Lecture 12: Completeness

Ancillary statistics

A statistic $V(X)$ is ancillary iff its distribution does not depend on any unknown quantity. A statistic $V(X)$ is first-order ancillary iff $E[V(X)]$ does not depend on any unknown quantity.
A trivial ancillary statistic is $V(X) \equiv$ a constant.
The following examples show that there exist many nontrivial ancillary statistics (non-constant ancillary statistics).

Example: location-scale families

- If X_{1}, \ldots, X_{n} is a random sample from a location family with location parameter $\mu \in \mathscr{R}$, then, for any pair $(i, j), 1 \leq i, j \leq n, X_{i}-X_{j}$ is ancillary, because $X_{i}-X_{j}=\left(X_{i}-\mu\right)-\left(X_{j}-\mu\right)$ and the distribution of $\left(X_{i}-\mu, X_{j}-\mu\right)$ does not depend on any unknown parameter. Similarly, $X_{(i)}-X_{(j)}$ is ancillary, where $X_{(1)}, \ldots, X_{(n)}$ are the order statistics, and the sample variance S^{2} is ancillary.
- Note that we do not even need to obtain the form of the distribution of $X_{i}-X_{j}$.
- If X_{1}, \ldots, X_{n} is a random sample from a scale family with scale parameter $\sigma>0$, then by the same argument we can show that, for any pair $(i, j), 1 \leq i, j \leq n, X_{i} / X_{j}$ and $X_{(i)} / X_{(j)}$ are ancillary.
- If X_{1}, \ldots, X_{n} is a random sample from a location-scale family with parameters $\mu \in \mathscr{R}$ and $\sigma>0$, then, for any $(i, j, k), 1 \leq i, j, k \leq n$, $\left(X_{i}-X_{k}\right) /\left(X_{j}-X_{k}\right)$ and $\left(X_{(i)}-X_{(k)}\right) /\left(X_{(j)}-X_{(k)}\right)$ are ancillary.
- If $V(X)$ is a non-trivial ancillary statistic, then $\sigma(V)$ does not contain any information about the unknown population P.
- If $T(X)$ is a statistic and $V(T(X))$ is a non-trivial ancillary statistic, it indicates that the reduced data set by T contains a non-trivial part that does not contain any information about θ and, hence, a further simplification of T may still be needed.
- A sufficient statistic $T(X)$ appears to be most successful in reducing the data if no nonconstant function of $T(X)$ is ancillary or even first-order ancillary, which leads to the following definition.

Definition 2.6 (Completeness)

A statistic $T(X)$ is complete (or boundedly complete) for $P \in \mathscr{P}$ iff, for any Borel f (or bounded Borel f), $E[f(T)]=0$ for all $P \in \mathscr{P}$ implies $f=0$ a.s. \mathscr{P}.

Remarks

- A complete statistic is boundedly complete.
- If T is complete (or boundedly complete) and $S=\psi(T)$ for a measurable ψ, then S is complete (or boundedly complete).
- Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).
- A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient statistic ($X_{(1)}, X_{(n)}$) in Example 2.13 is not complete (Exercise 47).

Proposition 2.1

If P is in an exponential family of full rank with p.d.f's given by

$$
f_{\eta}(x)=\exp \left\{\eta^{\tau} T(x)-\zeta(\eta)\right\} h(x),
$$

then $T(X)$ is complete and sufficient for $\eta \in \equiv$.

Proof

We have shown that T is sufficient.

We now show that T is complete.
Suppose that there is a function f such that $E[f(T)]=0$ for all $\eta \in \Xi$. By Theorem 2.1(i),

$$
\int f(t) \exp \left\{\eta^{\tau} t-\zeta(\eta)\right\} d \lambda=0 \quad \text { for all } \eta \in \equiv,
$$

where $\lambda(A)=\int_{A} h(x) d v$ is a measure on $\left(\mathscr{R}^{p}, \mathscr{B}^{p}\right)$.
Let η_{0} be an interior point of \equiv. Then

$$
\begin{equation*}
\int f_{+}(t) e^{\eta^{\tau} t} d \lambda=\int f_{-}(t) e^{\eta^{\tau} t} d \lambda \quad \text { for all } \eta \in N\left(\eta_{0}\right), \tag{1}
\end{equation*}
$$

where $N\left(\eta_{0}\right)=\left\{\eta \in \mathscr{R}^{p}:\left\|\eta-\eta_{0}\right\|<\varepsilon\right\}$ for some $\varepsilon>0$.
In particular,

$$
\int f_{+}(t) e^{\eta_{0}^{\tau} t} d \lambda=\int f_{-}(t) e^{\eta_{0}^{\tau} t} d \lambda=c .
$$

