci
dPi

dν
= gP (T )

/
∞

∑
i=1

gPi
(T ) a.s. Q, (2)

where the second equality follows from Exercise 35 in §1.6.
Let A ∈ σ(X ), P ∈P, and EQ(IA|T ) be given in part (i) of the proof.
By (2), dP/dQ is a Borel function of T .
For any B ∈ σ(T ),∫

B
EQ(IA|T )dP =

∫
B

EQ(IA|T )
dP
dQ

dQ

=
∫

B
EQ

(
IA

dP
dQ

∣∣∣∣T)dQ =
∫

B
IA

dP
dQ

dQ =
∫

B
IAdP.

This proves
P(A|T ) = EQ(IA|T ) a.s. P, (3)

The sufficiency of T follows because EQ(IA|T ) does not vary with
P ∈P, and result (3) and Theorem 1.7 imply that the conditional
distribution of X given T is determined by EQ(IA|T ), A ∈ σ(X ).
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Exponential famlilies
If P is an exponential family, then Theorem 2.2 can be applied with

gθ (t) = exp{[η(θ)]τ t−ξ (θ)},

i.e., T is a sufficient statistic for θ ∈Θ.
In Example 2.10 the joint distribution of X is in an exponential family
with T (X ) = ∑

n
i=1 Xi .

Hence, we can conclude that T is sufficient for θ ∈ (0,1) without
computing the conditional distribution of X given T .

Example 2.12 (Order statistics)
Let X1, ...,Xn be i.i.d. random variables having a distribution P ∈P,
where P is the family of distributions on R having Lebesgue p.d.f.’s.
Let X(1), ...,X(n) be the order statistics given in Example 2.9.
Note that the joint p.d.f. of X is

f (x1) · · · f (xn) = f (x(1)) · · · f (x(n)).

Hence, T (X ) = (X(1), ...,X(n)) is sufficient for P ∈P.
The order statistics can be shown to be sufficient even when P is not
dominated by any σ -finite measure, but Theorem 2.2 is not applicable
(see Exercise 31 in §2.6).
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Minimal sufficiency
Maximal reduction without loss of information

There are many sufficient statistics for a given family P.
In fact, X (the whole data set) is sufficient.
If T is a sufficient statistic and T = ψ(S), where ψ is measurable
and S is another statistic, then S is sufficient.
This is obvious from Theorem 2.2 if the population has a p.d.f., but
it can be proved directly from Definition 2.4 (Exercise 25).
For instance, if X1, . . . ,Xn are iid with P(Xi = 1) = θ and
P(Xi = 0) = 1−θ , then (∑

m
i=1 Xi , ∑

n
i=m+1 Xi) is sufficient for θ ,

where m is any fixed integer between 1 and n.
If T is sufficient and T = ψ(S) with a measurable function ψ that is
not one-to-one, then σ(T )⊂ σ(S), and T is more useful than S,
since T provides a further reduction of the data (or σ -field) without
loss of information.
Is there a sufficient statistics that provides “maximal" reduction of
the data?
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Convention
If a statement holds except for outcomes in an event A satisfying
P(A) = 0 for all P ∈P, then we say that the statement holds a.s. P.

Definition 2.5 Minimal sufficiency
Let T be a sufficient statistic for P ∈P.
T is called a minimal sufficient Statistic iff, for any other statistic S
sufficient for P ∈P, there is a measurable function ψ such that
T = ψ(S) a.s. P

Existence and uniqueness

Minimal sufficient statistics exist when P contains distributions on Rk

dominated by a σ -finite measure (Bahadur, 1957).

If both T and S are minimal sufficient statistics, then by definition there
is one-to-one measurable function ψ such that T = ψ(S) a.s. P

Hence, the minimal sufficient statistic is unique in the sense that two
statistics that are one-to-one measurable functions of each other can
be treated as one statistic.
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Example 2.13
Let X1, . . . ,Xn be i.i.d. random variables form Pθ , the uniform
distribution U(θ ,θ + 1), θ ∈ R, n > 1.
The joint Lebesgue p.d.f. of (X1, . . . ,Xn) is

fθ (x) =
n

∏
i=1

I(θ ,θ+1)(xi) = I(x(n)−1,x(1))(θ), x = (x1, . . . ,xn) ∈Rn,

where x(i) denotes the i th smallest value of x1, . . . ,xn.
By Theorem 2.2, T = (X(1),X(n)) is sufficient for θ .
Note that

x(1) = sup{θ : fθ (x) > 0} and x(n) = 1 + inf{θ : fθ (x) > 0}.

