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Lecture 16: UMVUE: conditioning on sufficient and
complete statistics
The 2nd method of deriving a UMVUE when a sufficient and
complete statistic is available

Find an unbiased estimator of ϑ , say U(X ).
Conditioning on a sufficient and complete statistic T (X ):
E [U(X )|T ] is the UMVUE of ϑ .
We need to derive an explicit form of E [U(X )|T ]

From the uniqueness of the UMVUE, it does not matter which
U(X ) is used.
Thus, we should choose U(X ) so as to make the calculation of
E [U(X )|T ] as easy as possible.
We do not need the distribution of T .
But we need to work out the conditional expectation E [U(X )|T ].
Using the independence of some statistics (Basu’s theorem), we
may avoid to work on conditional distributions.
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Example 7.3.24 (binomial family)
Let X1, ...,Xn be iid from binomial(k ,θ) with known k and unknown
θ ∈ (0,1).

We want to estimate g(θ) = Pθ (X1 = 1) = kθ(1−θ)k−1.

Note that T = ∑
n
i=1 Xi ∼ binomial(kn,θ) is the sufficient and complete

statistic for θ .

But no unbiased estimator based on it is immediately evident.

To apply conditioning, we take the simple unbiased estimator of
Pθ (X1 = 1), the indicator function I(X1 = 1).

By Theorem 7.3.23, the UMVUE of g(θ) is

ψ(T ) = E [I(X1 = 1)|T )

= P(X1 = 1|T )

We need to simply ψ(T ) and obtain an explicit form.

When T = 0, P(X1 = 1|T = 0) = 0.

For t = 1, ...,kn,
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ψ(t) = P (X1 = 1|T = t)

=
Pθ (X1 = 1,∑n

i=1 Xi = t)
Pθ (∑

n
i=1 Xi = t)

=
Pθ (X1 = 1,∑n

i=2 Xi = t−1)

Pθ (∑
n
i=1 Xi = t)

=
Pθ (X1 = 1)Pθ (∑

n
i=2 Xi = t−1)

Pθ (∑
n
i=1 Xi = t)

=
kθ(1−θ)k−1

[(k(n−1)
t−1

)
θ t−1(1−θ)k(n−1)−(t−1)

]
(kn

t

)
θ t (1−θ)kn−t

=
k
(k(n−1)

t−1

)(kn
t

)
Hence, the UMVUE of g(θ) = kθ(1−θ)k−1 is

ψ(T ) =


k(k(n−1)

T−1 )
(kn

T )
T = 1, ...,kn

0 T = 0
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Example 3.3
Let X1, ...,Xn be i.i.d. from the exponential distribution E(0,θ).
Fθ (x) = (1−e−x/θ )I(0,∞)(x).
Consider the estimation of ϑ = 1−Fθ (t).
X̄ is sufficient and complete for θ > 0.
I(t ,∞)(X1) is unbiased for ϑ ,

E [I(t ,∞)(X1)] = P(X1 > t) = ϑ .

Hence
T (X ) = E [I(t ,∞)(X1)|X̄ ] = P(X1 > t |X̄ )

is the UMVUE of ϑ .
If the conditional distribution of X1 given X̄ is available, then we can
calculate P(X1 > t |X̄ ) directly.
By Basu’s theorem (Theorem 2.4), X1/X̄ and X̄ are independent.
By Proposition 1.10(vii),

P(X1 > t |X̄ = x̄) = P(X1/X̄ > t/X̄ |X̄ = x̄)

= P(X1/X̄ > t/x̄)
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To compute this unconditional probability, we need the distribution of

X1

/ n

∑
i=1

Xi = X1

/(
X1 +

n

∑
i=2

Xi

)
.

Using the transformation technique discussed in §1.3.1 and the fact
that ∑

n
i=2 Xi is independent of X1 and has a gamma distribution, we

obtain that X1/∑
n
i=1 Xi has the Lebesgue p.d.f.