If $c=0$, then $f=0$ a.e. λ.
If $c>0$, then $c^{-1} f_{+}(t) e^{\eta_{0}^{\tau} t}$ and $c^{-1} f_{-}(t) e^{\eta_{0}^{\tau} t}$ are p.d.f.'s w.r.t. λ and result (1) implies that their m.g.f.'s are the same in a neighborhood of 0 . By Theorem $1.6\left(\right.$ ii),$c^{-1} f_{+}(t) e^{\eta_{0}^{\tau} t}=c^{-1} f_{-}(t) e^{\eta_{0}^{\tau} t}$, i.e., $f=f_{+}-f_{-}=0$ a.e. λ, which implies that $f=0$ a.s. \mathscr{P}. Hence T is complete.

Example 2.15

Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables having the $N\left(\mu, \sigma^{2}\right)$ distribution, $\mu \in \mathscr{R}, \sigma>0$.
From Example 2.6, the joint p.d.f. of X_{1}, \ldots, X_{n} is

$$
(2 \pi)^{-n / 2} \exp \left\{\eta_{1} T_{1}+\eta_{2} T_{2}-n \zeta(\eta)\right\},
$$

where $T_{1}=\sum_{i=1}^{n} X_{i}, T_{2}=-\sum_{i=1}^{n} X_{i}^{2}$, and $\eta=\left(\eta_{1}, \eta_{2}\right)=\left(\frac{\mu}{\sigma^{2}}, \frac{1}{2 \sigma^{2}}\right)$.
Hence, the family of distributions for $X=\left(X_{1}, \ldots, X_{n}\right)$ is a natural exponential family of full rank $(\equiv=\mathscr{R} \times(0, \infty)$).
By Proposition 2.1, $T(X)=\left(T_{1}, T_{2}\right)$ is complete and sufficient for η.
Since there is a one-to-one correspondence between η and $\theta=\left(\mu, \sigma^{2}\right), T$ is also complete and sufficient for θ.
It can be shown that any one-to-one measurable function of a complete and sufficient statistic is also complete and sufficient (exercise).
Thus, $\left(\bar{X}, S^{2}\right)$ is complete and sufficient for θ, where \bar{X} and S^{2} are the sample mean and sample variance, respectively.

Example 2.16

Let X_{1}, \ldots, X_{n} be i.i.d. random variables from P_{θ}, the uniform distribution $U(0, \theta), \theta>0$.
The largest order statistic, $X_{(n)}$, is complete and sufficient for $\theta \in(0, \infty)$. The sufficiency of $X_{(n)}$ follows from the fact that the joint Lebesgue p.d.f. of X_{1}, \ldots, X_{n} is $\theta^{-n} I_{(0, \theta)}\left(X_{(n)}\right)$.

From Example 2.9, $X_{(n)}$ has the Lebesgue p.d.f. $\left(n x^{n-1} / \theta^{n}\right) I_{(0, \theta)}(x)$. Let f be a Borel function on $[0, \infty)$ such that $E\left[f\left(X_{(n)}\right)\right]=0$ for all $\theta>0$. Then

$$
\int_{0}^{\theta} f(x) x^{n-1} d x=0 \quad \text { for all } \theta>0
$$

Let $G(\theta)$ be the left-hand side of the previous equation.
Applying the result of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain that $G^{\prime}(\theta)=f(\theta) \theta^{n-1}$ a.e. m_{+}, where m_{+}is the Lebesgue measure on $\left([0, \infty), \mathscr{B}_{[0, \infty)}\right)$.
Since $G(\theta)=0$ for all $\theta>0, f(\theta) \theta^{n-1}=0$ a.e. m_{+}and, hence, $f(x)=0$ a.e. m_{+}.

Therefore, $X_{(n)}$ is complete and sufficient for $\theta \in(0, \infty)$.

Example 2.17

In Example 2.12, we showed that the order statistics
$T(X)=\left(X_{(1)}, \ldots, X_{(n)}\right)$ of i.i.d. random variables X_{1}, \ldots, X_{n} is sufficient for $P \in \mathscr{P}$, where \mathscr{P} is the family of distributions on \mathscr{R} having Lebesgue p.d.f.'s.

