Lecture 16: UMVUE: conditioning on sufficient and complete statistics

The 2nd method of deriving a UMVUE when a sufficient and complete statistic is available

- Find an unbiased estimator of ϑ, say $U(X)$.
- Conditioning on a sufficient and complete statistic $T(X)$: $E[U(X) \mid T]$ is the UMVUE of ϑ.
- We need to derive an explicit form of $E[U(X) \mid T]$
- From the uniqueness of the UMVUE, it does not matter which $U(X)$ is used.
- Thus, we should choose $U(X)$ so as to make the calculation of $E[U(X) \mid T]$ as easy as possible.
- We do not need the distribution of T. But we need to work out the conditional expectation $E[U(X) \mid T]$.
- Using the independence of some statistics (Basu's theorem), we may avoid to work on conditional distributions.

Example 7.3.24 (binomial family)

Let X_{1}, \ldots, X_{n} be iid from $\operatorname{binomial}(k, \theta)$ with known k and unknown $\theta \in(0,1)$.
We want to estimate $g(\theta)=P_{\theta}\left(X_{1}=1\right)=k \theta(1-\theta)^{k-1}$.
Note that $T=\sum_{i=1}^{n} X_{i} \sim \operatorname{binomial}(k n, \theta)$ is the sufficient and complete statistic for θ.

But no unbiased estimator based on it is immediately evident.
To apply conditioning, we take the simple unbiased estimator of $P_{\theta}\left(X_{1}=1\right)$, the indicator function $I\left(X_{1}=1\right)$.
By Theorem 7.3.23, the UMVUE of $g(\theta)$ is

$$
\begin{aligned}
\psi(T) & =E\left[\left(\left(X_{1}=1\right) \mid T\right)\right. \\
& =P\left(X_{1}=1 \mid T\right)
\end{aligned}
$$

We need to simply $\psi(T)$ and obtain an explicit form.
When $T=0, P\left(X_{1}=1 \mid T=0\right)=0$.
For $t=1, \ldots, k n$,

$$
\begin{aligned}
\psi(t) & =P\left(X_{1}=1 \mid T=t\right) \\
& =\frac{P_{\theta}\left(X_{1}=1, \sum_{i=1}^{n} X_{i}=t\right)}{P_{\theta}\left(\sum_{i=1}^{n} X_{i}=t\right)} \\
& =\frac{P_{\theta}\left(X_{1}=1, \sum_{i=2}^{n} X_{i}=t-1\right)}{P_{\theta}\left(\sum_{i=1}^{n} X_{i}=t\right)} \\
& =\frac{P_{\theta}\left(X_{1}=1\right) P_{\theta}\left(\sum_{i=2}^{n} X_{i}=t-1\right)}{P_{\theta}\left(\sum_{i=1}^{n} X_{i}=t\right)} \\
& =\frac{k \theta(1-\theta)^{k-1}\left[\binom{k(n-1)}{t-1} \theta^{t-1}(1-\theta)^{k(n-1)-(t-1)}\right]}{\binom{k n}{t} \theta^{t}(1-\theta)^{k n-t}} \\
& =\frac{k\binom{k(n-1)}{t-1}}{\binom{k n}{t}}
\end{aligned}
$$

Hence, the UMVUE of $g(\theta)=k \theta(1-\theta)^{k-1}$ is

$$
\psi(T)= \begin{cases}\frac{k\binom{k(n-1)}{T-1}}{\binom{k n}{T}} & T=1, \ldots, k n \\ 0 & T=0\end{cases}
$$

Example 3.3

Let X_{1}, \ldots, X_{n} be i.i.d. from the exponential distribution $E(0, \theta)$.
$F_{\theta}(x)=\left(1-e^{-x / \theta}\right) I_{(0, \infty)}(x)$.
Consider the estimation of $\vartheta=1-F_{\theta}(t)$.
\bar{X} is sufficient and complete for $\theta>0$.
$I_{(t, \infty)}\left(X_{1}\right)$ is unbiased for ϑ,

$$
E\left[I_{(t, \infty)}\left(X_{1}\right)\right]=P\left(X_{1}>t\right)=\vartheta
$$

