Lecture 17: Characteristic of UMVUE and Fisher information bound

When a complete and sufficient statistic is not available, it is usually very difficult to derive a UMVUE.
In some cases, the following result can be applied, if we have enough knowledge about unbiased estimators of 0 .

Theorem 3.2

Let \mathscr{U} be the set of all unbiased estimators of 0 with finite variances and T be an unbiased estimator of ϑ with $E\left(T^{2}\right)<\infty$.
(i) A necessary and sufficient condition for $T(X)$ to be a UMVUE of ϑ is that $E[T(X) U(X)]=0$ for any $U \in \mathscr{U}$ and any $P \in \mathscr{P}$.
(ii) Suppose that $T=h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathscr{P}$ and h is a Borel function.
Let $\mathscr{U}_{\tilde{T}}$ be the subset of \mathscr{U} consisting of Borel functions of \tilde{T}. Then a necessary and sufficient condition for T to be a UMVUE of ϑ is that $E[T(X) U(X)]=0$ for any $U \in \mathscr{U}_{\tilde{T}}$ and any $P \in \mathscr{P}$.

Proof of Theorem 3.2(i)

Suppose that T is a UMVUE of ϑ.
Then $T_{c}=T+c U$, where $U \in \mathscr{U}$ and c is a fixed constant, is also unbiased for ϑ and, thus,

$$
\operatorname{Var}\left(T_{c}\right) \geq \operatorname{Var}(T) \quad c \in \mathscr{R}, P \in \mathscr{P},
$$

which is the same as

$$
c^{2} \operatorname{Var}(U)+2 c \operatorname{Cov}(T, U) \geq 0 \quad c \in \mathscr{R}, P \in \mathscr{P}
$$

This is impossible unless $\operatorname{Cov}(T, U)=E(T U)=0$ for anv $P \in \mathscr{P}$.
Suppose now $E(T U)=0$ for any $U \in \mathscr{U}$ and $P \in \mathscr{P}$.
Let T_{0} be another unbiased estimator of ϑ with $\operatorname{Var}\left(T_{0}\right)<\infty$.
Then $T-T_{0} \in \mathscr{U}$ and, hence,

$$
E\left[T\left(T-T_{0}\right)\right]=0 \quad P \in \mathscr{P},
$$

which with the fact that $E T=E T_{0}$ implies that

$$
\operatorname{Var}(T)=\operatorname{Cov}\left(T, T_{0}\right) \quad P \in \mathscr{P}
$$

Note that $\left[\operatorname{Cov}\left(T, T_{0}\right)\right]^{2} \leq \operatorname{Var}(T) \operatorname{Var}\left(T_{0}\right)$. Hence $\operatorname{Var}(T) \leq \operatorname{Var}\left(T_{0}\right)$ for any $P \in \mathscr{P}$.

Proof of Theorem 3.2(ii)

It suffices to show that $E(T U)=0$ for any $U \in \mathscr{U}_{\tilde{T}}$ and $P \in \mathscr{P}$ implies that $E(T U)=0$ for any $U \in \mathscr{U}$ and $P \in \mathscr{P}$.
If $U \in \mathscr{U}$, then $E(U \mid \tilde{T}) \in \mathscr{U}_{\tilde{T}}$.
The result follows from the fact that $T=h(\tilde{T})$ and

$$
E(T U)=E[E(T U \mid \tilde{T})]=E[E(h(\tilde{T}) U \mid \tilde{T})]=E[h(\tilde{T}) E(U \mid \tilde{T})] .
$$

Theorem 3.2 can be used to

- find a UMVUE,
- check whether a particular estimator is a UMVUE, and
- show the nonexistence of any UMVUE.

Theorem 3.2(ii) is more convenient to use.

