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Lecture 17: Characteristic of UMVUE and Fisher
information bound

When a complete and sufficient statistic is not available, it is usually
very difficult to derive a UMVUE.
In some cases, the following result can be applied, if we have enough
knowledge about unbiased estimators of 0.

Theorem 3.2
Let U be the set of all unbiased estimators of 0 with finite variances
and T be an unbiased estimator of ϑ with E(T 2) < ∞.

(i) A necessary and sufficient condition for T (X ) to be a UMVUE of ϑ

is that E [T (X )U(X )] = 0 for any U ∈U and any P ∈P.
(ii) Suppose that T = h(T̃ ), where T̃ is a sufficient statistic for P ∈P

and h is a Borel function.
Let UT̃ be the subset of U consisting of Borel functions of T̃ .
Then a necessary and sufficient condition for T to be a UMVUE of
ϑ is that E [T (X )U(X )] = 0 for any U ∈UT̃ and any P ∈P.
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Proof of Theorem 3.2(i)
Suppose that T is a UMVUE of ϑ .
Then Tc = T + cU, where U ∈U and c is a fixed constant, is also
unbiased for ϑ and, thus,

Var(Tc)≥ Var(T ) c ∈R, P ∈P,

which is the same as

c2 Var(U) + 2c Cov(T ,U)≥ 0 c ∈R, P ∈P.

This is impossible unless Cov(T ,U) = E(TU) = 0 for any P ∈P.
Suppose now E(TU) = 0 for any U ∈U and P ∈P.
Let T0 be another unbiased estimator of ϑ with Var(T0) < ∞.
Then T −T0 ∈U and, hence,

E [T (T −T0)] = 0 P ∈P,

which with the fact that ET = ET0 implies that

Var(T ) = Cov(T ,T0) P ∈P.

Note that [ Cov(T ,T0)]2 ≤ Var(T ) Var(T0).
Hence Var(T )≤ Var(T0) for any P ∈P.
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Proof of Theorem 3.2(ii)
It suffices to show that E(TU) = 0 for any U ∈UT̃ and P ∈P implies
that E(TU) = 0 for any U ∈U and P ∈P.
If U ∈U , then E(U|T̃ ) ∈UT̃ .
The result follows from the fact that T = h(T̃ ) and

E(TU) = E [E(TU|T̃ )] = E [E(h(T̃ )U|T̃ )] = E [h(T̃ )E(U|T̃ )].

Theorem 3.2 can be used to
find a UMVUE,
check whether a particular estimator is a UMVUE, and
show the nonexistence of any UMVUE.

Theorem 3.2(ii) is more convenient to use.

Corollary 3.1

(i) If Tj is a UMVUE of ϑj , j = 1, ...,k , then ∑
k
j=1 cjTj is a UMVUE of

ϑ = ∑
k
j=1 cjϑj for any constants c1, ...,ck .

(ii) If T1 and T2 are two UMVUE’s of ϑ , then T1 = T2 a.s. P for any
P ∈P.
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Proof
(i) Obviously, ∑

k
j=1 cjTj is a unbiased for ϑ = ∑

k
j=1 cjϑj

For each j ,
E(TjU) = 0, U ∈U

Then

E

[(
k

∑
j=1

cjTj

)
U

]
=

k

∑
j=1

cjE(TjU) = 0, U ∈U

(ii) Let T1 and T2 be two UMVUE’s of ϑ .
Then T1−T2 ∈U and

E [Tj(T1−T2)] = 0 j = 1,2.

Then

E(T1−T2)2 = E [T1(T1−T2)]−E [T2(T1−T2)] = 0

Hence, T1 = T2 a.s. P for any P ∈P.
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Example 3.7
Let X1, ...,Xn be i.i.d. from the uniform distribution on the interval (0,θ).
In Example 3.1, (1 + n−1)X(n) is shown to be the UMVUE for θ when
the parameter space is Θ = (0,∞).
Suppose now that Θ = [1,∞).
Then X(n) is not complete, although it is still sufficient for θ .
Thus, Theorem 3.1 does not apply to X(n).
We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ .
Let U(X(n)) be an unbiased estimator of 0.
Since X(n) has the Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x),

0 =
∫ 1

0
U(x)xn−1dx +

∫
θ

1
U(x)xn−1dx for all θ ≥ 1.

This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞) and∫ 1

0
U(x)xn−1dx = 0.

Consider T = h(X(n)).
To have E(TU) = 0, we must have

UW-Madison (Statistics) Stat 709 Lecture 17 2018 5 / 17



beamer-tu-logo

∫ 1

0
h(x)U(x)xn−1dx = 0.

Thus, we may consider the following function:

h(x) =

{
c 0≤ x ≤ 1
bx x > 1,

where c and b are some constants.
From the previous discussion,

E [h(X(n))U(X(n))] = 0, θ ≥ 1.

Since E [h(X(n))] = θ , we obtain that

θ = cP(X(n) ≤ 1) + bE [X(n)I(1,∞)(X(n))]

= cθ
−n + [bn/(n + 1)](θ −θ

−n).