If S(X ) is a statistic sufficient for θ , then by Theorem 2.2, there are
Borel functions h and gθ such that fθ (x) = gθ (S(x))h(x).
For x with h(x) > 0,

x(1) = sup{θ : gθ (S(x)) > 0} and x(n) = 1 + inf{θ : gθ (S(x)) > 0}.

Hence, there is a measurable function ψ such that T (x) = ψ(S(x))
when h(x) > 0.
Since h > 0, a.s. P, we conclude that T is minimal sufficient.
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Finding a minimal sufficient statistic by definition is not convenient.
The next theorem is a useful tool.
Theorem 2.3
Let P be a family of distributions on Rk .

(i) Suppose that P0 ⊂P and a.s. P0 implies a.s. P.
If T is sufficient for P ∈P and minimal sufficient for P ∈P0, then
T is minimal sufficient for P ∈P.

(ii) Suppose that P contains p.d.f.’s f0, f1, f2, ..., w.r.t. a σ -finite ν .
Let f∞(x) = ∑

∞

i=0 ci fi(x), where ci > 0 for all i and ∑
∞

i=0 ci = 1, and
let Ti(x) = fi(x)/f∞(x) when f∞(x) > 0, i = 0,1,2, ....
Then T (X ) = (T0,T1,T2, ...) is minimal sufficient for P ∈P.
Furthermore, if {x : fi(x) > 0} ⊂ {x : f0(x) > 0} for all i , then we
may replace f∞(x) by f0(x), in which case T (X ) = (T1,T2, ...) is
minimal sufficient for P ∈P.

(iii) Suppose that P contains p.d.f.’s fp w.r.t. a σ -finite measure and
that there exists a sufficient statistic T (X ) such that, for any
possible values x and y of X , fp(x) = fp(y)φ(x ,y) for all P implies
T (x) = T (y), where φ is a measurable function.
Then T (X ) is minimal sufficient for P ∈P.
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Proof
(i) If S is sufficient for P ∈P, then it is also sufficient for P ∈P0 and,

therefore, T = ψ(S) a.s. P0 holds for a measurable function ψ.
The result follows from the assumption that a.s. P0 implies a.s.
P.

(ii) Note that f∞ > 0 a.s. P.
Let gi(T ) = Ti , i = 0,1,2, . . . .
Then fi(x) = gi(T (x))f∞(x) a.s. P.
By Theorem 2.2, T is sufficient for P ∈P.
Suppose that S(X ) is another sufficient statistic.
By Theorem 2.2, there are Borel functions h and g̃i such that

fi(x) = g̃i(S(x))h(x), i = 0,1,2, . . . .

Then
Ti(x) = g̃i(S(x))

/
∞

∑
j=1

cj g̃j(S(x))

for x ’s satisfying f∞(x) > 0.
By Definition 2.5, T is minimal sufficient for P ∈P.
The proof for the case where f∞ is replaced by f0 is the same.
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Proof (continued)
(iii) From Bahadur (1957), there is a minimal sufficient statistic S(X ).

The result follows if we can show that T (X ) = ψ(S(X )) a.s. P for
a measurable function ψ.
By Theorem 2.2, there are Borel functions h and gP such that
fP(x) = gP(S(x))h(x) for all P.
Let A = {x : h(x) = 0}.
Then P(A) = 0 for all P.
For x and y such that S(x) = S(y), x /∈ A and y /∈ A,

fP(x) = gP(S(x))h(x) = gP(S(y))h(x) = fP(y)h(x)/h(y)

for all P.
Hence T (x) = T (y).
This shows that there is a function ψ such that T (x) = ψ(S(x))
except for x ∈ A.
It remains to show that ψ is measurable.
Since S is minimal sufficient, g(T (X )) = S(X ) a.s. P for a
measurable function g. Hence g is one-to-one and ψ = g−1.
By Theorem 3.9 in Parthasarathy (1967), ψ is measurable.
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Example 2.14
Let P = {fθ : θ ∈Θ} be an exponential family with p.d.f.’s

fθ (x) = exp{[η(θ)]τT (x)−ξ (θ)}h(x).