Corollary 3.1

(i) If T_{j} is a UMVUE of $\vartheta_{j}, j=1, \ldots, k$, then $\sum_{j=1}^{k} c_{j} T_{j}$ is a UMVUE of $\vartheta=\sum_{j=1}^{k} c_{j} \vartheta_{j}$ for any constants c_{1}, \ldots, c_{k}.
(ii) If T_{1} and T_{2} are two UMVUE's of ϑ, then $T_{1}=T_{2}$ a.s. P for any $P \in \mathscr{P}$.
(i) Obviously, $\sum_{j=1}^{k} c_{j} T_{j}$ is a unbiased for $\vartheta=\sum_{j=1}^{k} c_{j} \vartheta_{j}$ For each j,

$$
E\left(T_{j} U\right)=0, \quad U \in \mathscr{U}
$$

Then

$$
E\left[\left(\sum_{j=1}^{k} c_{j} T_{j}\right) U\right]=\sum_{j=1}^{k} c_{j} E\left(T_{j} U\right)=0, \quad U \in \mathscr{U}
$$

(ii) Let T_{1} and T_{2} be two UMVUE's of ϑ.

Then $T_{1}-T_{2} \in \mathscr{U}$ and

$$
E\left[T_{j}\left(T_{1}-T_{2}\right)\right]=0 \quad j=1,2 .
$$

Then

$$
E\left(T_{1}-T_{2}\right)^{2}=E\left[T_{1}\left(T_{1}-T_{2}\right)\right]-E\left[T_{2}\left(T_{1}-T_{2}\right)\right]=0
$$

Hence, $T_{1}=T_{2}$ a.s. P for any $P \in \mathscr{P}$.

Example 3.7

Let X_{1}, \ldots, X_{n} be i.i.d. from the uniform distribution on the interval $(0, \theta)$. In Example 3.1, $\left(1+n^{-1}\right) X_{(n)}$ is shown to be the UMVUE for θ when the parameter space is $\Theta=(0, \infty)$.
Suppose now that $\Theta=[1, \infty)$.
Then $X_{(n)}$ is not complete, although it is still sufficient for θ.
Thus, Theorem 3.1 does not apply to $X_{(n)}$.
We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ. Let $U\left(X_{(n)}\right)$ be an unbiased estimator of 0 .
Since $X_{(n)}$ has the Lebesgue p.d.f. $n \theta^{-n} x^{n-1} I_{(0, \theta)}(x)$,

$$
0=\int_{0}^{1} U(x) x^{n-1} d x+\int_{1}^{\theta} U(x) x^{n-1} d x \quad \text { for all } \theta \geq 1
$$

This implies that $U(x)=0$ a.e. Lebesgue measure on $[1, \infty)$ and

$$
\int_{0}^{1} U(x) x^{n-1} d x=0
$$

Consider $T=h\left(X_{(n)}\right)$.
To have $E(T U)=0$, we must have

$$
\int_{0}^{1} h(x) U(x) x^{n-1} d x=0
$$

Thus, we may consider the following function:

$$
h(x)= \begin{cases}c & 0 \leq x \leq 1 \\ b x & x>1\end{cases}
$$

where c and b are some constants.
From the previous discussion,

$$
E\left[h\left(X_{(n)}\right) U\left(X_{(n)}\right)\right]=0, \quad \theta \geq 1
$$

Since $E\left[h\left(X_{(n)}\right)\right]=\theta$, we obtain that

$$
\begin{aligned}
\theta & =c P\left(X_{(n)} \leq 1\right)+b E\left[X_{(n)} I_{(1, \infty)}\left(X_{(n)}\right)\right] \\
& =c \theta^{-n}+[b n /(n+1)]\left(\theta-\theta^{-n}\right)
\end{aligned}
$$

Thus, $c=1$ and $b=(n+1) / n$.
The UMVUE of θ is then

$$
h\left(X_{(n)}\right)= \begin{cases}1 & 0 \leq X_{(n)} \leq 1 \\ \left(1+n^{-1}\right) X_{(n)} & X_{(n)}>1\end{cases}
$$

- This estimator is better than $\left(1+n^{-1}\right) X_{(n)}$, which is the UMVUE when $\Theta=(0, \infty)$ and does not make use of the information about $\theta \geq 1$.
- When $\Theta=(0, \infty)$, this estimator is not unbiased.
- In fact, $h\left(X_{(n)}\right)$ is complete and sufficient for $\theta \in[1, \infty)$.