Thus, c = 1 and b = (n + 1)/n.
The UMVUE of θ is then

h(X(n)) =

{
1 0≤ X(n) ≤ 1
(1 + n−1)X(n) X(n) > 1.

UW-Madison (Statistics) Stat 709 Lecture 17 2018 6 / 17



beamer-tu-logo

This estimator is better than (1 + n−1)X(n), which is the UMVUE
when Θ = (0,∞) and does not make use of the information about
θ ≥ 1.
When Θ = (0,∞), this estimator is not unbiased.
In fact, h(X(n)) is complete and sufficient for θ ∈ [1,∞).

Example 3.8
Let X be a sample (of size 1) from the uniform distribution
U(θ − 1

2 ,θ + 1
2), θ ∈R.

We now apply Theorem 3.2 to show that there is no UMVUE of
ϑ = g(θ) for any nonconstant function g.
Note that an unbiased estimator U(X ) of 0 must satisfy∫

θ+ 1
2

θ− 1
2

U(x)dx = 0 for all θ ∈R.

Differentiating both sides of the previous equation and applying the
result of differentiation of an integral lead to

U(x) = U(x + 1) a.e. m,
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where m is the Lebesgue measure on R.
If T is a UMVUE of g(θ), then T (X )U(X ) is unbiased for 0 and, hence,

T (x)U(x) = T (x + 1)U(x + 1) a.e. m,

where U(X ) is any unbiased estimator of 0.
Since this is true for all U,

T (x) = T (x + 1) a.e. m.

Since T is unbiased for g(θ),

g(θ) =
∫

θ+ 1
2

θ− 1
2

T (x)dx for all θ ∈R.

Differentiating both sides of the previous equation and applying the
result of differentiation of an integral, we obtain that

g′(θ) = T
(
θ + 1

2

)
−T

(
θ − 1

2

)
= 0 a.e. m.

Hence g is a constant a.e.
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Information inequality
Theorem 3.3 (Cramér-Rao lower bound)
Let X = (X1, ...,Xn) be a sample from P ∈P = {Pθ : θ ∈Θ}, where Θ
is an open set in Rk .
Suppose that T (X ) is an estimator with E [T (X )] = g(θ) being a
differentiable function of θ ; Pθ has a p.d.f. fθ w.r.t. a measure ν for all
θ ∈Θ; and fθ is differentiable as a function of θ and satisfies

∂

∂θ

∫
h(x)fθ (x)dν =

∫
h(x)

∂

∂θ
fθ (x)dν , θ ∈Θ, (1)

for h(x)≡ 1 and h(x) = T (x).
Then

Var(T (X ))≥
[

∂

∂θ
g(θ)

]τ

[I(θ)]−1 ∂

∂θ
g(θ), (2)

where

I(θ) = E
{

∂

∂θ
log fθ (X )

[
∂

∂θ
log fθ (X )

]τ}
is assumed to be positive definite for any θ ∈Θ.
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Discussion
Suppose that we have a lower bound for the variances of all unbiased
estimators of ϑ .
If there is an unbiased estimator T of ϑ whose variance is always the
same as the lower bound, then T is a UMVUE of ϑ .
Although this is not an effective way to find UMVUE’s, it provides a way
of assessing the performance of UMVUE’s.

Proof of Theorem 3.3
We prove the univariate case (k = 1) only.
When k = 1, (2) reduces to

Var(T (X ))≥ [g′(θ)]2

E
[

∂

∂θ
log fθ (X )

]2 .

From the Cauchy-Schwartz inequality, we only need to show that

E
[

∂

∂θ
log fθ (X )

]2

= Var
(

∂

∂θ
log fθ (X )

)
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Proof of Theorem 3.3 (continued)
and

g′(θ) = Cov
(

T (X ),
∂

∂θ
log fθ (X )

)
.

From condition (1) with h(x) = 1,

E
[

∂

∂θ
log fθ (X )

]
=
∫

∂

∂θ
fθ (X )dν =

∂

∂θ

∫
fθ (X )dν = 0.

From condition (1) with h(x) = T (x),

E
[
T (X )

∂

∂θ
log fθ (X )

]
=
∫

T (x)
∂

∂θ
fθ (X )dν =

∂

∂θ

∫
T (x)fθ (X )dν ,

which = g′(θ).

The k ×k matrix

I(θ) = E
{

∂

∂θ
log fθ (X )

[
∂

∂θ
log fθ (X )

]τ}
is called the Fisher information matrix.
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The greater I(θ) is, the easier it is to distinguish θ from neighboring
values and, therefore, the more accurately θ can be estimated.
Thus, I(θ) is a measure of the information that X contains about θ .
The inequality in (2) is called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1
(i) If X and Y are independent with the Fisher information matrices

IX (θ) and IY (θ), respectively, then the Fisher information about θ

contained in (X ,Y ) is IX (θ) + IY (θ).
In particular, if X1, ...,Xn are i.i.d. and I1(θ) is the Fisher
information about θ contained in a single Xi , then the Fisher
information about θ contained in X1, ...,Xn is nI1(θ).