We now show that $T(X)$ is also complete for $P \in \mathscr{P}$.
Let \mathscr{P}_{0} be the family of Lebesgue p.d.f's of the form

$$
f(x)=C\left(\theta_{1}, \ldots, \theta_{n}\right) \exp \left\{-x^{2 n}+\theta_{1} x+\theta_{2} x^{2}+\cdots+\theta_{n} x^{n}\right\},
$$

where $\theta_{j} \in \mathscr{R}$ and $C\left(\theta_{1}, \ldots, \theta_{n}\right)$ is a normalizing constant such that $\int f(x) d x=1$.
Then $\mathscr{P}_{0} \subset \mathscr{P}$ and \mathscr{P}_{0} is an exponential family of full rank.
Note that the joint distribution of $X=\left(X_{1}, \ldots, X_{n}\right)$ is also in an exponential family of full rank.
Thus, by Proposition 2.1, $U=\left(U_{1}, \ldots, U_{n}\right)$ is a complete statistic for $P \in \mathscr{P}_{0}$, where $U_{j}=\sum_{i=1}^{n} X_{i}^{j}$.
Since a.s. \mathscr{P}_{0} implies a.s. $\mathscr{P}, U(X)$ is also complete for $P \in \mathscr{P}$.

Example 2.17 (continued)

The result follows if we can show that there is a one-to-one correspondence between $T(X)$ and $U(X)$.
Let $V_{1}=\sum_{i=1}^{n} X_{i}, V_{2}=\sum_{i<j} X_{i} X_{j}, V_{3}=\sum_{i<j<k} X_{i} X_{j} X_{k}, \ldots, V_{n}=X_{1} \cdots X_{n}$.
From the identities

$$
U_{k}-V_{1} U_{k-1}+V_{2} U_{k-2}-\cdots+(-1)^{k-1} V_{k-1} U_{1}+(-1)^{k} k V_{k}=0
$$

$k=1, \ldots, n$, there is a one-to-one correspondence between $U(X)$ and $V(X)=\left(V_{1}, \ldots, V_{n}\right)$.
From the identity

$$
\left(t-X_{1}\right) \cdots\left(t-X_{n}\right)=t^{n}-V_{1} t^{n-1}+V_{2} t^{n-2}-\cdots+(-1)^{n} V_{n}
$$

there is a one-to-one correspondence between $V(X)$ and $T(X)$.
This completes the proof and, hence, $T(X)$ is sufficient and complete for $P \in \mathscr{P}$.

In fact, both $U(X)$ and $V(X)$ are sufficient and complete for $P \in \mathscr{P}$.
The relationship between an ancillary statistic and a complete and sufficient statistic is characterized in the following result.

Theorem 2.4 (Basu's theorem)

Let V and T be two statistics of X from a population $P \in \mathscr{P}$.
If V is ancillary and T is boundedly complete and sufficient for $P \in \mathscr{P}$, then V and T are independent w.r.t. any $P \in \mathscr{P}$.

Proof

Let B be an event on the range of V.
Since V is ancillary, $P\left(V^{-1}(B)\right)$ is a constant.
As T is sufficient, $E\left[I_{B}(V) \mid T\right]$ is a function of T (not dependent on P). Because

$$
E\left\{E\left[I_{B}(V) \mid T\right]-P\left(V^{-1}(B)\right)\right\}=0 \quad \text { for all } P \in \mathscr{P},
$$

by the bounded completeness of T,

$$
P\left(V^{-1}(B) \mid T\right)=E\left[I_{B}(V) \mid T\right]=P\left(V^{-1}(B)\right) \quad \text { a.s. } \mathscr{P}
$$

For A being an event on the range of T,

$$
\begin{gathered}
P\left(T^{-1}(A) \cap V^{-1}(B)\right)=E\left\{E\left[I_{A}(T) I_{B}(V) \mid T\right]\right\}=E\left\{I_{A}(T) E\left[I_{B}(V) \mid T\right]\right\} \\
=E\left\{I_{A}(T) P\left(V^{-1}(B)\right)\right\}=P\left(T^{-1}(A)\right) P\left(V^{-1}(B)\right) .
\end{gathered}
$$

Hence T and V are independent w.r.t. any $P \in \mathscr{P}$.

Basu's theorem is useful in proving the independence of two statistics.

Example 2.18

Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables having the $N\left(\mu, \sigma^{2}\right)$ distribution, with $\mu \in \mathscr{R}$ and a known $\sigma>0$.
It can be easily shown that the family $\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathscr{R}\right\}$ is an exponential family of full rank with natural parameter $\eta=\mu / \sigma^{2}$.
By Proposition 2.1, the sample mean \bar{X} is complete and sufficient for η (and μ).
Let \bar{X} be the sample mean and S^{2} be the sample variance.
Since $S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}$, where $Z_{i}=X_{i}-\mu$ is $N\left(0, \sigma^{2}\right)$ and $\bar{Z}=n^{-1} \sum_{i=1}^{n} Z_{i}, S^{2}$ is an ancillary statistic (σ^{2} is known).
By Basu's theorem, \bar{X} and S^{2} are independent w.r.t. $N\left(\mu, \sigma^{2}\right)$ with $\mu \in \mathscr{R}$.
Since σ^{2} is arbitrary, \bar{X} and S^{2} are independent w.r.t. $N\left(\mu, \sigma^{2}\right)$ for any $\mu \in \mathscr{R}$ and $\sigma^{2}>0$.