Example 3.8

Let X be a sample (of size 1) from the uniform distribution $U\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right), \theta \in \mathscr{R}$.
We now apply Theorem 3.2 to show that there is no UMVUE of $\vartheta=g(\theta)$ for any nonconstant function g.
Note that an unbiased estimator $U(X)$ of 0 must satisfy

$$
\int_{\theta-\frac{1}{2}}^{\theta+\frac{1}{2}} U(x) d x=0 \quad \text { for all } \theta \in \mathscr{R} .
$$

Differentiating both sides of the previous equation and applying the result of differentiation of an integral lead to

$$
U(x)=U(x+1) \quad \text { a.e. } m,
$$

where m is the Lebesgue measure on \mathscr{R}.
If T is a UMVUE of $g(\theta)$, then $T(X) \cup(X)$ is unbiased for 0 and, hence,

$$
T(x) U(x)=T(x+1) U(x+1) \quad \text { a.e. } m
$$

where $U(X)$ is any unbiased estimator of 0 .
Since this is true for all U,

$$
T(x)=T(x+1) \quad \text { a.e. } m
$$

Since T is unbiased for $g(\theta)$,

$$
g(\theta)=\int_{\theta-\frac{1}{2}}^{\theta+\frac{1}{2}} T(x) d x \quad \text { for all } \theta \in \mathscr{R}
$$

Differentiating both sides of the previous equation and applying the result of differentiation of an integral, we obtain that

$$
g^{\prime}(\theta)=T\left(\theta+\frac{1}{2}\right)-T\left(\theta-\frac{1}{2}\right)=0 \quad \text { a.e. } m
$$

Hence g is a constant a.e.

Information inequality

Theorem 3.3 (Cramér-Rao lower bound)

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from $P \in \mathscr{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$, where Θ is an open set in \mathscr{R}^{k}.
Suppose that $T(X)$ is an estimator with $E[T(X)]=g(\theta)$ being a differentiable function of $\theta ; P_{\theta}$ has a p.d.f. f_{θ} w.r.t. a measure v for all $\theta \in \Theta$; and f_{θ} is differentiable as a function of θ and satisfies

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \int h(x) f_{\theta}(x) d v=\int h(x) \frac{\partial}{\partial \theta} f_{\theta}(x) d v, \quad \theta \in \Theta \tag{1}
\end{equation*}
$$

for $h(x) \equiv 1$ and $h(x)=T(x)$.
Then

$$
\begin{equation*}
\operatorname{Var}(T(X)) \geq\left[\frac{\partial}{\partial \theta} g(\theta)\right]^{\tau}[I(\theta)]^{-1} \frac{\partial}{\partial \theta} g(\theta) \tag{2}
\end{equation*}
$$

where

$$
I(\theta)=E\left\{\frac{\partial}{\partial \theta} \log f_{\theta}(X)\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{\tau}\right\}
$$

is assumed to be positive definite for any $\theta \in \Theta$.

Discussion

Suppose that we have a lower bound for the variances of all unbiased estimators of ϑ.
If there is an unbiased estimator T of ϑ whose variance is always the same as the lower bound, then T is a UMVUE of ϑ.
Although this is not an effective way to find UMVUE's, it provides a way of assessing the performance of UMVUE's.

Proof of Theorem 3.3

We prove the univariate case ($k=1$) only.
When $k=1$, (2) reduces to

$$
\operatorname{Var}(T(X)) \geq \frac{\left[g^{\prime}(\theta)\right]^{2}}{E\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{2}}
$$

From the Cauchy-Schwartz inequality, we only need to show that

$$
E\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{2}=\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)
$$

Proof of Theorem 3.3 (continued)

and

$$
g^{\prime}(\theta)=\operatorname{Cov}\left(T(X), \frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)
$$

From condition (1) with $h(x)=1$,

$$
E\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]=\int \frac{\partial}{\partial \theta} f_{\theta}(X) d v=\frac{\partial}{\partial \theta} \int f_{\theta}(X) d v=0
$$

From condition (1) with $h(x)=T(x)$,

$$
E\left[T(X) \frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]=\int T(x) \frac{\partial}{\partial \theta} f_{\theta}(X) d v=\frac{\partial}{\partial \theta} \int T(x) f_{\theta}(X) d v
$$

which $=g^{\prime}(\theta)$.
The $k \times k$ matrix

$$
I(\theta)=E\left\{\frac{\partial}{\partial \theta} \log f_{\theta}(X)\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{\tau}\right\}
$$

is called the Fisher information matrix.