Suppose that there exists Θ0 = {θ0,θ1, . . . ,θp} ⊂Θ such that the
vectors ηi = η(θi)−η(θ0), i = 1, . . . ,p, are linearly independent in Rp.
(This is true if the family is of full rank).
We have shown that T (X ) is sufficient for θ ∈Θ.
We now show that T is in fact minimal sufficient for θ ∈Θ.
Let P0 = {fθ : θ ∈Θ0}.
Note that the set {x : fθ (x) > 0} does not depend on θ .
It follows from Theorem 2.3(ii) with f∞ = fθ0 that

S(X ) =
(

exp{ητ

1T (x)−ξ1}, . . . ,exp{ητ
pT (x)−ξp}

)
is minimal sufficient for θ ∈Θ0.
Since ηi ’s are linearly independent, there is a one-to-one measurable
function ψ such that T (X ) = ψ(S(X )) a.s. P0.
Hence, T is minimal sufficient for θ ∈Θ0.
It is easy to see that a.s. P0 implies a.s. P.
Thus, by Theorem 2.3(i), T is minimal sufficient for θ ∈Θ.
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Example 2.14 (continued)
We now apply Theorem 2.3(iii) to obtain the same result.

For any θ ,

fθ (x)/fθ (y) = exp{ητ (θ)(T (x)−T (y))}h(x)/h(y)

If, for any θ ,
fθ (x)/fθ (y) = φ(x ,y)

then
η

τ (θ)(T (x)−T (y)) = log(φ(x ,y)) + log(h(y)/h(x))

Then
[η(θi)−η(θ0)]τ (T (x)−T (y)) = 0 i = 1, ...,p.

Since η(θi)−η(θ0), i = 1, ...,p, are linearly independent, we have
T (x) = T (y).
By Theorem 2.3(iii), T is minimal sufficient

The result in Example 2.13 can be proved by using Theorem 2.3(iii).
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Application to curved normal family

Let X1, ...,Xn be i.i.d. from N(µ,µ2), µ ∈R, µ 6= 0.
It can be shown that

η(θ) =

(
nµ

σ2 ,−
n−1
2σ2

)
=

(
n
µ
,−n−1

2µ2

)
Points θ0 = (1,1), θ1 = (−1,1), and θ2 = (1/2,1/2) are in the
parameter space, and

η(θ1)−η(θ0) =

(
−n

−(n−1)/2

)
−
(

n
−(n−1)/2

)
=

(
−2n

0

)
η(θ2)−η(θ0) =

(
n/2

−2(n−1)

)
−
(

n
−(n−1)/2

)
=

(
−n/2

−3(n−1)/2

)
If

c
(
−2n

0

)
+ d

(
−n/2

−3(n−1)/2

)
= 0

we must have d = 0 and then c = 0.
The vectors η(θ1)−η(θ0) and η(θ2)−η(θ0) are linearly independent.
Therefore, T = (X̄ ,S2) is minimal sufficient for θ = µ.
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Remarks
The sufficiency (and minimal sufficiency) depends on the
postulated family P of populations (statistical models).
It may not be a useful concept if the proposed statistical model is
wrong or at least one has some doubts about the correctness of
the proposed model.
From the examples in this section and some exercises in §2.6, one
can find that for a wide variety of models, statistics such as the
sample mean X̄ , the sample variance S2, (X(1),X(n)) in Example
2.11, and the order statistics in Example 2.9 are sufficient.
Thus, using these statistics for data reduction and summarization
does not lose any information when the true model is one of those
models but we do not know exactly which model is correct.
A minimal sufficient statistic is not always the “simplest sufficient
statistic".
For example, if X̄ is minimal sufficient, then so is (X̄ ,exp{X̄}).
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