If a minimal sufficient statistic T is not complete, then there may be an ancillary statistic V such that V and T are not independent.

Example 2.13

In this example, X_{1}, \ldots, X_{n} is a random sample from uniform $(\theta, \theta+1)$, $\theta \in \mathscr{R}$, and $T=\left(X_{(1)}, X_{(n)}\right)$ is the minimal sufficient statistic for θ. We now show that T is not complete.
Note that $V(T)=X_{(n)}-X_{(1)}=\left(X_{(n)}-\theta\right)-\left(X_{(1)}-\theta\right)$ is in fact ancillary.
It is easy to see that $E_{\theta}(V)$ exists and it does not depend on θ since V is ancillary.
Letting $c=E(V)$, we see that $E_{\theta}(V-c)=0$ for all θ.
Thus, we have a function $g(x, y)=x-y-c$ such that
$E_{\theta}\left[g\left(X_{(1)}, X_{(n)}\right)\right]=E_{\theta}(V-c)=0$ for all θ but
$P_{\theta}\left(g\left(X_{(1)}, X_{(n)}\right)=0\right)=P_{\theta}(V=c) \neq 0$.
This shows that T is not complete.
In this case, $\sigma(V) \subset \sigma(T)$ and $\sigma(V)$ contains no information about θ.

The relationship between minimal sufficiency and sufficiency with completeness is given by the following theorem.

Theorem

Suppose that S is a minimal sufficient statistic and T is a complete and sufficient statistic. Then T must be minimal sufficient and S must be complete.

Proof.

Since S is minimal sufficient and T is sufficient, there exists a Borel function h such that $S=h(T)$ a.s. \mathscr{P}.
Since h cannot be a constant function and T is complete, we conclude that S is complete.
Consider $T-E(T \mid S)=T-E[T \mid h(T)]$, which is a Borel function of T and hence can be denoted as $g(T)$.
Note that $E[g(T)]=0$.
By the completeness of $T, g(T)=0$ a.s. \mathscr{P}, i.e., $T=E(T \mid S)$ a.s. \mathscr{P} This means that T is also a function of S and, therefore, T is minimal sufficient.

Example (ancillary precision)

Let X_{1} and X_{2} be iid from the discrete uniform distribution on three points $\{\theta, \theta+1, \theta+2\}$, where $\theta \in \Theta=\{0, \pm 1, \pm 2, \ldots\}$.
Using the same argument as in Example 2.13, we can show that the order statistics ($\left.X_{(1)}, X_{(2)}\right)$ is minimal sufficient for θ.
Let $M=\left(X_{(1)}+X_{(2)}\right) / 2$ and $R=X_{(2)}-X_{(1)}$ (mid-range and range).
Since (M, R) is a one-to-one function of ($X_{(1)}, X_{(2)}$), it is also minimal sufficient for θ.
Consider the estimation of θ using (M, R).
Note that $R=\left(X_{(2)}-\theta\right)-\left(X_{(1)}-\theta\right)$ is the range of the two order statistics from the uniform distribution on $\{0,1,2\}$ and, hence the distribution of R does not depend on θ, i.e., R is ancillary.
One may think R is useless in the estimation of θ and only M is useful.
Suppose we observe $(M, R)=(m, r)$ and m is an integer.
From the observation m, we know that θ can only be one of the 3 values $m, m-1$, and $m-2$; however, we are not certain which of the 3 values is θ.

We can know more if $r=2$, which must be the case that $X_{(1)}=m-1$ and $X_{(2)}=m+1$.
With this additional information, the only possible value for θ is $m-1$.
When m is an integer, r cannot be 1 . If $r=0$, then we know that $X_{1}=X_{2}$ and we are not certain which of the 3 values is θ.
The knowledge of the value of the ancillary statistic R increases our knowledge about θ, although R alone gives us no information about θ.

What we learn from the previous example?

- An ancillary statistic that is a function of a minimal sufficient statistic T may still be useful for our knowledge about θ. (Note that the ancillary statistic is still a function of T.)
- This cannot occur to a sufficient and complete statistic T, since, if $V(T)$ is ancillary, then by the completeness of T, V must be a constant and is useless.
- Therefore, the sufficiency and completeness together is a much desirable (and strong) property.