The greater $I(\theta)$ is, the easier it is to distinguish θ from neighboring values and, therefore, the more accurately θ can be estimated. Thus, $I(\theta)$ is a measure of the information that X contains about θ. The inequality in (2) is called information inequalities.

The following result is helpful in finding the Fisher information matrix.

Proposition 3.1

(i) If X and Y are independent with the Fisher information matrices $I_{X}(\theta)$ and $I_{Y}(\theta)$, respectively, then the Fisher information about θ contained in (X, Y) is $I_{X}(\theta)+I_{Y}(\theta)$.
In particular, if X_{1}, \ldots, X_{n} are i.i.d. and $I_{1}(\theta)$ is the Fisher information about θ contained in a single X_{i}, then the Fisher information about θ contained in X_{1}, \ldots, X_{n} is $n l_{1}(\theta)$.
(ii) Suppose that X has the p.d.f. f_{θ} that is twice differentiable in θ and that (1) holds with $h(x) \equiv 1$ and f_{θ} replaced by $\partial f_{\theta} / \partial \theta$.
Then

$$
I(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\tau}} \log f_{\theta}(X)\right] .
$$

Proof

Result (i) follows from the independence of X and Y and the definition of the Fisher information.
Result (ii) follows from the equality

$$
\frac{\partial^{2}}{\partial \theta \partial \theta^{\tau}} \log f_{\theta}(X)=\frac{\frac{\partial^{2}}{\partial \theta \partial \partial^{\tau}} f_{\theta}(X)}{f_{\theta}(X)}-\frac{\partial}{\partial \theta} \log f_{\theta}(X)\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{\tau} .
$$

Example 3.9

Let X_{1}, \ldots, X_{n} be i.i.d. with the Lebesgue p.d.f. $\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$, where $f(x)>0$ and $f^{\prime}(x)$ exists for all $x \in \mathscr{R}, \mu \in \mathscr{R}$, and $\sigma>0$ (a location-scale family).
Let $\theta=(\mu, \sigma)$. Then, the Fisher information about θ contained in X_{1}, \ldots, X_{n} is (exercise)

$$
I(\theta)=\frac{n}{\sigma^{2}}\left(\begin{array}{cc}
\operatorname{cc} \int \frac{\left[f^{\prime}(x)\right]^{2}}{f(x)} d x & \int \frac{f^{\prime}(x)\left[x f^{\prime}(x)+f(x)\right]}{f(x)} d x \\
\int \frac{f^{\prime}(x)\left[x f^{\prime}(x)+f(x)\right]}{f(x)} d x & \int \frac{\left[x f^{\prime}(x)+f(x)\right]^{2}}{f(x)} d x
\end{array}\right) .
$$

Remarks

- Note that $I(\theta)$ depends on the particular parameterization.
- If $\theta=\psi(\eta)$ and ψ is differentiable, then the Fisher information that X contains about η is

$$
\frac{\partial}{\partial \eta} \psi(\eta) I(\psi(\eta))\left[\frac{\partial}{\partial \eta} \psi(\eta)\right]^{\tau} .
$$

- However, the Cramér-Rao lower bound in (2) is not affected by any one-to-one reparameterization.
- If we use inequality (2) to find a UMVUE $T(X)$, then we obtain a formula for $\operatorname{Var}(T(X))$ at the same time.
- On the other hand, the Cramér-Rao lower bound in (2) is typically not sharp.
- Under some regularity conditions, the Cramér-Rao lower bound is attained iff f_{θ} is in an exponential family; see Propositions 3.2 and 3.3 and the discussion in Lehmann (1983, p. 123).
- Some improved information inequalities are available (see, e.g., Lehmann (1983, Sections 2.6 and 2.7)).

Proposition 3.2.