(ii) Suppose that X has the p.d.f. fθ that is twice differentiable in θ and
that (1) holds with h(x)≡ 1 and fθ replaced by ∂ fθ/∂θ .
Then

I(θ) =−E
[

∂ 2

∂θ∂θ τ
log fθ (X )

]
.
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Proof
Result (i) follows from the independence of X and Y and the definition
of the Fisher information.
Result (ii) follows from the equality

∂ 2

∂θ∂θ τ
log fθ (X ) =

∂ 2

∂θ∂θ τ fθ (X )

fθ (X )
− ∂

∂θ
log fθ (X )

[
∂

∂θ
log fθ (X )

]τ

.

Example 3.9

Let X1, ...,Xn be i.i.d. with the Lebesgue p.d.f. 1
σ

f
(x−µ

σ

)
, where f (x) > 0

and f ′(x) exists for all x ∈R, µ ∈R, and σ > 0 (a location-scale
family).
Let θ = (µ,σ). Then, the Fisher information about θ contained in
X1, ...,Xn is (exercise)

I(θ) =
n

σ2

 cc
∫ [f ′(x)]2

f (x) dx
∫ f ′(x)[xf ′(x)+f (x)]

f (x) dx

∫ f ′(x)[xf ′(x)+f (x)]
f (x) dx

∫ [xf ′(x)+f (x)]2
f (x) dx

 .
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Remarks
Note that I(θ) depends on the particular parameterization.
If θ = ψ(η) and ψ is differentiable, then the Fisher information that
X contains about η is

∂

∂η
ψ(η)I(ψ(η))

[
∂

∂η
ψ(η)

]τ

.

However, the Cramér-Rao lower bound in (2) is not affected by
any one-to-one reparameterization.
If we use inequality (2) to find a UMVUE T (X ), then we obtain a
formula for Var(T (X )) at the same time.
On the other hand, the Cramér-Rao lower bound in (2) is typically
not sharp.
Under some regularity conditions, the Cramér-Rao lower bound is
attained iff fθ is in an exponential family; see Propositions 3.2 and
3.3 and the discussion in Lehmann (1983, p. 123).
Some improved information inequalities are available (see, e.g.,
Lehmann (1983, Sections 2.6 and 2.7)).
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Proposition 3.2.
Suppose that the distribution of X is from an exponential family
{fθ : θ ∈Θ}, i.e., the p.d.f. of X w.r.t. a σ -finite measure is

fθ (x) = exp
{

[η(θ)]τT (x)−ξ (θ)
}

c(x), (3)

where Θ is an open subset of Rk .
(i) The regularity condition (1) is satisfied for any h with E |h(X )|< ∞

and

I(θ) =−E
[

∂ 2

∂θ∂θ τ
log fθ (X )

]
.

(ii) If I(η) is the Fisher information matrix for the natural parameter η ,
then the variance-covariance matrix Var(T ) = I(η).

(iii) If I(ϑ) is the Fisher information matrix for the parameter
ϑ = E [T (X )], then Var(T ) = [I(ϑ)]−1.

A direct consequence of Proposition 3.2(ii) is that the variance of any
linear function of T in (3) attains the Cramér-Rao lower bound.
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Proof
(i) This is a direct consequence of Theorem 2.1.
(ii) The p.d.f. under the natural parameter η is

fη (x) = exp{ητT (x)−ζ (η)}c(x).

From Theorem 2.1, E [T (X )] = ∂

∂η
ζ (η).

The result follows from
∂

∂η
log fη (x) = T (x)− ∂

∂η
ζ (η).

(iii) Since ϑ = E [T (X )] = ∂

∂η
ζ (η),

I(η) = ∂ϑ

∂η
I(ϑ)

(
∂ϑ

∂η

)τ

= ∂ 2

∂η∂ητ ζ (η)I(ϑ)
[

∂ 2

∂η∂ητ ζ (η)
]τ

.

By Theorem 2.1 and the result in (ii),
∂ 2

∂η∂ητ ζ (η) = Var(T ) = I(η).

Hence

I(ϑ) = [I(η)]−1I(η)[I(η)]−1 = [I(η)]−1 = [ Var(T )]−1.
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Example 3.10

Let X1, ...,Xn be i.i.d. from the N(µ,σ2) distribution with an unknown
µ ∈R and a known σ2.
Let fµ be the joint distribution of X = (X1, ...,Xn).
Then

∂

∂ µ
log fµ (X ) =

n

∑
i=1

(Xi −µ)/σ
2.

Thus, I(µ) = n/σ2.
Consider the estimation of µ.
It is obvious that Var(X̄ ) attains the Cramér-Rao lower bound in (2).
Consider now the estimation of ϑ = µ2.
Since EX̄ 2 = µ2 + σ2/n, the UMVUE of ϑ is h(X̄ ) = X̄ 2−σ2/n.
A straightforward calculation shows that

Var(h(X̄ )) =
4µ2σ2

n
+

2σ4

n2 .

On the other hand, the Cramér-Rao lower bound in this case is
4µ2σ2/n: Var(h(X̄ )) does not attain the Cramér-Rao lower bound.
The difference is 2σ4/n2.
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