(n−1)(1−x)n−2I(0,1)(x).
Hence

P(X1 > t |X̄ = x̄) = (n−1)
∫ 1

t/(nx̄)
(1−x)n−2dx

=

(
1− t

nx̄

)n−1

and the UMVUE of ϑ is

T (X ) =

(
1− t

nX̄

)n−1

.
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Example 3.4

Let X1, ...,Xn be i.i.d. from N(µ,σ2) with unknown µ ∈R and σ2 > 0.
From Example 2.18, T = (X̄ ,S2) is sufficient and complete for
θ = (µ,σ2)
X̄ and (n−1)S2/σ2 are independent
X̄ has the N(µ,σ2/n) distribution
S2 has the chi-square distribution χ2

n−1.
Using the method of solving for h directly, we find that

the UMVUE for µ is X̄ ;
the UMVUE of µ2 is X̄ 2−S2/n;
the UMVUE for σ r with r > 1−n is kn−1,r Sr , where

kn,r =
nr/2Γ

(n
2

)
2r/2Γ

(n+r
2

)
the UMVUE of µ/σ is kn−1,−1X̄/S, if n > 2.
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Example 3.4 (continued)
Suppose that ϑ satisfies P(X1 ≤ ϑ) = p with a fixed p ∈ (0,1).
Let Φ be the c.d.f. of the standard normal distribution.
Then

ϑ = µ + σΦ−1(p)

and its UMVUE is
X̄ + kn−1,1SΦ−1(p).

Let c be a fixed constant and

ϑ = P(X1 ≤ c) = Φ

(
c−µ

σ

)
.

We can find the UMVUE of ϑ using the method of conditioning.
Since I(−∞,c)(X1) is an unbiased estimator of ϑ , the UMVUE of ϑ is

E [I(−∞,c)(X1)|T ] = P(X1 ≤ c|T ).

By Basu’s theorem, the ancillary statistic Z (X ) = (X1− X̄ )/S is
independent of T = (X̄ ,S2).
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Example 3.4 (continued)
Then, by Proposition 1.10(vii),

P
(

X1 ≤ c|T = (x̄ ,s2)
)

= P
(

Z ≤ c− X̄
S

∣∣∣∣T = (x̄ ,s2)

)
= P

(
Z ≤ c− x̄

s

)
.

It can be shown that Z has the Lebesgue p.d.f.

f (z) =

√
nΓ
(n−1

2

)
√

π(n−1)Γ
(n−2

2

) [1− nz2

(n−1)2

](n/2)−2

I(0,(n−1)/
√

n)(|z|)

Hence the UMVUE of ϑ is

P(X1 ≤ c|T ) =
∫ (c−X̄)/S

−(n−1)/
√

n
f (z)dz
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Example 3.4 (continued)
Suppose that we would like to estimate

ϑ =
1
σ

Φ′
(

c−µ

σ

)
,

the Lebesgue p.d.f. of X1 evaluated at a fixed c, where Φ′ is the
first-order derivative of Φ.
By the previous result, the conditional p.d.f. of X1 given X̄ = x̄ and
S2 = s2 is s−1f

(x−x̄
s

)
.

Let fT be the joint p.d.f. of T = (X̄ ,S2).
Then

ϑ =
∫ ∫ 1

s
f
(

c− x̄
s

)
fT (t)dt = E

[
1
S

f
(

c− X̄
S

)]
.

Hence the UMVUE of ϑ is

1
S

f
(

c− X̄
S

)
.
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Example

Let X1, ...,Xn be i.i.d. with Lebesgue p.d.f. fθ (x) = θx−2I(θ ,∞)(x), where
θ > 0 is unknown.
Suppose that ϑ = P(X1 > t) for a constant t > 0.
The smallest order statistic X(1) is sufficient and complete for θ .
Hence, the UMVUE of ϑ is

P(X1 > t |X(1)) = P(X1 > t |X(1) = x(1))

= P
(

X1

X(1)
>

t
X(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
>

t
x(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
> s
)

(Basu’s theorem), where s = t/x(1).
If s ≤ 1, this probability is 1.
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Example (continued)
Consider s > 1 and assume θ = 1 in the calculation:

P
(

X1

X(1)
> s
)