Suppose that the distribution of X is from an exponential family $\left\{f_{\theta}: \theta \in \Theta\right\}$, i.e., the p.d.f. of X w.r.t. a σ-finite measure is

$$
\begin{equation*}
f_{\theta}(x)=\exp \left\{[\eta(\theta)]^{\tau} T(x)-\xi(\theta)\right\} c(x), \tag{3}
\end{equation*}
$$

where Θ is an open subset of \mathscr{R}^{k}.
(i) The regularity condition (1) is satisfied for any h with $E|h(X)|<\infty$ and

$$
I(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\tau}} \log f_{\theta}(X)\right] .
$$

(ii) If $\underline{l}(\eta)$ is the Fisher information matrix for the natural parameter η, then the variance-covariance matrix $\operatorname{Var}(T)=\underline{l}(\eta)$.
(iii) If $\bar{T}(\vartheta)$ is the Fisher information matrix for the parameter $\vartheta=E[T(X)]$, then $\operatorname{Var}(T)=[\bar{l}(\vartheta)]^{-1}$.

A direct consequence of Proposition 3.2 (ii) is that the variance of any linear function of T in (3) attains the Cramér-Rao lower bound.

Proof

(i) This is a direct consequence of Theorem 2.1.
(ii) The p.d.f. under the natural parameter η is

$$
f_{\eta}(x)=\exp \left\{\eta^{\tau} T(x)-\zeta(\eta)\right\} c(x) .
$$

From Theorem 2.1, $E[T(X)]=\frac{\partial}{\partial \eta} \zeta(\eta)$.
The result follows from

$$
\frac{\partial}{\partial \eta} \log f_{\eta}(x)=T(x)-\frac{\partial}{\partial \eta} \zeta(\eta) .
$$

(iii) Since $\vartheta=E[T(X)]=\frac{\partial}{\partial \eta} \zeta(\eta)$,

$$
\underline{I}(\eta)=\frac{\partial \vartheta}{\partial \eta} \bar{l}(\vartheta)\left(\frac{\partial \vartheta}{\partial \eta}\right)^{\tau}=\frac{\partial^{2}}{\partial \eta \partial \eta^{\tau}} \zeta(\eta) \bar{l}(\vartheta)\left[\frac{\partial^{2}}{\partial \eta \partial \eta^{\tau}} \zeta(\eta)\right]^{\tau} .
$$

By Theorem 2.1 and the result in (ii),

$$
\frac{\partial^{2}}{\partial \eta \partial \eta} \zeta(\eta)=\operatorname{Var}(T)=\underline{I}(\eta) .
$$

Hence

$$
\bar{T}(\vartheta)=[I(\eta)]^{-1} I(\eta)[I(\eta)]^{-1}=[I(\eta)]^{-1}=[\operatorname{Var}(T)]^{-1} .
$$

Example 3.10

Let X_{1}, \ldots, X_{n} be i.i.d. from the $N\left(\mu, \sigma^{2}\right)$ distribution with an unknown $\mu \in \mathscr{R}$ and a known σ^{2}.
Let f_{μ} be the joint distribution of $X=\left(X_{1}, \ldots, X_{n}\right)$.
Then

$$
\frac{\partial}{\partial \mu} \log f_{\mu}(X)=\sum_{i=1}^{n}\left(X_{i}-\mu\right) / \sigma^{2} .
$$

Thus, $I(\mu)=n / \sigma^{2}$.
Consider the estimation of μ.
It is obvious that $\operatorname{Var}(\bar{X})$ attains the Cramér-Rao lower bound in (2).
Consider now the estimation of $\vartheta=\mu^{2}$.
Since $E \bar{X}^{2}=\mu^{2}+\sigma^{2} / n$, the UMVUE of ϑ is $h(\bar{X})=\bar{X}^{2}-\sigma^{2} / n$.
A straightforward calculation shows that

$$
\operatorname{Var}(h(\bar{X}))=\frac{4 \mu^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}} .
$$

On the other hand, the Cramér-Rao lower bound in this case is $4 \mu^{2} \sigma^{2} / n: \operatorname{Var}(h(\bar{X}))$ does not attain the Cramér-Rao lower bound. The difference is $2 \sigma^{4} / n^{2}$.