Hence

$$
T(X)=E\left[I_{(t, \infty)}\left(X_{1}\right) \mid \bar{X}\right]=P\left(X_{1}>t \mid \bar{X}\right)
$$

is the UMVUE of ϑ.
If the conditional distribution of X_{1} given \bar{X} is available, then we can calculate $P\left(X_{1}>t \mid \bar{X}\right)$ directly.
By Basu's theorem (Theorem 2.4), X_{1} / \bar{X} and \bar{X} are independent.
By Proposition 1.10(vii),

$$
\begin{aligned}
P\left(X_{1}>t \mid \bar{X}=\bar{x}\right) & =P\left(X_{1} / \bar{X}>t / \bar{X} \mid \bar{X}=\bar{x}\right) \\
& =P\left(X_{1} / \bar{X}>t / \bar{x}\right)
\end{aligned}
$$

To compute this unconditional probability, we need the distribution of

$$
X_{1} / \sum_{i=1}^{n} x_{i}=X_{1} /\left(X_{1}+\sum_{i=2}^{n} x_{i}\right)
$$

Using the transformation technique discussed in §1.3.1 and the fact that $\sum_{i=2}^{n} X_{i}$ is independent of X_{1} and has a gamma distribution, we obtain that $X_{1} / \sum_{i=1}^{n} X_{i}$ has the Lebesgue p.d.f. $(n-1)(1-x)^{n-2} I_{(0,1)}(x)$.
Hence

$$
\begin{aligned}
P\left(X_{1}>t \mid \bar{X}\right. & =\bar{x})=(n-1) \int_{t /(n \bar{x})}^{1}(1-x)^{n-2} d x \\
& =\left(1-\frac{t}{n \bar{x}}\right)^{n-1}
\end{aligned}
$$

and the UMVUE of ϑ is

$$
T(X)=\left(1-\frac{t}{n \bar{X}}\right)^{n-1}
$$

Example 3.4

Let X_{1}, \ldots, X_{n} be i.i.d. from $N\left(\mu, \sigma^{2}\right)$ with unknown $\mu \in \mathscr{R}$ and $\sigma^{2}>0$. From Example 2.18, $T=\left(\bar{X}, S^{2}\right)$ is sufficient and complete for $\theta=\left(\mu, \sigma^{2}\right)$
\bar{X} and $(n-1) S^{2} / \sigma^{2}$ are independent
\bar{X} has the $N\left(\mu, \sigma^{2} / n\right)$ distribution
S^{2} has the chi-square distribution χ_{n-1}^{2}.
Using the method of solving for h directly, we find that

- the UMVUE for μ is \bar{X};
- the UMVUE of μ^{2} is $\bar{X}^{2}-S^{2} / n$;
- the UMVUE for σ^{r} with $r>1-n$ is $k_{n-1, r} S^{r}$, where

$$
k_{n, r}=\frac{n^{r / 2} \Gamma\left(\frac{n}{2}\right)}{2^{r / 2} \Gamma\left(\frac{n+r}{2}\right)}
$$

- the UMVUE of μ / σ is $k_{n-1,-1} \bar{X} / S$, if $n>2$.

Example 3.4 (continued)

Suppose that ϑ satisfies $P\left(X_{1} \leq \vartheta\right)=p$ with a fixed $p \in(0,1)$. Let Φ be the c.d.f. of the standard normal distribution.
Then

$$
\vartheta=\mu+\sigma \Phi^{-1}(p)
$$

and its UMVUE is

$$
\bar{X}+k_{n-1.1} S \Phi^{-1}(p)
$$

Let c be a fixed constant and

$$
\vartheta=P\left(X_{1} \leq c\right)=\Phi\left(\frac{c-\mu}{\sigma}\right)
$$

We can find the UMVUE of ϑ using the method of conditioning. Since $I_{(-\infty, c)}\left(X_{1}\right)$ is an unbiased estimator of ϑ, the UMVUE of ϑ is

$$
E\left[I_{(-\infty, c)}\left(X_{1}\right) \mid T\right]=P\left(X_{1} \leq c \mid T\right)
$$

By Basu's theorem, the ancillary statistic $Z(X)=\left(X_{1}-\bar{X}\right) / S$ is independent of $T=\left(\bar{X}, S^{2}\right)$.