=
n

∑
i=1

P
(

X1

X(1)
> s,X(1) = Xi

)
=

n

∑
i=2

P
(

X1

X(1)
> s,X(1) = Xi

)
= (n−1)P

(
X1

X(1)
> s,X(1) = Xn

)
= (n−1)P (X1 > sXn,X2 > Xn, ...,Xn−1 > Xn)

= (n−1)
∫

x1>sxn,x2>xn,...,xn−1>xn

n

∏
i=1

1
x2

i
dx1 · · ·dxn

= (n−1)
∫

∞

1

[∫
∞

sxn

n−1

∏
i=2

(∫
∞

xn

1
x2

i
dxi

)
1
x2

1
dx1

]
1
x2

n
dxn

= (n−1)
∫

∞

1

1
sxn+1

n
dxn =

(n−1)x(1)

nt
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Example (continued)
This shows that the UMVUE of P(X1 > t) is

h(X(1)) =

{
(n−1)X(1)

nt X(1) < t
1 X(1) ≥ t

Another solution
The UMVUE must be h(X(1))
The Lebesgue p.d.f. of X(1) is

nθ n

xn+1 I(θ ,∞)(x).

Use the method of finding h
If θ ≥ t , then P(X1 > t) = 1 and P(t > X(1)) = 0.
Hence, if X(1) ≥ t , h(X(1)) must be 1 a.s. Pθ

The value of h(X(1)) for X(1) < t is not specified.
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If θ < t ,
E [h(X(1))] =

∫
∞

θ

h(x)
nθ n

xn+1 dx

=
∫ t

θ

h(x)
nθ n

xn+1 dx +
∫

∞

t

nθ n

xn+1 dx =
∫ t

θ

h(x)
nθ n

xn+1 dx +
θ n

tn

Since P(X1 > t) = θ/t , we have

θ

t
=
∫ t

θ

h(x)
nθ n

xn+1 dx +
θ n

tn

i.e.,
1

tθ n−1 =
∫ t

θ

h(x)
n

xn+1 dx +
1
tn

Differentiating both sizes w.r.t. θ leads to

−n−1
tθ n =−h(θ)

n
θ n+1

Hence, for any X(1) < t ,

h(X(1)) =
(n−1)X(1)

nt
.
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Unbiased estimators of 0
If a sufficient and complete statistic is not available, then what should
we do?
If W is unbiased for ϑ and T is sufficient, then by Theorem 2.5
(Rao-Blackwell), E(W |T ) is better than W .
If we have another sufficient statistic S, should we consider
E [E(W |T )|S]?
If there is a function h such that S = h(T ), then by the properties of
conditional expectation,

E [E(W |T )|S] = E(W |S) = E [E(W |S)|T ]

That is, we should always conditioning on a simpler sufficient statistic,
such as a minimal sufficient statistic.
To see when an unbiased estimator is best unbiased, we might ask
how could we improve upon a given unbiased estimator?
Suppose that T (X ) is unbiased for g(θ) and U(X ) is a statistic
satisfying Eθ (U) = 0 for all θ , i.e., U is unbiased for 0.
Then, for any constant a,
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T (X ) + aU(X )

is unbiased for g(θ).
Can it be better than T (X )?

Varθ (T + aU) = Varθ (T ) + 2aCovθ (T ,U) + a2Varθ (U)

If for some θ0, Covθ0(T ,U) < 0, then we can make

2aCovθ0(T ,U) + a2Varθ0(U) < 0

by choosing 0 < a−2Covθ0(T ,U)/Varθ0(U).
Hence, T (X ) + aU(X ) is better than T (X ) at least when θ = θ0 and
T (X ) cannot be UMVUE.
Similarly, if Covθ0(T ,U) > 0 for some θ0, then T (X ) cannot be UMVUE
either.
Thus, Covθ (T ,U) = 0 is necessary for T (X ) to be a UMVUE, for all
unbiased estimators of 0.
It turns out that Covθ (T ,U) = 0 for all U(X ) unbiased for 0 is also
sufficient for T (X ) being a UMVUE.
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