Example 3.4 (continued)

Then, by Proposition 1.10(vii),

$$
\begin{aligned}
P\left(X_{1} \leq c \mid T=\left(\bar{x}, s^{2}\right)\right) & =P\left(\left.Z \leq \frac{c-\bar{X}}{s} \right\rvert\, T=\left(\bar{x}, s^{2}\right)\right) \\
& =P\left(Z \leq \frac{c-\bar{x}}{s}\right) .
\end{aligned}
$$

It can be shown that Z has the Lebesgue p.d.f.

$$
f(z)=\frac{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}(n-1) \Gamma\left(\frac{n-2}{2}\right)}\left[1-\frac{n z^{2}}{(n-1)^{2}}\right]^{(n / 2)-2} I_{(0,(n-1) / \sqrt{n})}(|z|)
$$

Hence the UMVUE of ϑ is

$$
P\left(X_{1} \leq c \mid T\right)=\int_{-(n-1) / \sqrt{n}}^{(c-\bar{X}) / s} f(z) d z
$$

Example 3.4 (continued)

Suppose that we would like to estimate

$$
\vartheta=\frac{1}{\sigma} \phi^{\prime}\left(\frac{c-\mu}{\sigma}\right),
$$

the Lebesgue p.d.f. of X_{1} evaluated at a fixed c, where Φ^{\prime} is the first-order derivative of Φ.
By the previous result, the conditional p.d.f. of X_{1} given $\bar{X}=\bar{x}$ and $S^{2}=s^{2}$ is $s^{-1} f\left(\frac{x-\bar{x}}{s}\right)$.
Let f_{T} be the joint p.d.f. of $T=\left(\bar{X}, S^{2}\right)$.
Then

$$
\vartheta=\iint \frac{1}{s} f\left(\frac{c-\bar{x}}{s}\right) f_{T}(t) d t=E\left[\frac{1}{s} f\left(\frac{c-\bar{X}}{S}\right)\right] .
$$

Hence the UMVUE of ϑ is

$$
\frac{1}{s} f\left(\frac{c-\bar{X}}{S}\right) .
$$

Example

Let X_{1}, \ldots, X_{n} be i.i.d. with Lebesgue p.d.f. $f_{\theta}(x)=\theta x^{-2} I_{(\theta, \infty)}(x)$, where $\theta>0$ is unknown.
Suppose that $\vartheta=P\left(X_{1}>t\right)$ for a constant $t>0$.
The smallest order statistic $X_{(1)}$ is sufficient and complete for θ. Hence, the UMVUE of ϑ is

$$
\begin{aligned}
P\left(X_{1}>t \mid X_{(1)}\right) & =P\left(X_{1}>t \mid X_{(1)}=x_{(1)}\right) \\
& =P\left(\left.\frac{X_{1}}{X_{(1)}}>\frac{t}{X_{(1)}} \right\rvert\, X_{(1)}=x_{(1)}\right) \\
& =P\left(\left.\frac{X_{1}}{X_{(1)}}>\frac{t}{x_{(1)}} \right\rvert\, X_{(1)}=x_{(1)}\right) \\
& =P\left(\frac{X_{1}}{X_{(1)}}>s\right)
\end{aligned}
$$

(Basu's theorem), where $s=t / x_{(1)}$.
If $s \leq 1$, this probability is 1 .

Example (continued)

Consider $s>1$ and assume $\theta=1$ in the calculation:

$$
\begin{aligned}
P\left(\frac{X_{1}}{X_{(1)}}>s\right) & =\sum_{i=1}^{n} P\left(\frac{X_{1}}{X_{(1)}}>s, X_{(1)}=X_{i}\right) \\
& =\sum_{i=2}^{n} P\left(\frac{X_{1}}{X_{(1)}}>s, X_{(1)}=X_{i}\right) \\
& =(n-1) P\left(\frac{X_{1}}{X_{(1)}}>s, X_{(1)}=X_{n}\right) \\
& =(n-1) P\left(X_{1}>s X_{n}, X_{2}>X_{n}, \ldots, X_{n-1}>X_{n}\right) \\
& =(n-1) \int_{x_{1}>s x_{n, X_{2}>x_{n}, \ldots, x_{n-1}>x_{n}} \prod_{i=1}^{n} \frac{1}{x_{i}^{2}} d x_{1} \cdots d x_{n}} \\
& =(n-1) \int_{1}^{\infty}\left[\int_{s x_{n}}^{\infty} \prod_{i=2}^{n-1}\left(\int_{x_{n}}^{\infty} \frac{1}{x_{i}^{2}} d x_{i}\right) \frac{1}{x_{1}^{2}} d x_{1}\right] \frac{1}{x_{n}^{2}} d x_{n} \\
& =(n-1) \int_{1}^{\infty} \frac{1}{s x_{n}^{n+1}} d x_{n}=\frac{(n-1) x_{(1)}}{n t}
\end{aligned}
$$

Example (continued)

This shows that the UMVUE of $P\left(X_{1}>t\right)$ is

$$
h\left(X_{(1)}\right)= \begin{cases}\frac{(n-1) X_{(1)}}{n t} & x_{(1)}<t \\ 1 & X_{(1)} \geq t\end{cases}
$$

Another solution

The UMVUE must be $h\left(X_{(1)}\right)$
The Lebesgue p.d.f. of $X_{(1)}$ is

$$
\frac{n \theta^{n}}{x^{n+1}} I_{(\theta, \infty)}(x)
$$

Use the method of finding h If $\theta \geq t$, then $P\left(X_{1}>t\right)=1$ and $P\left(t>X_{(1)}\right)=0$. Hence, if $X_{(1)} \geq t, h\left(X_{(1)}\right)$ must be 1 a.s. P_{θ} The value of $h\left(X_{(1)}\right)$ for $X_{(1)}<t$ is not specified.

If $\theta<t$,

$$
\begin{gathered}
E\left[h\left(X_{(1)}\right)\right]=\int_{\theta}^{\infty} h(x) \frac{n \theta^{n}}{x^{n+1}} d x \\
=\int_{\theta}^{t} h(x) \frac{n \theta^{n}}{x^{n+1}} d x+\int_{t}^{\infty} \frac{n \theta^{n}}{x^{n+1}} d x=\int_{\theta}^{t} h(x) \frac{n \theta^{n}}{x^{n+1}} d x+\frac{\theta^{n}}{t^{n}}
\end{gathered}
$$

Since $P\left(X_{1}>t\right)=\theta / t$, we have

$$
\frac{\theta}{t}=\int_{\theta}^{t} h(x) \frac{n \theta^{n}}{x^{n+1}} d x+\frac{\theta^{n}}{t^{n}}
$$

i.e.,

$$
\frac{1}{t \theta^{n-1}}=\int_{\theta}^{t} h(x) \frac{n}{x^{n+1}} d x+\frac{1}{t^{n}}
$$

Differentiating both sizes w.r.t. θ leads to

$$
-\frac{n-1}{t \theta^{n}}=-h(\theta) \frac{n}{\theta^{n+1}}
$$

Hence, for any $X_{(1)}<t$,

$$
h\left(X_{(1)}\right)=\frac{(n-1) X_{(1)}}{n t}
$$

Unbiased estimators of 0

If a sufficient and complete statistic is not available, then what should we do?
If W is unbiased for ϑ and T is sufficient, then by Theorem 2.5
(Rao-Blackwell), $E(W \mid T)$ is better than W.
If we have another sufficient statistic S, should we consider
$E[E(W \mid T) \mid S]$?
If there is a function h such that $S=h(T)$, then by the properties of conditional expectation,

$$
E[E(W \mid T) \mid S]=E(W \mid S)=E[E(W \mid S) \mid T]
$$

That is, we should always conditioning on a simpler sufficient statistic, such as a minimal sufficient statistic.
To see when an unbiased estimator is best unbiased, we might ask how could we improve upon a given unbiased estimator?
Suppose that $T(X)$ is unbiased for $g(\theta)$ and $U(X)$ is a statistic satisfying $E_{\theta}(U)=0$ for all θ, i.e., U is unbiased for 0 .
Then, for any constant a,

$$
T(X)+a U(X)
$$

is unbiased for $g(\theta)$.
Can it be better than $T(X)$?

$$
\operatorname{Var}_{\theta}(T+a U)=\operatorname{Var}_{\theta}(T)+2 a \operatorname{Cov}_{\theta}(T, U)+a^{2} \operatorname{Var}_{\theta}(U)
$$

If for some $\theta_{0}, \operatorname{Cov}_{\theta_{0}}(T, U)<0$, then we can make

$$
2 a \operatorname{Cov}_{\theta_{0}}(T, U)+a^{2} \operatorname{Var}_{\theta_{0}}(U)<0
$$

by choosing $0<a-2 \operatorname{Cov}_{\theta_{0}}(T, U) / \operatorname{Var}_{\theta_{0}}(U)$.
Hence, $T(X)+a U(X)$ is better than $T(X)$ at least when $\theta=\theta_{0}$ and $T(X)$ cannot be UMVUE.
Similarly, if $\operatorname{Cov}_{\theta_{0}}(T, U)>0$ for some θ_{0}, then $T(X)$ cannot be UMVUE either.
Thus, $\operatorname{Cov}_{\theta}(T, U)=0$ is necessary for $T(X)$ to be a UMVUE, for all unbiased estimators of 0 .
It turns out that $\operatorname{Cov}_{\theta}(T, U)=0$ for all $U(X)$ unbiased for 0 is also sufficient for $T(X)$ being a UMVUE.

